Ternary Or Quaternary Compound (e.g., Algaas) (epo) Patents (Class 257/E33.026)
  • Publication number: 20100117115
    Abstract: A method includes steps of: sequentially growing a first semiconductor layer of a first conductivity type, an active layer, and a second semiconductor layer of a second conductivity type on a growth substrate to form a layered structure; separating the substrate from the layered structure to expose the first layer; performing wet etching on an exposed surface to form defect depressions; forming an insulating layer on the exposed surface; polishing the insulating layer and the first layer to flatten the surface of the first layer; and performing wet etching on the surface of the first layer to form protrusions deriving from a crystal structure.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Applicant: Stanley Electric Co., Ltd.
    Inventors: Satoshi TANAKA, Yusuke Yokobayashi
  • Publication number: 20100081225
    Abstract: Provided is a mask pattern for selective area growth of a semiconductor layer and a selective area growth method for a semiconductor layer for independently controlling a growth rate and a strain of the semiconductor layer. The selective area growth method includes: forming a plurality of pairs of first mask patterns, the first mask patterns in each pair including a first open area therebetween, the first open area having a width that is wider than a distance causing overgrowth of the semiconductor layer, the pairs of the first mask patterns repeatedly arranged with a period P therebetween; wherein controlling a growth rate and a strain of the semiconductor layer formed on the first open area by adjusting the period P.
    Type: Application
    Filed: October 16, 2007
    Publication date: April 1, 2010
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jung-Ho Song, Kisoo Kim, Gyungock Kim
  • Publication number: 20100052009
    Abstract: A light emitting device is provided. The light emitting device comprises a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, and an InNO layer. The active layer is disposed on the first conductive semiconductor layer. The second conductive semiconductor layer is disposed on the active layer. The InNO layer is disposed on the second conductive semiconductor layer.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 4, 2010
    Inventor: Sang Kyun SHIM
  • Publication number: 20100032805
    Abstract: The present invention provides methods for relaxing a strained-material layer and structures produced by the methods. Briefly, the methods include depositing a first low-viscosity layer that includes a first compliant material on the strained-material layer, depositing a second low-viscosity layer that includes a second compliant material on the strained-material layer to form a first sandwiched structure and subjecting the first sandwiched structure to a heat treatment such that the reflow of the first and the second low-viscosity layers permits the strained-material layer to at least partly relax.
    Type: Application
    Filed: December 22, 2008
    Publication date: February 11, 2010
    Inventors: Fabrice LETERTRE, Carlos MAZURE
  • Publication number: 20100012920
    Abstract: The present invention discloses a III-nitride compound semiconductor light emitting device including an active layer for generating light by recombination of an electron and a hole between an n-type nitride compound semiconductor layer and a p-type nitride compound semiconductor layer. The active layer is disposed over the n-type nitride compound semiconductor layer. The III-nitride compound semiconductor light emitting device includes a masking film made of MgN and grown on the p-type nitride compound semiconductor layer, and at least one nitride compound semiconductor layer grown after the growth of the masking film made of MgN.
    Type: Application
    Filed: October 30, 2006
    Publication date: January 21, 2010
    Inventors: Eun Hyun Park, Tae-Kyung Yoo
  • Patent number: 7601985
    Abstract: A semiconductor light-emitting device includes: a substrate; a first conductivity type layer formed on the substrate and including a plurality of group III-V nitride semiconductor layers of a first conductivity type; an active layer formed on the first conductivity type layer; and a second conductivity type layer formed on the active layer and including a group III-V nitride semiconductor layer of a second conductivity type. The first conductivity type layer includes an intermediate layer made of AlxGa1?x?yInyN (wherein 0.001?x<0.1, 0<y<1 and x+y<1).
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: October 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Yoshitaka Kinoshita, Hidenori Kamei
  • Publication number: 20090206362
    Abstract: The main objective of present invention is to provide a manufacturing method of light emitting diode that utilizes metal diffusion bonding technology. AlInGaP light emitting diode epitaxial structure on a temporary substrate is bonded to a permanent substrate having a thermal expansion coefficient similar to that of the epitaxial structure, and then the temporary substrate is removed to produce an LED having a vertical structure and better performance. The other objective of the present invention is to provide a high performance LED that uses metal diffusion technology and wet chemical etching technology to roughen the LED surface in order to improve light extraction efficiency.
    Type: Application
    Filed: April 23, 2009
    Publication date: August 20, 2009
    Inventors: Ying-Che Sung, Chao-Hsin Wang, Yi-Hsiung Chen, Shih-Yu Chiu
  • Publication number: 20090159924
    Abstract: The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
    Type: Application
    Filed: February 24, 2009
    Publication date: June 25, 2009
    Applicant: Panasonic Corporation
    Inventors: Satoshi Kamiyama, Masakatsu Suzuki, Takeshi Uenoyama, Kiyoshi Ohnaka, Akira Takamori, Masaya Mannoh, Isao Kidoguchi, Hideto Adachi, Akihiko Ishibashi, Toshiya Fukuhisa, Yasuhito Kumabuchi
  • Publication number: 20090108286
    Abstract: An optoelectronic device such as a light-emitting diode chip is disclosed. It includes a substrate, a multi-layer epitaxial structure, a first metal electrode layer, a second metal electrode layer, a first bonding pad and a second bonding pad. The multi-layer epitaxial structure on the transparent substrate comprises a semiconductor layer of a first conductive type, an active layer, and a semiconductor layer of a second conductive type. The first bonding pad and the second bonding pad are on the same level. Furthermore, the first metal electrode layer can be patterned so the current is spread to the light-emitting diode chip uniformly.
    Type: Application
    Filed: December 23, 2008
    Publication date: April 30, 2009
    Applicant: EPISTAR CORPORATION
    Inventors: Jin-Ywan Lin, Jen-Chau Wu, Chih-Chiang Lu, Wei-Chih Peng, Ching-Pu Tai, Shih-I Chen
  • Patent number: 7518139
    Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 14, 2009
    Assignee: Lehigh University
    Inventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
  • Publication number: 20090026490
    Abstract: Provided is a light emitting device. The light emitting device comprises a second electrode layer, a second conduction type semiconductor layer, an active layer, a first conduction type semiconductor layer, a first electrode layer, and an insulating layer. The second conduction type semiconductor layer is formed on the second electrode layer. The active layer is formed on the second conduction type semiconductor layer. The first conduction type semiconductor layer is formed on the active layer. The first electrode layer is formed on the first conduction type semiconductor layer. The insulating layer is disposed between the second electrode layer and the second conduction type semiconductor layer.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 29, 2009
    Inventors: Kyung Jun Kim, Hyo Kun Son
  • Patent number: 7427785
    Abstract: A light emitting device according to an exemplary embodiment of the present invention includes: an n-type cladding layer; a p-type cladding layer; an active layer interposed between the n-type cladding layer and the p-type cladding layer; and an ohmic contact layer contacting the p-type cladding layer or the n-type cladding layer and comprising a first film that comprises a transparent conductive zinc oxide having a one-dimensional nano structure, wherein the one-dimensional nano structure is at least one selected from a nano-column, a nano rod, and a nano wire.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: September 23, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: June O Song
  • Publication number: 20080073657
    Abstract: A nitride semiconductor light emitting device is formed by: forming a resist pattern on a first nitride semiconductor layer formed on a substrate, the resist pattern having a region whose inclination angle relative to a substrate surface changes smoothly as viewed in a cross section perpendicular to the substrate surface; etching the substrate by using the resist pattern as a mask to transfer the resist pattern to the first nitride semiconductor layer; and forming an light emitting layer on the patterned first nitride semiconductor layer. The nitride semiconductor light emitting device can emit near-white light or have a wavelength range generally equivalent to or near visible light range.
    Type: Application
    Filed: August 23, 2007
    Publication date: March 27, 2008
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Ji-Hao Liang, Masahiko Tsuchiya, Takako Chinone, Masataka Kajikawa
  • Publication number: 20080002750
    Abstract: A surface emitting semiconductor device comprises an active layer, a p-type III-V compound semiconductor layer, an n-type III-V compound semiconductor layer, and a burying layer. The active layer includes a primary surface, the primary surface having first and second areas. The p-type III-V compound semiconductor layer is provided on the first and second areas of the primary surface of the active layer. The n-type III-V compound semiconductor layer is provided on the second area of the primary surface of the active layer. The n-type III-V compound semiconductor is provided on the p-type III-V compound semiconductor layer. The n-type III-V compound semiconductor and the p-type III-V compound semiconductor layer form a tunnel junction. The n-type III-V compound semiconductor layer contains tellurium as an n-type dopant. The burying layer is made of III-V compound semiconductor. The n-type III-V compound semiconductor layer is covered with the burying layer.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 3, 2008
    Inventors: Yutaka Onishi, Hideyuki Doi
  • Publication number: 20070096121
    Abstract: A light emitting diode and a method for manufacturing the same are provided. The light emitting diode includes: a transparent substrate made of AlxGa1-xAs; a light emitting layer made of AlGaInP, stacked on the transparent substrate, and having a multiple layered epitaxially growing structure; a window layer made of GaP, stacked on the light emitting layer, and having a transparent structure with a great bandgap; an upper electrode layer overlying the window layer; and a lower electrode layer underlying the transparent substrate, wherein the x-value in AlxGa1-xAs is set to corresponding to the emission wavelengths of the light emitting layer so that the transparent substrate can have a great bandgap which make it to be transparent to the light emitted by the light emitting layer; and a window layer is used to increase the current diffusion from the upper electrode layer to the light emitting layer.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 3, 2007
    Inventors: Ying Ni, Kuo Nee, Ming Hung
  • Patent number: 7187007
    Abstract: The present invention provides a nitride semiconductor device. The nitride semiconductor device comprises an n-type nitride semiconductor layer formed on a nitride crystal growth substrate. An active layer is formed on the n-type nitride semiconductor layer. A first p-type nitride semiconductor layer is formed on the active layer. A micro-structured current diffusion pattern is formed on the first p-type nitride semiconductor layer. The current diffusion pattern is made of an insulation material. A second p-type nitride semiconductor layer is formed on the first p-type nitride semiconductor layer having the current diffusion pattern formed thereon.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: March 6, 2007
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Je Won Kim, Sun Woon Kim, Dong Joon Kim
  • Patent number: 7148514
    Abstract: The invention relates to a nitride semiconductor LED and a fabrication method thereof. In the LED, a first nitride semiconductor layer, an active region a second nitride semiconductor layer of a light emitting structure are formed in their order on a transparent substrate. A dielectric mirror layer is formed on the underside of the substrate, and has at least a pair of alternating first dielectric film of a first refractivity and a second dielectric film of a second refractivity larger than the first refractivity. A lateral insulation layer is formed on the side of the substrate and the light emitting structure. The LED of the invention effectively collimate undesirably-directed light rays, which may be otherwise extinguished, to maximize luminous efficiency, and are protected by the dielectric mirror layer formed on the side thereof to remarkably improve ESD characteristics.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: December 12, 2006
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jun Ho Seo, Jong Ho Jang
  • Patent number: 7148518
    Abstract: A group-III nitride semiconductor stack comprises a single-crystal substrate, a first group-III nitride layer formed on a principal surface of the single-crystal substrate, a graded low-temperature deposited layer formed on the group-III nitride layer and made of nitride in which group-III element composition is continuously changed, and a second group-III nitride layer formed on the graded low-temperature deposited layer.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: December 12, 2006
    Inventors: Hideto Sugawara, Tsunenori Hiratsuka
  • Patent number: 7129526
    Abstract: An ultraviolet type white color light emitting device (Q) including a 340 nm–400 nm ultraviolet InGaN-LED, a first fluorescence plate of ZnS doped with more than 1×1017cm?3 Al, In, Ga, Cl, Br or I for absorbing ultraviolet rays and producing blue light (fluorescence), a second fluorescence plate of ZnSSe or ZnSe doped with more than 1×1017 cm?3 Al, In, Ga, Cl, Br or I for absorbing the blue light, producing yellow light (fluorescence) and synthesizing white color light by mixing the yellow light with the blue light. A blue light type white color light emitting device (R) including a 410 nm–470 nm blue light InGaN-LED, a fluorescence plate of ZnSxSe1-x (untreated 0.2?x?0.6; heat-treated 0.3?x?0.67) doped with more than 1×1017 cm?3 Al, In, Ga, Cl, Br or I for absorbing the blue light, producing 568 nm–580 nm yellow light (fluorescence) and synthesizing white color light by mixing the yellow light with the blue LED light.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: October 31, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Shinsuke Fujiwara
  • Patent number: 7105850
    Abstract: Disclosed is a GaN LED structure with a p-type contacting layer using Al—Mg-codoped In1?yGayN grown at low temperature, and having low resistivity. The LED structure comprises, from the bottom to top, a substrate, a buffer layer, an n-type GaN layer, an active layer, a p-type shielding layer, and a p-type contacting layer. In this invention, Mg and Al are used to co-dope the In1?yGayN to grow a low resistive p-type contacting layer at low temperature. Because of the Al—Mg-codoped, the light absorption problem of the p-type In1?yGayN layer is improved. The product, not only has the advantage of convenience of the p-type contacting layer for being manufactured at low temperature, but also shows good electrical characteristics and lowers the operating voltage of the entire element so that the energy consumption during operation is reduced and the yield rate is increased.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: September 12, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien