For Shielding Light (e.g., Light-blocking Layer, Cold Shield For Infrared Detector) (epo) Patents (Class 257/E31.122)
  • Publication number: 20130221468
    Abstract: A compact sensor module and methods for forming the same are disclosed herein. In some embodiments, a sensor die is mounted on a sensor substrate. A processor die can be mounted on a flexible processor substrate. In some arrangements, a thermally insulating stiffener can be disposed between the sensor substrate and the flexible processor substrate.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 29, 2013
    Applicant: ANALOG DEVICES, INC.
    Inventor: David Frank Bolognia
  • Publication number: 20130207212
    Abstract: A backside illuminated image sensor includes a semiconductor layer and a trench disposed in the semiconductor layer. The semiconductor layer has a frontside surface and a backside surface. The semiconductor layer includes a light sensing element of a pixel array disposed in a sensor array region of the semiconductor layer. The pixel array is positioned to receive external incoming light through the backside surface of the semiconductor layer. The semiconductor layer also includes a light emitting element disposed in a periphery circuit region of the semiconductor layer external to the sensor array region. The trench is disposed in the semiconductor layer between the light sensing element and the light emitting element. The trench is positioned to impede a light path between the light emitting element and the light sensing element when the light path is internal to the semiconductor layer.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Gang Chen, Howard E. Rhodes
  • Patent number: 8508010
    Abstract: A method of manufacturing a solid-state imaging device is provided. The method includes: forming an insulating layer extending over an effective pixel region where a plurality of pixels each having a photoelectric conversion element is arranged and a peripheral area adjacent to the effective pixel region; forming an opening in the insulating layer located immediately above the photoelectric conversion element on the effective pixel region; forming a dummy opening in the insulating layer on the peripheral region; and forming a buried layer on the insulating layer to fill the opening and the dummy opening formed in the insulating layer.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventor: Shunsuke Maruyama
  • Patent number: 8476622
    Abstract: Disclosed are an active matrix organic light emitting diode and a method for manufacturing the same. The active matrix organic light emitting diode includes: a substrate; a black matrix formed above a part of the substrate; at least one thin film transistor formed above the black matrix; a passivation film formed to entirely cover the at least one thin film transistor; a planarizing layer formed above the passivation film; a color filter formed above an upper part of the planarizing layer opposite to the position where the at least one thin film transistor is formed; and an organic light emitting diode formed above the color filter.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: July 2, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hee Park, Chi Sun Hwang, Byoung Gon Yu
  • Patent number: 8471348
    Abstract: A solid-state imaging element includes a semiconductor substrate that has a light reception portion performing a photoelectric conversion of an incident light; an oxide layer that is formed on a surface of the semiconductor substrate; a light shielding layer that is formed on an upper layer further than the oxide layer via an adhesion layer; and an oxygen supply layer that is disposed between the oxide layer and the adhesion layer and is formed of a material which shows an oxidation enthalpy smaller than that of a material forming the oxide layer.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: June 25, 2013
    Assignee: Sony Corporation
    Inventors: Yoshiyuki Ohba, Susumu Hiyama, Itaru Oshiyama
  • Publication number: 20130119500
    Abstract: Provided is a semiconductor image sensor device. The image sensor device includes a semiconductor substrate that includes an array region and a black level correction region. The array region contains a plurality of radiation-sensitive pixels. The black level correction region contains one or more reference pixels. The substrate has a front side and a back side. The image sensor device includes a first compressively-stressed layer formed on the back side of the substrate. The first compressively-stressed layer contains silicon nitride. The image sensor device includes a metal shield formed on the compressively-stressed layer. The metal shield is formed over at least a portion of the black level correction region. The image sensor device includes a second compressively-stressed layer formed on the metal shield and the first compressively-stressed layer. The second compressively-stressed layer contains silicon oxide. A sidewall of the metal shield is protected by the second compressively-stressed layer.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Chih Weng, Hsun-Ying Huang, Yung-Cheng Chang, Jin-Hong Cho
  • Patent number: 8421136
    Abstract: A semiconductor device that includes a circuit portion, a first light-shielding film and plural second light-shielding films. In the circuit portion, a plurality of wiring layers that include circuit elements are laminated. The first light-shielding film covers an uppermost layer of the wiring layers and light-shields light that is illuminated at the circuit portion. The second light-shielding films are covered by the first light shielding film and formed so as to respectively encircle the wiring layers in ring forms. Outer peripheries of the plural second light-shielding films are formed to be successively smaller from an upper to a lower layer, so as to be at the inner side relative to the outer periphery of the second light-shielding film of the upper layer.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: April 16, 2013
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Kenichirou Sugio, Kenichirou Tanaka
  • Publication number: 20130089945
    Abstract: A method of manufacturing a solid-state image sensor having photoelectric conversion elements and one or more MOS transistors are formed on a semiconductor substrate is provided. The method includes forming a resist pattern having an opening and a shielding portion over the substrate; and implanting ions in the substrate through the opening. When the substrate is viewed from a direction, an isolation region that is positioned between accumulation regions adjacent to one another is exposed in the opening, and when viewed from a different direction, a channel region of the MOS transistors is exposed in the opening, and the isolation region is shielded by the shielding portion. Ions irradiated in the direction are implanted in the isolation region, and ions irradiated in the different direction are implanted in the channel region.
    Type: Application
    Filed: September 7, 2012
    Publication date: April 11, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Mahito Shinohara, Junji Iwata
  • Patent number: 8405063
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: March 26, 2013
    Assignee: QD Vision, Inc.
    Inventors: Peter T. Kazlas, Seth Coe-Sullivan
  • Patent number: 8398871
    Abstract: A method for designing a first optical filter, exhibiting a first filter performance satisfying a first preset criterion, and a second optical filter, exhibiting a second filter performance satisfying a second preset criterion, includes providing initial first and second filter designs for the first and second optical filters, respectively, as first and second ordered stacks of layers, respectively. A pair of layers, including a first layer, characterized by a first thickness, and a second layer, characterized by a second thickness, is selected from the first and second ordered stacks of layers. The first thickness is constrained to a first constrained thickness that is a positive integer multiple of the second thickness to yield a constrained first filter design. A predicted performance of the constrained first filter design is determined and compared with the first preset criterion for one of accepting and rejecting the constrained first filter design.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 19, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Lu Gao, Gary Duerksen, Paulo E. X. Silveira
  • Publication number: 20130048868
    Abstract: A method of making a radiation-sensitive apparatus includes providing a first substrate, forming a radiation-sensitive layer over the first substrate, providing a plurality of spatially separated integrated circuits, each integrated circuit having: a second substrate, one or more electronic circuit(s) formed in or on the second substrate, and one or more electrode connection pads formed in or on the second substrate, each electrode connection pad electrically connected to at least one of the electronic circuit(s). A plurality of pixel electrodes is formed over the first substrate separate from the integrated circuit, each pixel electrode electrically connected to an electrode connection pad. An electronic control circuit is electrically connected to each electronic circuit in each integrated circuit.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 28, 2013
    Inventor: RONALD Steven COK
  • Patent number: 8378399
    Abstract: According to one embodiment, a backside illumination solid-state imaging device includes a semiconductor layer, a first light-receiving unit and a second light-receiving unit, a circuit unit, an impurity isolation layer, and a light-shielding film. A first light-receiving unit and a second light-receiving unit are formed adjacent to each other in the semiconductor layer, convert light applied from a lower surface side of the semiconductor layer into a signal, and store electric charges. A circuit unit is formed on an upper surface of the semiconductor layer. An impurity isolation layer is formed to reach to the upper surface from the lower surface in the semiconductor layer and isolates the first light-receiving unit from the second light-receiving unit. A light-shielding film is formed on part of the lower surface side in the impurity isolation layer so as to extend from the lower surface to the upper surface.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Motohiro Maeda
  • Publication number: 20130026587
    Abstract: Pixel sensor cells with an opaque mask layer and methods of manufacturing are provided. The method includes forming a transparent layer over at least one active pixel and at least one dark pixel of a pixel sensor cell. The method further includes forming an opaque region in the transparent layer over the at least one dark pixel.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey P. GAMBINO, Robert K. LEIDY, Mark D. LEVY
  • Publication number: 20130020468
    Abstract: A solid-state imaging device has a sensor substrate having a pixel region on which photoelectric converters are arrayed; a driving circuit provided on a front face side that is opposite from a light receiving face as to the photoelectric converters on the sensor substrate; an insulation layer, provided on the light receiving face, and having a stepped construction wherein the film thickness of the pixel region is thinner than the film thickness in a periphery region provided on the outside of the pixel region; a wiring provided to the periphery region on the light receiving face side; and on-chip lenses provided to positions corresponding to the photoelectric converters on the insulation layer.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 24, 2013
    Applicant: SONY CORPORATION
    Inventors: Ikue Mitsuhashi, Kentaro Akiyama, Koji Kikuchi
  • Publication number: 20130009039
    Abstract: Disclosed herein is a solid-state imaging device including: a photoelectric conversion section configured to have a charge accumulating region of a first conductivity type formed in a semiconductor layer; a pixel having the photoelectric conversion section and a pixel transistor; a pixel region in which a plurality of the pixels are arranged; an epitaxially grown semiconductor layer of the first conductivity type formed on an inner wall part of a trench disposed in the semiconductor layer at least between adjacent ones of the pixels within the pixel region; and a pixel separating section configured to separate the charge accumulating regions of the adjacent ones of the pixels from each other, the pixel separating section being formed on the inside of the semiconductor layer of the first conductivity type.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 10, 2013
    Applicant: SONY CORPORATION
    Inventors: Naoyuki Sato, Yuki Miyanami
  • Patent number: 8334555
    Abstract: A pixel area for generating an image signal corresponding to incident light is formed on a semiconductor substrate. A light-shielding layer is formed on the semiconductor substrate around the pixel area. The light-shielding layer has a slit near the pixel area and shields the incident light. A passivation film is formed in the pixel area, on the light-shielding layer, and in the slit. A coating layer is formed in the slit of the light-shielding layer and on the passivation film in the pixel area. Microlenses are formed on the coating layer in the pixel area.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: December 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Koike
  • Publication number: 20120299066
    Abstract: In a solid-state image pickup device including a pixel that includes a photoelectric conversion portion, a carrier holding portion, and a plurality of transistors, the solid-state image pickup device further includes a first insulating film disposed over the photoelectric conversion portion, the carrier holding portion, and the plurality of transistors, a conductor disposed in an opening of the first insulating film and positioned to be connected to a source or a drain of one or more of the plurality of transistors, and a light shielding film disposed in an opening or a recess of the first insulating film and positioned above the carrier holding portion.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 29, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Aiko Kato, Kouhei Hashimoto, Seiichi Tamura
  • Patent number: 8318579
    Abstract: A method for fabricating a semiconductor device includes steps as following. First, a substrate with an edge-mark is provided. The substrate has a front-side surface and a back-side surface opposite to each other. The front-side surface has an active region and a peripheral region with an alignment mark formed thereon. Next, an optical shielding layer is formed over the back-side surface of the substrate. Next, a first photo mask is aligned to the substrate by standing on the edge-mark. Next, a portion of the optical shielding layer corresponding with the alignment mark is removed by using the first photo mask. Next, a second photo mask is aligned to the substrate by standing on the alignment mark. Then, a portion of the optical shielding layer corresponding with the active region is removed to expose a portion of the substrate by using the second photo mask for forming an optical shielding pattern.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: November 27, 2012
    Assignee: United Microelectronics Corp.
    Inventor: Hsin-Ping Wu
  • Publication number: 20120276680
    Abstract: A solid-state imaging device includes: a pixel section including, in a semiconductor substrate, plural photoelectric conversion sections that photoelectrically convert incident light to generate signal charges; metal wirings formed, on a first insulating film formed on the semiconductor substrate, above regions among the photoelectric conversion sections and above the periphery of the pixel section; a second insulating film formed on the first insulating film to cover the metal wirings; a first light shielding film formed on the second insulating film and having an opening above the pixel section; and a second light shielding film formed above the metal wirings above the pixel section and having thickness smaller than that of the first light shielding film.
    Type: Application
    Filed: July 5, 2012
    Publication date: November 1, 2012
    Applicant: Sony Corporation
    Inventor: Masaaki Takizawa
  • Patent number: 8299557
    Abstract: A photoelectric conversion device is provided which is capable of improving the light condensation efficiency without substantially decreasing the sensitivity. The photoelectric conversion device has a first pattern provided above an element isolation region formed between adjacent two photoelectric conversion elements, a second pattern provided above the element isolation region and above the first pattern, and microlenses provided above the photoelectric conversion elements with the first and the second patterns provided therebetween. The photoelectric conversion device further has convex-shaped interlayer lenses in optical paths between the photoelectric conversion elements and the microlenses, the peak of each convex shape projecting in the direction from the electro-optical element to the microlens.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: October 30, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Sakae Hashimoto
  • Patent number: 8293563
    Abstract: Disclosed herein is a method for making a semiconductor device including the steps of: forming a light-receiving portion for carrying out photoelectric conversion in a semiconductor substrate; forming an insulating film to cover a light-receiving side of the semiconductor substrate; forming a metallic light-shielding film to partly cover the insulating film in correspondence to the light-receiving portion; and heating the metallic light-shielding film by irradiation of the metallic light-shielding film with a microwave to permit selective annealing of a laminated portion with the metallic light-shielding film in the insulating film.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: October 23, 2012
    Assignee: Sony Corporation
    Inventor: Susumu Hiyama
  • Patent number: 8294177
    Abstract: A light emitting device (1) includes a LED chip (10) as well as a mounting substrate (20) on which the LED chip (10) is mounted. Further, the light emitting device (1) includes a cover member (60) and a color conversion layer (70). The cover member (60) is formed to have a dome shape and is made of a translucency inorganic material. The color conversion layer (70) is formed to have a dome shape and is made of a translucency material (such as, a silicone resin) including a fluorescent material excited by light emitted from the LED chip (10) and emitting light longer in wavelength than the light emitted from the LED chip (10). The cover member (60) is attached to the mounting substrate (20) such that there is an air layer (80) between the cover member (60) and the mounting substrate (20). The color conversion layer (70) is superposed on a light-incoming surface or a light-outgoing surface of the cover member (60).
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 23, 2012
    Assignee: Panasonic Corporation
    Inventors: Keiichi Yamazaki, Naoko Takei, Tomoyuki Nakajima
  • Patent number: 8283197
    Abstract: A fabricating method for a pixel structure is provided. First, a substrate having an active device and a capacitor electrode line thereon is provided. Next, a passivation layer is formed on the substrate to cover the active device. After that, a light shielding layer is formed on the passivation layer to define a unit area. Next, an ink-jet printing is performed to form a color filter pattern within the unit area defined by the light shielding layer. After that, a portion of the color filter pattern is removed to form a first hole above active device. Next, the passivation layer exposed by the first hole is removed so as to form a contact hole exposing a portion of the active device. After that, a pixel electrode is formed on the color filter pattern to fill into the contact hole so as to electrically connect with active device.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: October 9, 2012
    Assignee: Au Optronics Corporation
    Inventors: Yen-Heng Huang, Chung-Kai Chen, Chia-Hui Pai
  • Patent number: 8283196
    Abstract: A method and device is disclosed for reducing noise in CMOS image sensors. An improved CMOS image sensor includes a light sensing structure surrounded by a support feature section. An active section of the light sensing structure is covered by no more than optically transparent materials. A light blocking portion includes a black light filter layer and an opaque layer covering the support feature section. The light blocking portion may also cover a peripheral portion of the light sensing structure. The method for forming the CMOS image sensors includes using film patterning and etching processes to selectively form the opaque layer where the light blocking portion is desired but not over the active section.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 9, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tien-Chi Wu, Tsung-Yi Lin
  • Patent number: 8283661
    Abstract: Provided is an organic EL display manufacturing method which has: a step wherein an organic EL panel having a substrate and organic EL elements arranged in matrix on the substrate is prepared, and each organic EL element is permitted to have a pixel electrode disposed on the substrate, an organic layer disposed on the pixel electrode, a transparent counter electrode disposed on the organic layer, a sealing layer disposed on the transparent counter electrode, and a color filter disposed on the sealing layer; a step of detecting a defective portion on the organic layer in the organic EL element; and a step of breaking the transparent counter electrode in a region on the defective portion of the transparent counter electrode by irradiating the region on the defective portion with a laser beam. The laser beam is radiated by being tilted with respect to the normal line on the display surface of the organic EL panel.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: October 9, 2012
    Assignee: Panasonic Corporation
    Inventors: Kazutoshi Miyazawa, Akihisa Nakahashi
  • Publication number: 20120212687
    Abstract: With an improved light use efficiency, the light detection sensitivity of a thin film diode is increased even if the semiconductor layer of the thin film diode has a small thickness. On one side of a substrate (101), a thin film diode (130) including a first semiconductor layer (131) that has at least an n-type region (131n) and a p-type region (131p) is provided. A light-shielding layer (160) is disposed between the substrate and the first semiconductor layer. The surface of the light-shielding layer facing the first semiconductor layer has depressions and protrusions formed thereon. The surface of the first semiconductor layer facing the light-shielding layer is flatter than the surface of the light-shielding layer on which the depressions and protrusions are formed. The light that falls on the light-shielding layer is diffusely reflected and enters the first semiconductor layer.
    Type: Application
    Filed: July 16, 2010
    Publication date: August 23, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Seiichi Uchida, Tomohiro Kimura, Makoto Nakazawa
  • Patent number: 8242548
    Abstract: A solid-state imaging device includes: a pixel section including, in a semiconductor substrate, plural photoelectric conversion sections that photoelectrically convert incident light to generate signal charges; metal wirings formed, on a first insulating film formed on the semiconductor substrate, above regions among the photoelectric conversion sections and above the periphery of the pixel section; a second insulating film formed on the first insulating film to cover the metal wirings; a first light shielding film formed on the second insulating film and having an opening above the pixel section; and a second light shielding film formed above the metal wirings above the pixel section and having thickness smaller than that of the first light shielding film.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: August 14, 2012
    Assignee: Sony Corporation
    Inventor: Masaaki Takizawa
  • Patent number: 8237206
    Abstract: A CMOS image sensor, in which an implantation process is performed on substrate under isolation structures each disposed between two adjacent photosensor cell structures. The implantation process is a destructive implantation to form lattice effects/trap centers. No defect repair process is carried out after the implantation process is performed. The implants can reside at the isolation structures or in the substrate under the isolation structures. Dark leakage and crosstalk are thus suppressed.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: August 7, 2012
    Assignee: United Microelectronics Corp.
    Inventor: Hsin-Ping Wu
  • Patent number: 8227288
    Abstract: Provided is a method of fabricating an image sensor device. The method includes providing a device substrate having a front side and a back side. The method includes forming first and second radiation-sensing regions in the device substrate, the first and second radiation-sensing regions being separated by an isolation structure. The method also includes forming a transparent layer over the back side of the device substrate. The method further includes forming an opening in the transparent layer, the opening being aligned with the isolation structure. The method also includes filling the opening with an opaque material.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: July 24, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-De Wang, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Jeng-Shyan Lin
  • Publication number: 20120153422
    Abstract: An imaging device includes at least one photosite formed in a semiconducting substrate and fitted with a filtering device for filtering at least one undesired radiation. The filtering device is buried in the semiconducting substrate at a depth depending on the wavelength of the undesired radiation.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 21, 2012
    Applicants: STMicroelectronics (Grenoble 2) SAS, STMicroelectronics SA, STMicroelectronics (Rousset) SAS
    Inventors: David Coulon, Benoit Deschamps, Frédéric Barbier
  • Patent number: 8187908
    Abstract: In an integrated circuit, a light sensitive area is protected against radiation by arranging a light blocking layer sequence (504) on top of the light sensitive area. The light blocking layer sequence comprises one or several metal layers (504a) and a silicon layer (503b, 1) for the purpose of absorption. A moth eye structure is provided on the silicon layer. Thereby, a radiation incident by reflection is minimized in such a way that also stray light can effectively be kept from the light sensitive area below the light blocking layer sequence (504).
