Comprising Amorphous Semiconductor (epo) Patents (Class 257/E33.004)
  • Patent number: 7838351
    Abstract: A thin film transistor manufacturing method includes the steps of: forming a gate electrode, gate insulating film and amorphous silicon film in succession on an insulating substrate; forming a channel protective film only in the region which will serve as a channel region of the amorphous silicon film; and forming an n-plus silicon film and metal layer on top of the channel protective film and amorphous silicon film in succession. The method further includes the step of patterning the amorphous silicon film and n-plus silicon film to selectively leave the region associated with source and drain electrodes, using the channel protective film as an etching stopper to selectively remove the region of the n-plus silicon film and metal layer associated with the channel region so as to form source and drain regions from the n-plus silicon film and also form source and drain electrodes from the metal layer.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: November 23, 2010
    Assignee: Sony Corporation
    Inventors: Motohiro Toyota, Toshiaki Arai
  • Publication number: 20100289023
    Abstract: A method of fabricating an array substrate for a display device includes: forming a buffer layer on a substrate having a pixel region; sequentially forming a gate electrode of impurity-doped polycrystalline silicon, a gate insulating layer and an active layer of intrinsic polycrystalline silicon on the buffer layer in the pixel region; forming an interlayer insulating layer of an inorganic insulating material on the active layer; sequentially forming a source barrier pattern, a source ohmic contact layer and a source electrode on the interlayer insulating layer, sequentially forming a drain barrier pattern, a drain ohmic contact layer and a drain electrode on the interlayer insulating layer, and sequentially forming a first dummy pattern, a second dummy pattern and a data line on the interlayer insulating layer; forming a first passivation layer on a surface of the interlayer insulating layer including the source electrode, the drain electrode and the data line formed thereon; forming a gate line on the first
    Type: Application
    Filed: December 23, 2009
    Publication date: November 18, 2010
    Inventors: Hee-Dong Choi, Ki-Sul Cho, Hye-Young Choi, Doo-Seok Yang, Byeong-Gyu Roh
  • Publication number: 20100277661
    Abstract: In an auxiliary capacitance electrode of each pixel region, a side end on one side in a direction in which a drain electrode crosses an end of a gate electrode so as to enter from the outside of the gate electrode to the inside thereof is disposed inside of an auxiliary capacitance line, and a side end on the other side in a direction in which the drain electrode crosses the end of the gate electrode so as to go out from the inside of the gate electrode to the outside thereof is disposed outside of the auxiliary capacitance line.
    Type: Application
    Filed: February 4, 2009
    Publication date: November 4, 2010
    Inventors: Nobuyoshi Ueda, Hiroyuki Iida, Takaharu Yamada, Ryoki Ito, Satoshi Horiuchi
  • Publication number: 20100258805
    Abstract: One embodiment of the present invention is a thin film transistor having a substrate, a gate electrode formed on the substrate, a gate insulating film, a semiconductor layer formed on the gate insulating film, a protective film formed on the semiconductor layer and the gate insulating film and having first and second opening sections which are separately and directly formed on the semiconductor layer, a source electrode formed on the protective film and electrically connected to the semiconductor layer at the first opening section of the protective film, and a drain electrode formed on the protective film and electrically connected to the semiconductor layer at the second opening section of the protective film.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 14, 2010
    Applicant: Toppan Printing Co., Ltd.
    Inventors: Noriaki Ikeda, Kodai Murata, Manabu Ito, Chihiro Miyazaki
  • Publication number: 20100252833
    Abstract: A system for displaying images is provided. The system includes a thin film transistor (TFT) device comprising a substrate having a pixel region, a driving thin film transistor and a switching thin film transistor. The driving thin film transistor and the switching thin film transistor are disposed on the substrate and in the pixel region. The driving thin film transistor includes a polysilicon active layer and the switching thin film transistor includes an amorphous silicon active layer. A method for fabricating the system for displaying images including the TFT device is also disclosed.
    Type: Application
    Filed: March 17, 2010
    Publication date: October 7, 2010
    Applicant: TPO DISPLAYS CORP.
    Inventors: Yu-Chung Liu, Te-Yu Lee, Mei-Ling Chang
  • Publication number: 20100244034
    Abstract: A thin film transistor includes a gate electrode; a gate insulating layer which is provided to cover the gate electrode; a semiconductor layer which is provided over the gate insulating layer to overlap with the gate electrode; an impurity semiconductor layer which is partly provided over the semiconductor layer and which forms a source region and a drain region; and a wiring layer which is provided over the impurity semiconductor layer, where a width of the source region and the drain region is narrower than a width of the semiconductor layer, and where the width of the semiconductor layer is increased at least in a portion between the source region and the drain region.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 30, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Hidekazu Miyairi
  • Publication number: 20100238392
    Abstract: An array substrate includes a gate line disposed along a first direction on a substrate; a gate electrode extending from the gate line; a gate insulating layer over the substrate, including the gate line; a first plane layer on first portions of the gate insulating layer; a semiconductor layer on second portions of the gate insulating layer and on the first plane layer; a second plane layer over the first plane layer; a data line; a source electrode and a drain electrode on the semiconductor layer and on the second plane layer, the source electrode extending from the data line; a passivation layer on the second plane layer, the source electrode, the drain electrode and the semiconductor layer; and a pixel electrode on the passivation layer, the pixel electrode electrically connected to the drain electrode via a first contact hole.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 23, 2010
    Inventors: Jin Wuk Kim, Sang Yeup Lee
  • Patent number: 7791072
    Abstract: An active matrix display comprising a light control device and a field effect transistor for driving the light control device. The active layer of the field effect transistor comprises an amorphous.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: September 7, 2010
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology
    Inventors: Hideya Kumomi, Hideo Hosono, Toshio Kamiya, Kenji Nomura
  • Patent number: 7791106
    Abstract: Gallium nitride material-based semiconductor structures are provided. In some embodiments, the structures include a composite substrate over which a gallium nitride material region is formed. The gallium nitride material structures may include additional features, such as strain-absorbing layers and/or transition layers, which also promote favorable stress conditions. The reduction in stresses may reduce defect formation and cracking in the gallium nitride material region, as well as reducing warpage of the overall structure. The gallium nitride material-based semiconductor structures may be used in a variety of applications such as transistors (e.g. FETs) Schottky diodes, light emitting diodes, laser diodes, SAW devices, and sensors, amongst others devices.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: September 7, 2010
    Assignee: Nitronex Corporation
    Inventors: Edwin L. Piner, Pradeep Rajagopal, John C. Roberts, Kevin J. Linthicum
  • Patent number: 7791082
    Abstract: It is an object of the present invention to provide a technology of controlling a threshold voltage of a thin film transistor in which an amorphous oxide film is applied to a channel layer. There is provided a semiconductor apparatus including a plurality of kinds of transistors, each of the plurality of kinds of transistors including a channel layer made of an amorphous oxide containing a plurality of kinds of metal elements; and threshold voltages of the plurality of kinds of transistors are different from one another by changing an element ratio of the amorphous oxide.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: September 7, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tatsuya Iwasaki
  • Publication number: 20100219413
    Abstract: An object is to provide a method for manufacturing a highly-reliable semiconductor device with an improved material use efficiency and with a simplified manufacturing process. The method includes the steps of forming a conductive layer over a substrate, forming a light-transmitting layer over the conductive layer, and selectively removing the conductive layer and the light-transmitting layer by irradiation with a femtosecond laser beam from above the light-transmitting layer. Note that the conductive layer and the light-transmitting layer may be removed so that an end portion of the light-transmitting layer is located on an inner side than an end portion of the conductive layer. Before the irradiation with a femtosecond laser beam, a surface of the light-transmitting layer may be subjected to liquid-repellent treatment.
    Type: Application
    Filed: May 11, 2010
    Publication date: September 2, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masafumi MORISUE, Koichiro TANAKA
  • Patent number: 7785992
    Abstract: The present invention relates to an array substrate for a flat display device and a method for fabricating the same, in which a number of masks is reduced for reducing a cost and improving a device performance.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 31, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Sung Ki Kim, Hong Koo Lee
  • Publication number: 20100200856
    Abstract: A method for manufacturing E-paper array substrate and an E-paper array substrate are provided. The method for manufacturing E-paper array substrate uses two masks. Steps on a surface of the array substrate structure are eliminated, so as to facilitate a subsequent coating process of E-ink and enable a uniform distribution of a drain electric field. An E-paper array substrate is further provided.
    Type: Application
    Filed: December 1, 2009
    Publication date: August 12, 2010
    Applicant: BOE TECHNOLOGY GROUP CO., LTD
    Inventors: Wenjie HU, Zenghui SUN, Hongyu LIU, Gang WANG, Xibin SHAO
  • Publication number: 20100200858
    Abstract: A display device includes a plurality of thin-film transistors formed on a substrate on which a display area is formed. At least one of the plurality of thin-film transistors includes a gate electrode, agate insulating film formed to cover the gate electrode, an interlayer insulating film formed on an upper surface of the gate insulating film and having an opening formed in an area where the gate electrode is formed in plan view, a pair of heavily-doped semiconductor films arranged on an upper surface of the interlayer insulating film with the opening interposed therebetween, a polycrystalline semiconductor film formed across the opening and formed in the area, the polycrystalline semiconductor film being electrically connected to the pair of heavily-doped semiconductor films, and a pair of electrodes formed to overlap the pair of heavily-doped semiconductor films, respectively, without overlapping the polycrystalline semiconductor film.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 12, 2010
    Inventors: Yoshiaki Toyota, Mieko Matsumura, Masatoshi Wakagi
  • Publication number: 20100193792
    Abstract: A production method for a semiconductor film according to the present invention includes: step (a) of forming a first film 103 supported by a substrate 101; step (b) of forming a second film 102 being supported by the substrate and having a lower thermal conductivity than that of the first film 103; step (c) of depositing a semiconductor film 104 in an amorphous state above the first film 103 and the second film 102; and step (d) of irradiating portions of the semiconductor film 104 that are located above the first film 103 and the second film 102 with an energy beam of the same intensity, thereby crystallize the portion of the semiconductor film 104 that is located above the second film 102 and leaving the portion of the semiconductor film 104 that is located above the first film 103 in the amorphous state.
    Type: Application
    Filed: July 14, 2008
    Publication date: August 5, 2010
    Inventor: Toshiaki Miyajima
  • Patent number: 7768011
    Abstract: An electro-luminescence device including an electro-luminescence element and a thin film transistor electrically connected to the electro-luminescence element. The thin film transistor includes a gate electrode formed over a substrate, an insulating layer formed over the gate electrode, and a first semiconductor pattern formed over the insulating layer. An etch stop layer is formed over the first semiconductor layer. A second semiconductor pattern is formed over the etch stop layer at one side of the etch stop layer, and a third semiconductor pattern is formed over the etch stop layer at another side of the etch stop layer. A source electrode is formed over the second semiconductor pattern, and a drain electrode is formed over the third semiconductor pattern.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: August 3, 2010
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Joon-Hoo Choi, In-Su Joo, Beom-Rak Choi, Jong-Moo Huh
  • Publication number: 20100187531
    Abstract: A pixel structure including a gate, a gate dielectric layer, a patterned semiconductor layer having a channel area disposed above the gate, a patterned dielectric layer having an etching-stop layer disposed above the gate and a number of bumps, a patterned metal layer having a reflective pixel electrode, a source and a drain, an overcoat dielectric layer, and a transparent pixel electrode sequentially disposed on a substrate is provided. The source and the drain respectively cover portions of the channel area. The reflective pixel electrode connects the drain and covers the bumps to form an uneven surface. The overcoat dielectric layer disposed on a transistor constituted by the gate, the gate dielectric layer, the patterned semiconductor layer, the source and the drain has a contact opening exposing a portion of the reflective pixel electrode. The transparent pixel electrode is electrically connected to the reflective pixel electrode through the contact opening.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 29, 2010
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Hsiang-Lin Lin, Chun-Chieh Tsao
  • Publication number: 20100181571
    Abstract: A laminate structure is disclosed that has a region having high surface free energy and a region having low surface free energy that are well separated, has high adhesiveness between an underlying layer and a conductive layer, and can be formed easily with low cost. The laminate structure includes a wettability-variable layer including a first surface free energy region of a first film thickness and a second surface free energy region of a second film thickness, and a conductive layer formed on the second surface free energy region of the wettability-variable layer. The second film thickness is less than the first film thickness and the surface free energy of the second surface free energy region is made higher than the surface free energy of the first surface free energy region by applying a predetermined amount of energy on the second surface free energy region.
    Type: Application
    Filed: July 15, 2008
    Publication date: July 22, 2010
    Inventors: Takanori TANO, Atsushi Onodera, Koei Suzuki, Hidenori Tomono
  • Publication number: 20100171121
    Abstract: A thin film array panel is provided, which includes: a plurality of signal lines including contact parts for contact with an external device; a plurality of thin film transistors connected to the signal lines; an insulating layer formed on the signal lines and the thin film transistors; and a plurality of pixel electrodes formed on the insulating layer and connected to the thin film transistors, wherein the insulating layer includes a contact portion disposed on the contact parts of the signal lines and having a thickness smaller than other portions and the contact portion of the insulating layer includes an inclined portion having an inclination angle smaller than about 45 degrees.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 8, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-Man Kim, Young-Goo Song, Hyang-Shik Kong, Dong-Hyun Ki, Seong-Young Lee, Joo-Ae Yoon, Jong-Woong Chang
  • Publication number: 20100163878
    Abstract: A method of manufacturing a thin film electronic device comprises applying a plastic coating to a rigid carrier substrate using a wet casting process, the plastic coating forming a plastic substrate and comprising a transparent plastic material and a UV absorbing additive. Thin film electronic elements are formed over the plastic substrate, and the rigid carrier substrate is released from the plastic substrate. This invention provides a method of making transparent substrate materials suitable for a laser release process, through doping of the plastic material of the substrate with a UV absorber. This UV absorber absorbs in the wavelength the lift-off laser (for example 308-351 nm, or 355 nm) with a very high absorption.
    Type: Application
    Filed: August 7, 2007
    Publication date: July 1, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Eliav Itzhak Haskal, David James Mcculloch, Dirk Jan Broer
  • Publication number: 20100163877
    Abstract: A display has a glass substrate provided with a transparent conducting film, thin-film transistors, and an aluminum alloy wiring film electrically connecting the thin-film transistors to the transparent conducting film. The aluminum alloy wiring film is a layered structure having a first layer (X) of an aluminum alloy comprising at least one element selected from the specific element group Q including Ni and Ag, and at least one element selected from the specific element group R including rare-earth elements and Mg in a content in the specific range, and a second layer (Y) of an aluminum alloy containing having a resistivity lower than that of the first layer (X). The first layer (X) is in direct contact with the transparent conducting film.
    Type: Application
    Filed: September 13, 2007
    Publication date: July 1, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Aya Hino, Hiroshi Gotou, Hiroyuki Okuno, Junichi Nakai
  • Publication number: 20100163873
    Abstract: A photo-voltaic cell device includes a first electrode, an N-type doped silicon-rich dielectric layer, a P-type doped silicon-rich dielectric layer, and a second electrode. The N-type doped silicon-rich dielectric layer is disposed on the first electrode, and the N-type doped silicon-rich dielectric layer is doped with an N-type dopant. The P-type doped silicon-rich dielectric layer is disposed on the N-type doped silicon-rich dielectric layer, and the P-type doped silicon-rich dielectric layer is doped with a P-type dopant. The second electrode is disposed on the P-type doped silicon-rich dielectric layer. A display panel including the photo-voltaic cell device is also provided.
    Type: Application
    Filed: May 12, 2009
    Publication date: July 1, 2010
    Applicant: Au Optronics Corporation
    Inventors: An-Thung Cho, Chia-Tien Peng, Yu-Cheng Chen, Hong-Zhang Lin, Yi-Chien Wen, Wei-Min Sun, Chi-Mao Hung, Chun-Hsiun Chen
  • Publication number: 20100155734
    Abstract: Provided is an electrophoretic display device and a method of manufacturing and repairing the electrophoretic display device.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Inventors: Jae Gu Lee, Seung Chul Kang
  • Publication number: 20100148178
    Abstract: A thin film transistor includes: a gate electrode layer; a first semiconductor layer; a second semiconductor layer having lower carrier mobility than the first semiconductor layer, which is provided over and in contact with the first semiconductor layer; a gate insulating layer which is provided between and in contact with the gate electrode layer and the first semiconductor layer; first impurity semiconductor layers which are provided so as to be in contact with the second semiconductor layer; second impurity semiconductor layers which are provided so as to be partially in contact with the first impurity semiconductor layers and the first and second semiconductor layers; and source and drain electrode layers which are provided so as to be in contact with entire surfaces of the second impurity semiconductor layers, in which an entire surface of the first semiconductor layer on the gate electrode layer side overlaps with the gate electrode layer.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 17, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hiromichi GODO, Satoshi KOBAYASHI
  • Publication number: 20100140620
    Abstract: An embodiment is a method and apparatus to fabricate a flat panel display. A poly-last structure is formed for a display panel using an amorphous silicon or amorphous silicon compatible process. The poly-last structure has a channel silicon precursor. The display panel is formed from the poly-last structure using a polysilicon specific or polysilicon compatible process.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Jackson H. Ho, Jeng Ping Lu
  • Publication number: 20100140623
    Abstract: An array substrate for a display device includes: a substrate; a gate electrode on the substrate; a gate insulating layer on the gate electrode, the gate insulating layer having an organic-inorganic hybrid material; a semiconductor layer on the gate insulating layer over the gate electrode; source and drain electrodes spaced apart from each other on the semiconductor layer; a passivation layer on the source and drain electrodes, the passivation layer having a drain contact hole exposing the drain electrode; and a pixel electrode on the passivation layer, the pixel electrode connected to the drain electrode through the drain contact hole.
    Type: Application
    Filed: November 10, 2009
    Publication date: June 10, 2010
    Inventors: Soon-Young MIN, Jae-Seok Heo
  • Patent number: 7732819
    Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 8, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Tatsuya Honda, Norihito Sone
  • Publication number: 20100133541
    Abstract: In accordance with an exemplary aspect of the present invention, a thin film transistor array substrate includes a transparent insulating substrate, and a thin film transistor for pixel switching and a thin film transistor for a drive circuit formed on the transparent insulating substrate, wherein the thin film transistor for a drive circuit includes an amorphous silicon film formed on the transparent insulating film, a microcrystalline silicon film formed on the amorphous silicon film, a first source electrode and a first drain electrode formed on the microcrystalline silicon film, the first source electrode and the first drain electrode being opposed with a first channel area interposed therebetween, a protective insulating film that covers the first source electrode and the first drain electrode, and an upper gate electrode formed so as to be opposed to the first channel area with the protective insulating film interposed therebetween.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 3, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yusuke UCHIDA, Koji ODA, Naoki NAKAGAWA
  • Publication number: 20100127263
    Abstract: A liquid crystal display device includes a gate line and a data line on a substrate crossing each other to define a pixel region; a thin film transistor in the pixel region and connected to the gate line and the data line; a pixel electrode in the pixel region and connected to the thin film transistor; and a gate pad at an end of the gate line and a data pad at an end of the data line, at least one of the gate pad and the data pad including: a pad electrode including at least one pad contact hole therein along with a passivation layer, the passivation layer on the pad electrode, at least one side of the pad contact hole having an uneven shape in plane; and a pad electrode terminal contacting inner side surfaces of the pad electrode surrounding the pad contact hole.
    Type: Application
    Filed: May 26, 2009
    Publication date: May 27, 2010
    Inventors: Chang-Deok Lee, Hyung-Beom Shin, Seok Kim
  • Publication number: 20100120180
    Abstract: In a liquid crystal display device of an IPS system, to realize reduction of manufacturing cost and improvement of yield by decreasing the number of steps for manufacturing a TFT. A channel etch type bottom gate TFT structure, where patterning of a source region and a drain region and patterning of a source wiring and a pixel electrode are carried out by the same photomask.
    Type: Application
    Filed: January 20, 2010
    Publication date: May 13, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Yoshiharu HIRAKATA
  • Publication number: 20100109011
    Abstract: A plurality of gate lines having gate electrodes are formed on a substrate and a semiconductor layer is formed on a gate insulating layer covering the gate lines. A plurality of data lines intersecting the gate lines are formed on the gate insulating layer and a plurality of drain electrodes are formed extending parallel with and adjacent to the data lines. Furthermore, a plurality of storage capacitor conductors are formed to be connected to the drain electrodes and to overlap an adjacent gate line. A passivation layer made of an organic material is formed on the above structure and has a contact hole. Furthermore, a plurality of pixel electrodes are formed to be electrically connected to the drain electrodes through the contact hole.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Kyung-Wook KIM, Joo-Ae YOUN, Seong-Young LEE
  • Publication number: 20100109004
    Abstract: The present invention provides a thin film transistor substrate realizing reduced interlayer short-circuit defects in a capacitor, and a display device having the thin film transistor substrate. The thin film transistor substrate includes: a substrate; a thin film transistor having, over the substrate, a gate electrode, a gate insulating film, an oxide semiconductor layer, and a source-drain electrode in order; and a capacitor having, over the substrate, a bottom electrode, a capacitor insulating film, and a top electrode made of oxide semiconductor in order.
    Type: Application
    Filed: October 28, 2009
    Publication date: May 6, 2010
    Applicant: SONY CORPORATION
    Inventor: Toshiaki Arai
  • Publication number: 20100099205
    Abstract: A method of manufacturing a liquid crystal display device is provided which includes ashing first and second photoresist patterns, whereby a copper oxide film is formed at portions of a data line and a source-drain pattern exposed between the ashed first and second photoresist patterns and between the ashed first and second portions of the first photoresist pattern; deoxidizing or removing the copper oxide film; performing a plasma treatment to change the exposed portions of the data line and the source-drain pattern into a copper compound; removing the copper compound using a copper compound removing solution to form source and drain electrodes below the ashed first and second portions, respectively, wherein the copper compound removing solution substantially has no reaction with the copper group material; dry-etching a portion of an ohmic contact layer between the source and drain electrodes using the source and drain electrodes as an etching mask, the ohmic contact layer formed by patterning the impurity-d
    Type: Application
    Filed: September 29, 2009
    Publication date: April 22, 2010
    Inventors: Kang-Il Kim, Joon-Young Yang, Kye-Chang Song, Soopool Kim, Young-Kwon Kang
  • Patent number: 7700936
    Abstract: In one embodiment, a method of producing an optoelectronic nanostructure includes preparing a substrate; providing a quantum well layer on the substrate; etching a volume of the substrate to produce a photonic crystal. The quantum dots are produced at multiple intersections of the quantum well layer within the photonic crystal. Multiple quantum well layers may also be provided so as to form multiple vertically aligned quantum dots. In another embodiment, an optoelectronic nanostructure includes a photonic crystal having a plurality of voids and interconnecting veins; a plurality of quantum dots arranged between the plurality of voids, wherein an electrical connection is provided to one or more of the plurality of quantum dots through an associated interconnecting vein.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 20, 2010
    Assignee: University of Delaware
    Inventors: Janusz Murakowski, Garrett Schneider, Dennis W. Prather
  • Publication number: 20100090221
    Abstract: A method of manufacturing an integrated circuit (IC) for driving a flexible display includes depositing a pattern of spatially non-repetitive features in a first layer on a flexible substrate, said pattern of spatially non-repetitive features not substantially regularly repeating in both of two orthogonal directions (x,y) in the plane of the substrate; depositing a pattern of spatially repetitive features in a second layer on said first layer; aligning said second layer and said first layer so as to allow electrical coupling between said non-repetitive features and said repetitive features, wherein distortion compensation is applied during deposition of said repetitive features to enable said alignment.
    Type: Application
    Filed: October 1, 2007
    Publication date: April 15, 2010
    Applicant: Plastic Logic Limited
    Inventors: Carl Hayton, Paul Cain
  • Publication number: 20100084652
    Abstract: A display device including an oxide semiconductor, a protective circuit and the like having appropriate structures and a small occupied area is necessary. The protective circuit is formed using a non-linear element which includes a gate insulating film covering a gate electrode; a first oxide semiconductor layer which is over the gate insulating layer and overlaps with the gate electrode; and a first wiring layer and a second wiring layer each of which is formed by stacking a conductive layer and a second oxide semiconductor layer and whose end portions are over the first oxide semiconductor layer and overlap with the gate electrode. The gate electrode of the non-linear element is connected to a scan line or a signal line, the first wiring layer or the second wiring layer of the non-linear element is directly connected to the gate electrode layer so as to apply potential of the gate electrode.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 8, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Kengo AKIMOTO, Shigeki KOMORI, Hideki UOCHI, Tomoya FUTAMURA, Takahiro KASAHARA
  • Publication number: 20100078643
    Abstract: In view of the problem that a reduced thickness of an EL film causes a short circuit between an anode and a cathode and malfunction of a transistor, the invention provides a display device that has a light emitting element including an electrode and an electroluminescent layer, a wire electrically connected to the electrode of the light emitting element, a transistor provided with an active layer including a source, a drain and a channel forming region, and a power supply line electrically connected to one of the source and the drain of the transistor, wherein the wire is electrically connected to the other of the source and the drain of the transistor, and the width of a part of the electrode in the vicinity of a portion where the electrode is electrically connected to the wire is smaller than that of the electrode in the other portion.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 1, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Hajime KIMURA
  • Publication number: 20100065845
    Abstract: The invention provides an organic electroluminescent display device comprising: an organic electroluminescent element comprising an organic layer comprising a luminescent layer disposed between a pixel electrode and an upper electrode; and a drive TFT that supplies an electric current to the organic electroluminescent element, wherein: the drive TFT comprises a substrate, a gate electrode, a gate insulation film, an active layer, a source electrode and a drain electrode, and wherein: an resistive layer is provided between the active layer and at least one of the source electrode and the drain electrode.
    Type: Application
    Filed: April 3, 2008
    Publication date: March 18, 2010
    Inventor: Masaya Nakayama
  • Publication number: 20100065840
    Abstract: A protective circuit includes a non-linear element, which further includes a gate electrode, a gate insulating layer covering the gate electrode, a pair of first and second wiring layers whose end portions overlap with the gate electrode over the gate insulating layer and in which a conductive layer and a second oxide semiconductor layer are stacked, and a first oxide semiconductor layer which overlaps with at least the gate electrode and which is in contact with side face portions of the gate insulating layer and the conductive layer of the first wiring layer and the second wiring layer and a side face portion and a top face portion of the second oxide semiconductor layer. Over the gate insulating layer, oxide semiconductor layers with different properties are bonded to each other, whereby stable operation can be performed as compared with Schottky junction. Thus, the junction leakage can be decreased and the characteristics of the non-linear element can be improved.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 18, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Kengo AKIMOTO, Shigeki KOMORI, Hideki UOCHI, Tomoya FUTAMURA, Takahiro KASAHARA
  • Publication number: 20100065839
    Abstract: A protective circuit includes a non-linear element, which includes a gate electrode, a gate insulating layer covering the gate electrode, a pair of first and second wiring layers whose end portions overlap with the gate electrode over the gate insulating layer and in which a second oxide semiconductor layer and a conductive layer are stacked, and a first oxide semiconductor layer which overlaps with at least the gate electrode and which is in contact with the gate insulating layer, side face portions and part of top face portions of the conductive layer and side face portions of the second oxide semiconductor layer in the first wiring layer and the second wiring layer. Over the gate insulating layer, oxide semiconductor layers with different properties are bonded to each other, whereby stable operation can be performed as compared with Schottky junction. Thus, the junction leakage can be decreased and the characteristics of the non-linear element can be improved.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 18, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Kengo AKIMOTO, Shigeki KOMORI, Hideki UOCHI, Tomoya FUTAMURA, Takahiro KASAHARA
  • Publication number: 20100032673
    Abstract: A liquid crystal display device includes a semiconductor layer which is formed of a poly-Si layer and an a-Si layer and formed above a gate electrode with a gate insulating film interposed therebetween. A source electrode or a drain electrode is formed above the semiconductor layer. An n+Si layer is formed between the source electrode or the drain electrode and the semiconductor layer. Since ends of the source electrode or the drain electrode are formed inside ends of the semiconductor layer, leak current at the ends of the semiconductor layer can be reduced.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 11, 2010
    Inventors: Terunori SAITOU, Yoshiharu Owaku, Takuo Kaitoh, Hidekazu Miyake
  • Publication number: 20100035418
    Abstract: The present invention provides, in part, methods producing multilayer semiconductor structures having one or more at least partially relaxed strained layers, where the strained layer is at least partially relaxed by annealing. In particular, the invention forms diffusion barriers that prevent diffusion of contaminants during annealing. The invention also includes embodiments where the at least partially relaxed strained layer is patterned into islands by etching trenches and the like. The invention also provides semiconductor structures resulting from these methods, and further, provides such structures where the semiconductor materials are suitable for application to LED devices, laser devices, photovoltaic devices, and other optoelectronic devices.
    Type: Application
    Filed: December 22, 2008
    Publication date: February 11, 2010
    Inventors: Bruce FAURE, Pascal Guenard
  • Patent number: 7659213
    Abstract: By incorporating carbon by means of ion implantation and a subsequent flash-based or laser-based anneal process, strained silicon/carbon material with tensile strain may be positioned in close proximity to the channel region, thereby enhancing the strain-inducing mechanism. The carbon implantation may be preceded by a pre-amorphization implantation, for instance on the basis of silicon. Moreover, by removing a spacer structure used for forming deep drain and source regions, the degree of lateral offset of the strained silicon/carbon material with respect to the gate electrode may be determined substantially independently from other process requirements. Moreover, an additional sidewall spacer used for forming metal silicide regions may be provided with reduced permittivity, thereby additionally contributing to an overall performance enhancement.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: February 9, 2010
    Assignee: GlobalFoundries, Inc.
    Inventors: Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann
  • Publication number: 20100025688
    Abstract: Provided is a semiconductor element including: a semiconductor having an active layer; a gate insulating film which is in contact with the semiconductor; a gate electrode opposite to the active layer through the gate insulating film; a first nitride insulating film formed over the active layer, a photosensitive organic resin film formed on the first nitride insulating film; a second nitride insulating film formed on the photosensitive organic resin film; and a wiring provided on the second nitride insulating film, in which a first opening portion is provided in the photosensitive organic resin film, an inner wall surface of the first opening portion is covered with the second nitride insulating film, a second opening portion is provided in a laminate including the gate insulating film, the first nitride insulating film, and the second nitride insulating film inside the first opening portion, and the semiconductor is connected with the wiring through the first opening portion and the second opening portion.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 4, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Satoshi MURAKAMI, Masahiko HAYAKAWA, Shunpei YAMAZAKI
  • Publication number: 20100019244
    Abstract: A method of fabricating a thin film pattern according to an embodiment of the present invention comprises forming an organic material pattern on a substrate, forming a metal material of liquid phase on a substrate provided with the organic material pattern, hardening the metal material of liquid phase, and removing the metal material located on the organic material pattern, allowing some metal material to be left at an area non-overlapped with the organic material pattern.
    Type: Application
    Filed: September 30, 2009
    Publication date: January 28, 2010
    Inventors: Kye Chan Song, Kang Il Kim
  • Publication number: 20100012939
    Abstract: A liquid crystal display device achieving high aperture rate and high definition is disclosed.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 21, 2010
    Applicant: CASIO COMPUTER CO., LTD.
    Inventor: Hiromitsu ISHII
  • Publication number: 20100012940
    Abstract: Provided is an image display device comprising, on a TFT substrate: a plurality of gate lines and a plurality of drain lines which intersect with each other; a pixel TFT provided within a pixel which is enclosed by a pair of adjacent gate lines and a pair of adjacent drain lines; a gate driver TFT which is connected to one of the plurality of gate lines to drive the one of the plurality of gate lines, wherein the pixel TFT and the gate driver TFT each include an amorphous semiconductor film as a channel, wherein the pixel TFT has a bottom gate structure, wherein the gate driver TFT has a dual gate structure, and wherein a mobility on a top surface side of the semiconductor film of the gate driver TFT is higher than a mobility on a top surface side of the semiconductor film of the pixel TFT.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 21, 2010
    Inventor: Takeshi SATO
  • Publication number: 20090309100
    Abstract: A semiconductor device includes a semiconductor layer having a channel region, an impurity layer having a source region and a drain region, and a gate electrode provided so as to face the semiconductor layer with a gate insulating film interposed therebetween. The semiconductor layer has a layered structure of at least a first amorphous film and a crystalline film including a crystal phase, and the first amorphous film is formed directly on the gate insulating film.
    Type: Application
    Filed: August 3, 2007
    Publication date: December 17, 2009
    Inventors: Masao Moriguchi, Yuichi Saito
  • Publication number: 20090302320
    Abstract: An object of the present invention is to provide a display device where a semiconductor layer pattern formed between a pair of electrodes can be formed to a predetermined size, even in the case where the distance between the electrodes on top of a semiconductor layer pattern is relatively large in elements formed in accordance with a photoresist reflow technology.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 10, 2009
    Inventors: Hiroki TAKAHASHI, Shigeru Ohno, Kunihiko Watanabe, Junichi Uehara, Tsuyoshi Uchida, Yasuko Gotoh
  • Publication number: 20090294772
    Abstract: A thin film transistor is provided having an oxide semiconductor as an active layer, a method of manufacturing the thin film transistor and a flat panel display device having the thin film transistor. The thin film transistor includes: a gate electrode formed on a substrate; an oxide semiconductor layer isolated from the gate electrode by a gate insulating layer and including channel, source and drain regions; source and drain electrodes coupled to the source and drain regions, respectively; and an ohmic contact layer interposed between the source and drain regions and the source and drain electrodes. In the TFT, the ohmic contact layer is formed with the oxide semiconductor layer having a carrier concentration higher than those of the source and drain regions.
    Type: Application
    Filed: January 9, 2009
    Publication date: December 3, 2009
    Inventors: Jong-Han Jeong, Kwang-Suk Kim, Jae-Kyeong Jeong, Hui-Won Yang, Yeon-Gon Mo