Optical Element Associated With Device (epo) Patents (Class 257/E31.127)
  • Patent number: 8674417
    Abstract: A solid-state imaging device including: a substrate; a light-receiving part; a second-conductivity-type isolation layer; a detection transistor; and a reset transistor.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: March 18, 2014
    Assignee: Sony Corporation
    Inventor: Isao Hirota
  • Publication number: 20140070348
    Abstract: Methods and apparatus for integrating a CMOS image sensor and an image signal processor (ISP) together using an interposer to form a system in package device module are disclosed. The device module may comprise an interposer with a substrate. An interposer contact is formed within the substrate. A sensor device may be bonded to a surface of the interposer, wherein a sensor contact is bonded to a first end of the interposer contact. An ISP may be connected to the interposer, by bonding an ISP contact in the ISP to a second end of the interposer contact. An underfill layer may fill a gap between the interposer and the ISP. A printed circuit board (PCB) may further be connected to the interposer by way of a solder ball connected to another interposer contact. A thermal interface material may be in contact with the ISP and the PCB.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Chung Yee, Chun Hui Yu
  • Patent number: 8669134
    Abstract: Provided is a method of manufacturing a solid-state imaging device including: forming a first pattern having an independent island shape configured by an optical filter material on some of photoelectric conversion units among a plurality of photoelectric conversion units arranged on the surface of a substrate; forming a mixed color prevention layer on a side wall of the first pattern; and forming a second pattern having an independent island shape configured by an optical filter material on the rest of the photoelectric conversion units among the plurality of photoelectric conversion units while the mixed color prevention layer is closely disposed between the first pattern and the second pattern.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 11, 2014
    Assignee: Sony Corporation
    Inventors: Tomomi Ito, Ryoji Suzuki, Taichi Natori
  • Patent number: 8669602
    Abstract: Disclosed herein is a solid-state imaging device including: a laminated semiconductor chip configured to be obtained by bonding two or more semiconductor chip sections to each other and be obtained by bonding at least a first semiconductor chip section in which a pixel array and a multilayer wiring layer are formed and a second semiconductor chip section in which a logic circuit and a multilayer wiring layer are formed to each other in such a manner that the multilayer wiring layers are opposed to each other and are electrically connected to each other; and a light blocking layer configured to be formed by an electrically-conductive film of the same layer as a layer of a connected interconnect of one or both of the first and second semiconductor chip sections near bonding between the first and second semiconductor chip sections. The solid-state imaging device is a back-illuminated solid-state imaging device.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 11, 2014
    Assignee: Sony Corporation
    Inventor: Toshihiko Hayashi
  • Publication number: 20140061833
    Abstract: Photo-conducting infrared sensors are provided including a substrate (e.g., silicon) with one or more trenches formed on a first surface. An infrared-reflective film can be deposited directly or indirectly onto and conforming in shape with the first surface of the substrate. A lead chalcogenide film can be deposited directly or indirectly over the top of the infrared-reflective film and conforming in shape with the first surface of the substrate. Accordingly, the infrared-reflective film is directly or indirectly sandwiched between the substrate and the lead chalcogenide film.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Thomas J. Knight, Christopher F. Kirby
  • Publication number: 20140062981
    Abstract: Systems, methods, and devices are provided for an electronic display with thermally compensated pixels. Such an electronic display may have an array of pixels, at least some of which may be thermally compensated pixels that exhibit reduced thermal color shift over an operational temperature range. These thermally compensated pixels may have compensation electrodes that induce an electric field in the thermally compensated pixel that cause a reduction in color shift.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: APPLE INC.
    Inventors: Yi Huang, Mingxia Gu, Jean-Jacques Philippe Drolet, Wei Chen
  • Patent number: 8664521
    Abstract: A high efficiency solar battery using a fluorescent substance to efficiently use incident light and thereby improve conversion efficiency. The solar battery of the present invention comprises: a front part including a front electrode and configured to receive light; a generating part disposed behind the front part to generate electricity from specific wavelengths of light incident through the front part; and a rear part disposed behind the generating part and comprising a rear electrode, wherein a first fluorescent substance is dispersed in the front part so as to absorb light having wavelengths different from the specific wavelengths, convert the absorbed light into light having the specific wavelengths, and output the converted light.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 4, 2014
    Assignee: Korea Institute of Energy Research
    Inventor: Sang-Do Han
  • Publication number: 20140057385
    Abstract: A solar cell structure includes stacked layers in reverse order on a germanium substrate. A heterostructure including an (In)GaAs absorbing layer and a disordered emitter layer is provided in the solar cell structures. Controlled spalling may be employed as part of the fabrication process for the solar cell structure, which may be single or multi-junction.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Davood Shahrjerdi
  • Patent number: 8659109
    Abstract: An image sensor including a plurality of pixels each including a charge collection region including an N-type region bounded by P-type regions and having an overlying P-type layer; and an insulated gate electrode positioned over the P-type layer and arranged to receive a gate voltage for conveying charges stored in the charge collection region through the P-type layer.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: February 25, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: François Roy
  • Patent number: 8653612
    Abstract: An object of the invention is to provide a smaller semiconductor device of which the manufacturing process is simplified and the manufacturing cost is reduced. Furthermore, an object of the invention is to provide a semiconductor device having a cavity. A device element 3 is formed on a front surface of a semiconductor substrate 4, and a sealing body 1 is attached to the semiconductor substrate 4 with an adhesive layer 6 being interposed therebetween. A main surface (a back surface) of the sealing body 1 which faces the semiconductor substrate 4 is curved inward, and there is a given space (a cavity 2) between the sealing body 1 and the semiconductor substrate 4. Since the back surface of the sealing body 1 is curved, the sealing body 1 is used as a planoconcave lens (a reverse direction) as well as a sealing member for the device element 3.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: February 18, 2014
    Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Kazuo Okada, Katsuhiko Kitagawa, Hiroshi Yamada
  • Publication number: 20140042298
    Abstract: A device includes an image sensor chip having an image sensor therein. A read-out chip is underlying and bonded to the image sensor chip, wherein the read-out chip includes a logic device selected from the group consisting essentially of a reset transistor, a source follower, a row selector, and combinations thereof therein. The logic device and the image sensor are electrically coupled to each other, and are parts of a same pixel unit. A peripheral circuit chip is underlying and bonded to the read-out chip, wherein the peripheral circuit chip includes a logic circuit.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Hsun Wan, Szu-Ying Chen, Dun-Nian Yaung, Jen-Cheng Liu
  • Publication number: 20140041719
    Abstract: A photovoltaic cell with reduced shading and series resistance for increased efficiency. A contact grid containing a set of optical structures is embedded into a substrate. An array of electrical contacts is aligned and in electrical communication with the optical structures and provides electrical communication between the active layer and the substrate.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Haag, Ruediger Kellmann, Markus Schmidt
  • Publication number: 20140035079
    Abstract: The present invention provides a window type camera module structure comprising a first substrate. A chip is configured on the first substrate, with a first contact pad and a sensing area. A second substrate is disposed on the first substrate, with a through hole structure and a second contact pad, wherein the chip is disposed within the through hole structure. The first contact is coupled to the second contact pad via a wire. A lens holder is disposed on the second substrate, and a lens is located on the top of the lens holder. A transparent material is disposed on the lens holder or the second substrate. The lens is substantially aligning to the transparent material and the sensing area.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Applicant: LARVIEW TECHNOLOGIES CORPORATION
    Inventor: Shin-Dar Jan
  • Publication number: 20140034957
    Abstract: Devices are described including a first component and a second component, wherein the first component comprises a Group III-N semiconductor and the second component comprises a bimetallic oxide containing tin, having an index of refraction within 15% of the index of refraction of the Group III-N semiconductor, and having negligible extinction coefficient at wavelengths of light emitted or absorbed by the Group III-N semiconductor. The first component is in optical contact with the second component. Exemplary bimetallic oxides include Sn1-xBixO2 where x?0.10, Zn2SnO2, Sn1-xAlxO2 where x?0.18, and Sn1-xMgxO2 where x?0.16. Methods of making and using the devices are also described.
    Type: Application
    Filed: October 10, 2012
    Publication date: February 6, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Philip Kraus, Minh-Huu Le, Sandeep Nijhawan
  • Publication number: 20140035081
    Abstract: The present invention provides a module structure of substrate inside type comprising a first substrate with a concave structure. A chip is configured on the concave structure of the first substrate, with a first contact pad and a sensing area. A second substrate is disposed on the first substrate, with at least one through hole structure and a second contact pad. The first contact is coupled to the second contact pad via a wire. The second substrate includes a first portion embedded into the module structure, and a second portion extended to outside of the module structure. A lens holder is disposed on the second substrate, and a lens is located on the top of the lens holder. A transparent material is disposed within the lens holder or the second substrate. The lens is substantially aligning to the transparent material and the sensing area.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: LARVIEW TECHNOLOGIES CORPORATION
    Inventor: Shin-Dar Jan
  • Publication number: 20140027872
    Abstract: A device includes a semiconductor substrate, an image sensor at a front surface of the semiconductor substrate, and a plurality of dielectric layers over the image sensor. A color filter and a micro lens are disposed over the plurality of dielectric layers and aligned to the image sensor. A through via penetrates through the semiconductor substrate. A Redistribution Line (RDL) is disposed over the plurality of dielectric layers, wherein the RDL is electrically coupled to the through via. A polymer layer covers the RDL.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Jing-Cheng Lin
  • Patent number: 8637911
    Abstract: A solid-state imaging device includes a substrate, a dielectric layer on the substrate, and an array of pixels, each of the pixels includes: a pixel electrode, an organic layer, a counter electrode, a sealing layer, a color filter, a readout circuit and a light-collecting unit as defined herein, the photoelectric layer contains an organic p-type semiconductor and an organic n-type semiconductor, the organic layer further includes a charge blocking layer as defined herein, an ionization potential of the charge blocking layer and an electron affinity of the organic n-type semiconductor present in the photoelectric layer have a difference of at least 1 eV, and a surface of the pixel electrodes on a side of the photoelectric layer and a surface of the dielectric layer on a side of the photoelectric layer are substantially coplanar.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: January 28, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Yoshiki Maehara, Takashi Goto, Hideyuki Suzuki
  • Patent number: 8637874
    Abstract: A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %:30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: January 28, 2014
    Assignee: Sichuan Sunfor Light Co., Ltd.
    Inventors: Ming Zhang, Kun Zhao, Dong-ming Li
  • Patent number: 8637951
    Abstract: A semiconductor light receiving element comprises: a substrate, a semiconductor layer of a first conductivity type formed on the substrate, a non-doped semiconductor light absorbing layer formed on the semiconductor layer of the first conductivity type, a semiconductor layer of a second conductivity type formed on the non-doped semiconductor light absorbing layer, and an electro-conductive layer formed on the semiconductor layer of the second conductivity type. A plurality of openings, periodically arrayed, are formed in a laminated body composed of the electro-conductive layer, the semiconductor layer of the second conductivity type, and the non-doped semiconductor light absorbing layer. The widths of the openings are less than or equal to the wavelength of incident light, and the openings pass through the electro-conductive layer and the semiconductor layer of the second conductivity type to reach the non-doped semiconductor light absorbing layer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: January 28, 2014
    Assignee: NEC Corporation
    Inventors: Daisuke Okamoto, Junichi Fujikata, Kenichi Nishi
  • Patent number: 8633557
    Abstract: Image sensors include a first insulation interlayer structure on a first surface of a substrate and having a multi-layered structure. A first wiring structure is in the first insulation interlayer structure. A via contact plug extends from a second surface of the substrate and penetrates the substrate to be electrically connected to the first wiring structure. Color filters and micro lenses are stacked on the second surface in a first region of the substrate. A second insulation interlayer structure is on the second surface in a second region of the substrate. A second wiring structure is in the second insulation interlayer structure to be electrically connected to the via contact plug. A pad pattern is electrically connected to the second wiring structure and having an upper surface through which an external electrical signal is applied. Photodiodes are between the first and second wiring structures in the first region.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Kim, Chang-Rok Moon
  • Patent number: 8633051
    Abstract: An object is to prevent a reduction of definition (or resolution) (a peripheral blur) caused when reflected light enters a photoelectric conversion element arranged at a periphery of a photoelectric conversion element arranged at a predetermined address. A semiconductor device is manufactured through the steps of: forming a structure having a first light-transmitting substrate, a plurality of photoelectric conversion elements over the first light-transmitting substrate, a second light-transmitting substrate provided so as to face the plurality of photoelectric conversion elements, a sealant arranged so as to bond the first light-transmitting substrate and the second light-transmitting substrate and surround the plurality of photoelectric conversion elements; and thinning the first light-transmitting substrate by wet etching.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: January 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiyuki Kurokawa, Takayuki Ikeda, Munehiro Kozuma, Hikaru Tamura, Kazuko Yamawaki, Takashi Hamada, Shunpei Yamazaki
  • Publication number: 20140015084
    Abstract: Methods and apparatus for packaging a backside illuminated (BSI) image sensor or a BSI sensor device with an application specific integrated circuit (ASIC) are disclosed. A bond pad array may be formed in a bond pad area of a BSI sensor where the bond pad array comprises a plurality of bond pads electrically interconnected, wherein each bond pad of the bond pad array is of a small size which can reduce the dishing effect of a big bond pad. The plurality of bond pads of a bond pad array may be interconnected at the same layer of the pad or at a different metal layer. The BSI sensor may be bonded to an ASIC in a face-to-face fashion where the bond pad arrays are aligned and bonded together.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Szu-Ying Chen, Tzu-Jui Wang, Dun-Nian Yaung, Jen-Cheng Liu
  • Publication number: 20140015083
    Abstract: An image sensor includes a substrate with a front side and a back side, the substrate having a sensor array region and a peripheral region defined thereon, a plurality of sensor device disposed in the sensor array region, a first metal layer disposed on the front sides within the peripheral region, a bonding pad disposed on the backside within the peripheral region, and at least a connecting element penetrating the substrate and substantially connect to the first metal layer and the bonding pad, wherein parts of the substrate is between the bonding pad and the first metal layer.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Inventor: Ching-Hung Kao
  • Patent number: 8629482
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device includes implanting impurity ions to a semiconductor layer in which an electrode is embedded; forming a light absorption film which absorbs laser light at a side of the electrode to which the laser light is irradiated; and activating the impurity ions by irradiating laser light to the semiconductor layer at which the light absorption film is formed in the forming.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoyasu Kudo, Kenichi Yoshino, Masaki Kamimura
  • Patent number: 8629458
    Abstract: The present disclosure relates to a compound semiconductor light-emitting element comprising: a frame; an adhesive provided on the frame; a light-emitting part which is secured in position on the frame by means of the adhesive and which includes a substrate, a first compound semiconductor layer formed on the substrate and having a first type of conductivity, a second compound semiconductor layer having a second type of conductivity that is different from the first type of conductivity, and an active layer disposed between the first compound semiconductor layer and the second compound semiconductor layer to generate light via electron-hole recombination; and a spacer disposed between the light-emitting part and the frame to create a gap therebetween.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Semicon Light Co., Ltd.
    Inventor: Soo Kun Jeon
  • Patent number: 8629523
    Abstract: The structures of reflective shields and methods of making such structures described enable reflection of light that has not be absorbed by photodiodes in image sensor devices and increase quantum efficiency of the photodiodes. Such structures can be applied (or used) for any image sensors to improve image quality. Such structures are particular useful for image sensors with smaller pixel sizes and for long-wavelength light (or rays), whose absorption length (or depth) could be insufficient, especially for backside illumination (BSI) devices. The reflective shields could double, or more than double, the absorption depth for light passing through the image sensors and getting reflected back to the photodiodes. Concave-shaped reflective shields have the additional advantage of directing reflected light toward the image sensors.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hao Shih, Szu-Ying Chen, Hsing-Lung Chen, Jen-Cheng Liu, Dun-Nian Yaung, Volume Chien
  • Patent number: 8624311
    Abstract: A method to fabricate an image sensor includes providing a semiconductor substrate having a pixel region and a periphery region, forming a light sensing element on the pixel region, and forming at least one transistor in the pixel region and at least one transistor in the periphery region. The step of forming the at least one transistor in the pixel region and periphery region includes forming a gate electrode in the pixel region and periphery region, depositing a dielectric layer over the pixel region and periphery region, partially etching the dielectric layer to form sidewall spacers on the gate electrode and leaving a portion of the dielectric layer overlying the pixel region, and forming source/drain (S/D) regions by ion implantation.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: January 7, 2014
    Inventors: Chun-Chieh Chuang, Chih-Min Lin, Ken Wen-Chien Fu, Dun-Nian Yaung
  • Publication number: 20140000691
    Abstract: A stack of a first anti-reflective coating (ARC) layer and a titanium layer is formed on a front surface of a semiconductor substrate including a p-n junction, and is subsequently patterned so that a semiconductor surface is physically exposed in metal contact regions of the front surface of the semiconductor substrate. The remaining portion of the titanium layer is converted into a titania layer by oxidation. A metal layer is plated on the metal contact regions, and a copper line is subsequently plated on the metal layer or a metal semiconductor alloy derived from the metal layer. A second ARC layer is deposited over the titania layer and the copper line, and is subsequently patterned to provide electrical contact to the copper line.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: International Business Machines Corporation
    Inventors: Satyavolu S. PAPA RAO, Kathryn C. FISHER, Harold J. HOVEL, Qiang HUANG, Susan HUANG, Young-Hee KIM
  • Patent number: 8617975
    Abstract: Some embodiments include methods of forming semiconductor constructions in which a semiconductor material sidewall is along an opening, a protective organic material is over at least one semiconductor material surface, and the semiconductor material sidewall and protective organic material are both exposed to an etch utilizing at least one fluorine-containing composition. The etch is selective for the semiconductor material relative to the organic material, and reduces sharpness of at least one projection along the semiconductor material sidewall. In some embodiments, the opening is a through wafer opening, and subsequent processing forms one or more materials within such through wafer opening to form a through wafer interconnect. In some embodiments, the opening extends to a sensor array, and the protective organic material is comprised by a microlens system over the sensor array. Subsequent processing may form a macrolens structure across the opening.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: December 31, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Swarnal Borthakur, Richard L. Stocks
  • Patent number: 8618588
    Abstract: A method of preventing blooming in a pixel array includes affecting an amount of light that impinges on a photoelectric conversion element by adjusting a transmissivity of an electrochromic element based on an output of the photoelectric conversion element.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 31, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kristin M. Ackerson, Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Richard J. Rassel, Robert M. Rassel
  • Patent number: 8614112
    Abstract: A method of fabricating a backside-illuminated pixel. The method includes forming frontside components of the pixel on or in a front side of a substrate, the frontside components including a photosensitive region of a first polarity. The method further includes forming a pure dopant region of a second polarity on a back side of the substrate, applying a laser pulse to the backside of the substrate to melt the pure dopant region, and recrystallizing the pure dopant region to form a backside doped layer. Corresponding apparatus embodiments are disclosed and claimed.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 24, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Keh-Chiang Ku, Chia-Ying Liu, Hsin-Chih Tai, Vincent Venezia
  • Publication number: 20130334638
    Abstract: A backside illuminated image sensor comprises a photodiode and a first transistor located in a first substrate, wherein the first transistor is electrically coupled to the photodiode. The backside illuminated image sensor further comprises a plurality of logic circuits formed in a second substrate, wherein the second substrate is stacked on the first substrate and the logic circuit are coupled to the first transistor through a plurality of bonding pads.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ying Chen, Tzu-Jui Wang, Jen-Cheng Liu, Dun-Nian Yaung, Ping-Yin Liu, Lan-Lin Chao
  • Publication number: 20130334639
    Abstract: A photodiode structure having an illuminated front-side surface and a back-side surface includes a front-side doped layer having a first conductivity type, a back-side doped layer having the first conductivity type, a front-side active cell region made sensitive to light by the action of at least one plug region formed in the front-side doped layer having a second conductivity type, and a front-side inactive cell region substantially insensitive to light, wherein the first and second conductivity types are opposite conductivity types.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: Aeroflex Colorado Springs Inc.
    Inventor: David Kerwin
  • Publication number: 20130333755
    Abstract: A visibly transparent luminescent solar concentrator (LSC) is disclosed. The LSC includes a transparent substrate having at least one edge surface. A dye layer is coupled to the substrate, the dye layer having a peak absorption wavelength outside the visible band, the dye layer being configured to re-emit light at a peak emission wavelength outside the visible band, at least a portion of the re-emitted light being waveguided to the edge surface of the substrate. A photovoltaic device is coupled to the edge surface of the transparent substrate, the photovoltaic device being configured to absorb light at the peak emission wavelength and generate electrical energy.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Richard Royal Lunt, Vladimir Bulovic, Miles Clark Barr
  • Publication number: 20130334637
    Abstract: An apparatus comprising an image capture circuit and method for making the same. Electronic devices are formed on a first side of a substrate, each comprising a photo detector. A plurality of opaque shields are formed on a second side of the substrate corresponding to the electronic devices on the first side of the substrate and each directly opposite one of the electronic devices.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: Honeywell International Inc. doing business as (d.b.a.) Honeywell Scanning and Mobility
    Inventors: Ynjiun P. WANG, Chen FENG
  • Publication number: 20130334636
    Abstract: A fabricating method of a back-illuminated image sensor includes the following steps. First, a silicon wafer having a first surface and a second surface is provided, wherein a number of trench isolations are formed in the first surface, and at least one image sensing member is formed between the trench isolations. Then, a first chemical mechanical polishing (CMP) process is performed to the second surface using the trench isolations as a polishing stop layer to thin the silicon wafer. Because the polishing rate of the silicon material in the silicon wafer is different with that of the isolation material of the trench isolations in the first CMP process, at least one dishing depression is formed in the second surface of the silicon wafer. Finally, a microlens is formed above the dishing depression, and a surface of the microlens facing the dishing depression is a curved surface.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventor: Tzeng-Fei WEN
  • Patent number: 8610229
    Abstract: The present disclosure provides an image sensor device and a method for manufacturing the image sensor device. An exemplary image sensor device includes a substrate having a front surface and a back surface; a plurality of sensor elements disposed at the front surface of the substrate, each of the plurality of sensor elements being operable to sense radiation projected towards the back surface of the substrate; a radiation-shielding feature disposed over the back surface of the substrate and horizontally disposed between each of the plurality of sensor elements; a dielectric feature disposed between the back surface of the substrate and the radiation-shielding feature; and a metal layer disposed along sidewalls of the dielectric feature.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Wen Hsu, Shih-Chang Liu, Yeur-Luen Tu
  • Patent number: 8609455
    Abstract: Certain example embodiments of this invention relate to patterned glass that can be used as a cylindrical lens array in a concentrated photovoltaic application, and/or methods of making the same. In certain example embodiments, the lens arrays may be used in combination with strip solar cells and/or single-axis tracking systems. That is, in certain example embodiments, lenses in the lens array may be arranged so as to concentrate incident light onto respective strip solar cells, and the entire assembly may be connected to a single-axis tracking system that is programmed to follow the East-West movement of the sun. A low-iron glass may be used in connection with certain example embodiments. Such techniques may advantageously help to reduce cost per watt related, in part, to the potentially reduced amount of semiconductor material to be used for such example embodiments.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: December 17, 2013
    Assignee: Guardian Industries Corp.
    Inventors: Alexey Krasnov, Willem den Boer
  • Patent number: 8610228
    Abstract: A solid-state image sensor having a configuration which reduces increases in light-collection loss and light mixing due to an increase in the angle of light entering into a waveguide path during oblique incidence and which is effective for sensitivity improvement includes: an Si substrate; unit-pixels arranged on the Si substrate; a wiring layer formed on the unit-pixels; optical waveguide regions each formed on a photoelectric conversion region included in a corresponding one of the unit-pixels, and penetrating the wiring layer; and light-collecting elements each formed above a corresponding one of the optical waveguide regions, wherein each of the light-collecting elements is a gradient index microlens having an effective refractive index distribution.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: December 17, 2013
    Assignee: Panasonic Corporation
    Inventors: Shigeru Saitou, Keisuke Tanaka, Kimiaki Toshikiyo, Yutaka Hirose, Motonori Ishii
  • Patent number: 8609511
    Abstract: According to one embodiment, an insulation film is formed over the surface, backside, and sides of a first substrate. Next, the insulation film formed over the surface of the first substrate is removed. Then, a joining layer is formed over the surface of the first substrate, from which the insulation film has been removed. Subsequently, the first substrate is bonded to a second substrate via a joining layer.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Shirono, Kazumasa Tanida, Naoko Yamaguchi, Satoshi Hongo, Tsuyoshi Matsumura
  • Publication number: 20130329116
    Abstract: Optical filters, optical sensor arrays and methods for assembling the same and systems incorporating the same are disclosed. An optical filter may include a first stack, a second stack and a spacer layer. The first stack may include alternating layers of a first material having a first refractive index and a second material having a second refractive index that differs from the first refractive index. The second stack may include alternating layers of the first material and the second material. The spacer layer may be positioned between the first stack and the second stack to form a stacked assembly. The spacer layer may include a patterned layer including the first material and the second material. At least a portion of the patterned layer may include a pattern composed of the first material.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Mordehai Margalit
  • Publication number: 20130327921
    Abstract: A method of forming of an image sensor device includes a substrate having a pixel region and a periphery region. A plurality of first trenches is etched in the periphery region. Each of the first trenches has a depth D1. A mask layer is formed over the substrate. The mask layer has a plurality of openings in the pixel region. A spacer is formed in an interior surface of each opening. A plurality of second trenches is etched through each opening having the spacer in the pixel region. Each of the second trenches has a depth D2. The depth D1 is larger than the depth D2.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: U-Ting CHEN, Dun-Nian YAUNG, Jen-Cheng LIU, Yu-Hao SHIH, Chih-Chien WANG, Shih Pei CHOU, Wei-Tung HUANG, Cheng-Ta WU
  • Patent number: 8603852
    Abstract: Disclosed herein is a method of manufacturing a solid state imaging device, including the steps of: forming a light receiving portion in a light receiving area of a semiconductor substrate; forming a pad portion in a pad area of the semiconductor substrate; forming a microlens material layer over the light receiving portion and the pad portion; providing the microlens material layer with a microlens corresponding to the light receiving portion; forming a low-reflection material layer on the microlens material layer; etching the microlens material layer and the low-reflection material layer over the pad portion to form an opening; and imparting hydrophilicity to a surface of the low-reflection material layer and an inside portion of the opening by a normal temperature oxygen radical treatment.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 10, 2013
    Assignee: Sony Corporation
    Inventors: Yoshinori Toumiya, Ina Hori, Tadayuki Dofuku, Hitomi Kamiya, Atsushi Yamamoto, Taichi Natori
  • Patent number: 8604576
    Abstract: An image sensor package includes an image sensor chip and crystalline handler. The image sensor chip includes a substrate, and a plurality of photo detectors and contact pads at the front surface of the substrate. The crystalline handler includes opposing first and second surfaces, and a cavity formed into the first surface. A compliant dielectric material is disposed in the cavity. The image sensor front surface is attached to the crystalline substrate handler second surface. A plurality of electrical interconnects each include a hole aligned with one of the contact pads, with a first portion extending from the second surface to the cavity and a second portion extending through the compliant dielectric material, a layer of insulation material formed along a sidewall of the first portion of the hole, and conductive material extending through the first and second portions of the hole and electrically coupled to the one contact pad.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 10, 2013
    Assignee: Opitz, Inc.
    Inventor: Vage Oganesian
  • Publication number: 20130319504
    Abstract: This disclosure provides systems, methods and apparatus including a light collector having a plurality of micro-lens and a plurality of multi-cone light redirecting structure that is optically coupled to one or more photovoltaic cells. In one aspect, the plurality of micro-lens is provided in an organic glass panel that is attached to an inorganic glass substrate. The inorganic glass substrate includes a material that is substantially opaque to radiation in the ultraviolet spectral range. During use, the light collector is disposed such that the inorganic glass substrate is exposed to the exterior to prevent a portion of the ultraviolet radiation incident on the light collector from being transmitted to the organic glass panel.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Fan Yang, Sijin Han, Russell Wayne Gruhlke, Zhengwu Li, Wilhelmus A. de Groot
  • Publication number: 20130320471
    Abstract: A wafer-level camera sensor package includes a semiconductor substrate with an optical sensor on a front surface. Through-silicon-vias (TSV) extend through the substrate and provide I/O contact with the sensor from the back side of the substrate. A glass cover is positioned over the front surface, and the cover and substrate are embedded in a molding compound layer (MCL), the front surface of the MCL lying coplanar with the front of the cover, and the back surface lying coplanar with the back of the substrate. Surface-mount devices, electromagnetic shielding, and through-wafer-connectors can be embedded in the MCL. A redistribution layer on the back surface of the MCL includes bottom contact pads for mounting the package, and conductive traces interconnecting the contact pads, TSVs, surface-mount devices, shielding, and through-wafer-connectors. Anisotropic conductive adhesive is positioned on the front of the MCL for physically and electrically attaching a lens array.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventor: Jing-En Luan
  • Publication number: 20130320194
    Abstract: A device includes a first chip including an image sensor therein, and a second chip bonded to the first chip. The second chip includes a logic device selected from the group consisting essentially of a reset transistor, a selector, a row selector, and combinations thereof therein. The logic device and the image sensor are electrically coupled to each other, and are parts of a same pixel unit.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Szu-Ying Chen, Meng-Hsun Wan, Tzu-Jui Wang, Dun-Nian Yaung, Jen-Cheng Liu
  • Publication number: 20130320419
    Abstract: A method includes performing a first epitaxy to grow a first epitaxy layer of a first conductivity type, and performing a second epitaxy to grow a second epitaxy layer of a second conductivity type opposite the first conductivity type over the first epitaxy layer. The first and the second epitaxy layers form a diode. The method further includes forming a gate dielectric over the first epitaxy layer, forming a gate electrode over the gate dielectric, and implanting a top portion of the first epitaxy layer and the second epitaxy layer to form a source/drain region adjacent to the gate dielectric.
    Type: Application
    Filed: September 14, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shiu-Ko JangJian, Min Hao Hong, Kei-Wei Chen, Chih-Cherng Jeng
  • Publication number: 20130320469
    Abstract: A CMOS image sensor and a method of forming are provided. The CMOS image sensor may include a device wafer. A conductive feature may be formed on a back-side surface of the device wafer. The device wafer may include a pixel formed therein. A passivation layer may be formed over the back-side surface of the device wafer and the conductive feature. A grid film may be formed over the passivation layer. The grid film may be patterned to accommodate a color filter. The grid film pattern may align the color filter to corresponding pixel in the device wafer. A portion of the grid film formed over the conductive feature may be reduced to be substantially planar with portions of the grid film adjacent to the conductive feature. The patterning and reducing may be performed according to etching processes, chemical mechanical processes, and combinations thereof.
    Type: Application
    Filed: October 12, 2012
    Publication date: December 5, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hsien Tseng, Nai-Wen Cheng, Shou-Gwo Wuu, Ming-Tsong Wang, Tung-Ting Wu
  • Publication number: 20130312820
    Abstract: A solar cell includes a semiconductor substrate and a first antireflective layer. The semiconductor substrate has a first-type semiconductor surface and a second-type semiconductor surface opposite to each other. The first antireflective layer includes a plurality of refraction convexes and a coverage layer. The refraction convexes are formed on the second-type semiconductor surface. Each refraction convex includes a first refraction part and a second refraction part. The first refraction parts are conformally coated with the respective second refraction parts, and the first refraction part is configured to have a refractive index greater than the refractive index of the second refraction part. The coverage layer is formed to cover the second-type semiconductor surface and the refraction convexes, and the coverage layer is configured to have a refractive index smaller than the refractive index of the second refraction part. A solar cell manufacturing method is also provided.
    Type: Application
    Filed: September 4, 2012
    Publication date: November 28, 2013
    Applicant: AU OPTRONICS CORP.
    Inventors: Yen-Cheng HU, Wei-Shuo Ho, Jen-Chieh Chen, Zhen-Cheng Wu