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: May 29, 2012
    Assignee: X-Fab Semiconductor Foundries AG
    Inventor: Daniel Gaebler
  • Publication number: 20120068294
    Abstract: An image sensor with decreased optical interference between adjacent pixels is provided. An image sensor, which is divided into a pixel region and a peripheral region, the image sensor including a photodiode formed in a substrate in the pixel region, first to Mth metal lines formed over the substrate in the pixel region, where M is a natural number greater than approximately 1, first to Nth metal lines formed over a substrate in the peripheral region, where N is a natural number greater than M, at least one layer of dummy metal lines formed over the Mth metal lines but formed not to overlap with the photodiode, and a microlens formed over the one layer of the dummy metal lines to overlap with the photodiode.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 22, 2012
    Applicant: INTELLECTUAL VENTURES II LLC
    Inventors: Won-Ho Lee, Dong-Heon Cho
  • Patent number: 8134154
    Abstract: A thin film transistor capable of reliably preventing the entry of light into an active layer, and a display including the thin film transistor are provided. A thin film transistor includes: a gate electrode; an active layer; and a gate insulating film arranged between the gate electrode and the active layer, the gate insulating film including a first insulating film, a first light-absorbing layer and a second insulating film, the first insulating film arranged in contact with the gate electrode, the first light-absorbing layer arranged in contact with the first insulating film and made of a material absorbing light of 420 nm or less, the second insulating film arranged between the first light-absorbing layer and the active layer.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: March 13, 2012
    Assignee: Sony Corporation
    Inventors: Dharam Pal Gosain, Tsutomu Tanaka, Narihiro Morosawa
  • Patent number: 8129809
    Abstract: Disclosed are an image sensor and a manufacturing method thereof. The image sensor includes a circuit layer on a first surface of a semiconductor substrate, a metal interconnection layer on the circuit layer, trenches formed in a second surface of the semiconductor substrate along a boundary of a pixel, and a light blocking layer in the trenches. The backside illumination type image sensor according to the embodiment has a light blocking structure at a rear surface of the semiconductor substrate, thereby improving sensing efficiency while inhibiting interference between adjacent pixels.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: March 6, 2012
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Hoon Jang
  • Publication number: 20120049306
    Abstract: A solid-state imaging element includes a semiconductor substrate that has a light reception portion performing a photoelectric conversion of an incident light; an oxide layer that is formed on a surface of the semiconductor substrate; a light shielding layer that is formed on an upper layer further than the oxide layer via an adhesion layer; and an oxygen supply layer that is disposed between the oxide layer and the adhesion layer and is formed of a material which shows an oxidation enthalpy smaller than that of a material forming the oxide layer.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 1, 2012
    Applicant: SONY CORPORATION
    Inventors: Yoshiyuki Ohba, Susumu Hiyama, Itaru Oshiyama
  • Publication number: 20120050654
    Abstract: A sensor array substrate includes: a substrate; a protective substrate disposed on a first surface of the substrate; a plurality of light sensor units disposed on a second surface of the substrate, where the plurality of light sensor units detects reflection light reflected from a surface of the protective substrate; and a reflection light blocking pattern disposed between the light sensor units and the protective substrate, where the reflection light blocking pattern blocks a portion of the reflection light, and where a plurality of openings corresponding to the plurality of light sensor units is formed in the reflection light blocking pattern.
    Type: Application
    Filed: August 17, 2011
    Publication date: March 1, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-Kwon KIM, Nam-Heon KIM, Kwang-Hoon LEE
  • Publication number: 20120032193
    Abstract: To provide a solid-state image sensing device or a semiconductor display device, which can easily obtain the positional data of an object without contact. Included are a plurality of first photosensors on which light with a first incident angle is incident from a first incident direction and a plurality of second photosensors on which light with a second incident angle is incident from a second incident direction. The first incident angle of light incident on one of the plurality of first photosensors is larger than that of light incident on one of the other first photosensors. The second incident angle of light incident on one of the plurality of second photosensors is larger than that of light incident on one of the other second photosensors.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 9, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiyuki KUROKAWA, Takayuki IKEDA
  • Publication number: 20120012964
    Abstract: An image sensor includes: a photoelectric conversion pixel having a photoelectric conversion element that performs photoelectric conversion, and a light guide formed of a first material in an interlayer insulation film above the photoelectric conversion element; and a light-shielded pixel having a photoelectric conversion element that performs photoelectric conversion, a light guide formed of a second material that is different from the first material in an interlayer insulation film above the photoelectric conversion element, and a light-shielding layer formed above the light guide.
    Type: Application
    Filed: March 10, 2010
    Publication date: January 19, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takafumi Kishi
  • Patent number: 8084798
    Abstract: A pixel area for generating an image signal corresponding to incident light is formed on a semiconductor substrate. A light-shielding layer is formed on the semiconductor substrate around the pixel area. The light-shielding layer has a slit near the pixel area and shields the incident light. A passivation film is formed in the pixel area, on the light-shielding layer, and in the slit. A coating layer is formed in the slit of the light-shielding layer and on the passivation film in the pixel area. Microlenses are formed on the coating layer in the pixel area.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Koike
  • Patent number: 8076681
    Abstract: A high-efficiency, white organic electroluminescent device has such a structure that its emission layer is obtained by laminating sub-emission layers of red, green, and blue, respectively. The green sub-emission layer contacting a hole transport layer has a delayed fluorescent material, and the red sub-emission layer has a phosphorescent light emitting material.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: December 13, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshifumi Mori, Koichi Suzuki, Akira Tsuboyama, Satoru Shiobara, Kenichi Ikari
  • Publication number: 20110298073
    Abstract: Disclosed is a method for forming an image sensor device. First, a lens is provided, and a first sacrificial element is then formed on the lens. Subsequently, an electromagnetic interference layer is formed on the lens and the first sacrificial element, and the first sacrificial element and the electromagnetic interference layer thereon are removed to form an electromagnetic interference pattern having an opening exposing a selected portion of the lens. A second sacrificial element is formed in the opening to cover a center region of the selected portion of the lens, while a peripheral region of the selected portion of the lens remains exposed. Next, a light-shielding layer is formed on the electromagnetic interference pattern, the second sacrificial element, and the peripheral region of the selected portion of the lens. Thereafter, the second sacrificial element and the light-shielding pattern thereon are removed to expose the center region of the selected portion of the lens as a light transmitting region.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 8, 2011
    Inventors: Ming-Kai Liu, Tzu-Wei Huang, Jui-Hung Chang, Chia-Hui Huang, Teng-Sheng Chen
  • Publication number: 20110298024
    Abstract: A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: SONY CORPORATION
    Inventors: Yoshiaki Kitano, Hideshi Abe, Jun Kuroiwa, Kiyoshi Hirata, Hiroaki Ohki, Nobuhiro Karasawa, Ritsuo Takizawa, Mitsuru Yamashita, Mitsuru Sato, Katsunori Kokubun
  • Patent number: 8063462
    Abstract: A semiconductor device includes a semiconductor substrate having a first surface in which a light-receiving portion and electrodes are provided. The semiconductor substrate has a penetrating wiring layer connecting the first surface and the second surface. A light-transmissive protective member is disposed on the semiconductor substrate so as to cover the first surface. A gap is provided between the semiconductor substrate and the light-transmissive protective member. A protective film is formed at a surface of the light-transmissive protective member. The protective film has an opening provided at a region corresponding to the light-receiving portion.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazumasa Tanida, Masahiro Sekiguchi, Susumu Harada
  • Patent number: 8035180
    Abstract: Provided is an image sensor and method for manufacturing the same. The image sensor includes a semiconductor substrate including a photodiode for each unit pixel, an interlayer insulating layer including metal lines on the semiconductor substrate, and an optical refractive part in a region of the interlayer insulating layer corresponding to the photodiode for focusing light on the photodiode. The optical refractive part can be formed by implanting impurities into the interlayer insulating layer.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 11, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Seung Ryong Park
  • Patent number: 8030723
    Abstract: An image sensor with decreased optical interference between adjacent pixels is provided. An image sensor, which is divided into a pixel region and a peripheral region, the image sensor including a photodiode formed in a substrate in the pixel region, first to Mth metal lines formed over the substrate in the pixel region, where M is a natural number greater than approximately 1, first to Nth metal lines formed over a substrate in the peripheral region, where N is a natural number greater than M, at least one layer of dummy metal lines formed over the Mth metal lines but formed not to overlap with the photodiode, and a microlens formed over the one layer of the dummy metal lines to overlap with the photodiode.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 4, 2011
    Assignee: Crosstek Capital, LLC
    Inventors: Won-Ho Lee, Dong-Heon Cho
  • Patent number: 8021912
    Abstract: A method of manufacturing an image sensor is provided. In this method, a photoelectric conversion unit may be formed within a semiconductor substrate, wherein the semiconductor substrate includes an active pixel region and an optical black region. An annealing layer may be formed on the active pixel region and the optical black region and etched so that the annealing layer covers at least a portion of the optical black region. A wiring pattern may be formed on the annealing layer. A light-blocking pattern may be formed on the wiring pattern so as to cover the entire photoelectric conversion unit of the optical black region, thereby blocking light from being incident upon the optical black region.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: September 20, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yi Tae Kim, Kyung Ho Lee, Sae-Young Kim, Yun Ho Jang, Jung Chak Ahn
  • Patent number: 8022452
    Abstract: A source/drain region of a transistor or amplifier is formed in a substrate layer and is connected to a voltage source. A glow blocking structure is formed at least partially around the source/drain region and is disposed between the source/drain region and an imaging array of an image sensor. A trench is formed in the substrate layer adjacent to and at least partially around the source/drain region. The glow blocking structure includes an opaque material formed in the trench and one or more layers of light absorbing material overlying the source/drain region and the opaque material.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 20, 2011
    Assignee: Omnivision Technologies, Inc.
    Inventors: Shen Wang, Robert P. Fabinski, Robert Kaser
  • Patent number: 8018014
    Abstract: A semiconductor device according to the present invention includes a semiconductor substrate: a photodiode responsive to a light, which is formed in the semiconductor substrate; at least an interlayer insulating layer formed over the semiconductor substrate, the at least an interlayer insulating layer comprising an upper most insulating layer; at least a conductive wiring layer, comprising an upper most conductive wiring layer formed on the upper most insulating layer; and a first passivation layer formed over the upper-most conductive wiring layer. The upper-most wiring layer is not formed directly above the photodiode. The first passivation layer is made of a permeability-resist material and is not formed directly above the photodiode.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: September 13, 2011
    Assignee: OKI Semiconductor Co., Ltd.
    Inventor: Kousuke Hara
  • Patent number: 8017984
    Abstract: A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: September 13, 2011
    Assignee: Sony Corporation
    Inventors: Yoshiaki Kitano, Hideshi Abe, Jun Kuroiwa, Kiyoshi Hirata, Hiroaki Ohki, Nobuhiro Karasawa, Ritsuo Takizawa, Mitsuru Yamashita, Mitsuru Sato, Katsunori Kokubun
  • Publication number: 20110193146
    Abstract: A pixel sensor structure, method of manufacture and method of operating. Disclosed is a buffer pixel cell comprising a barrier region for preventing stray charge carriers from arriving at a dark current correction pixel cell. The buffer pixel cell is located in the vicinity of the dark current correction pixel cell and the buffer pixel cell resembles an active pixel cell. Thus, an environment surrounding the dark current correction pixel cell is similar to the environment surrounding an active pixel cell.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe