Plasma Generating Patents (Class 315/111.21)
  • Patent number: 8624503
    Abstract: An electrohydrodynamic fluid accelerator includes an emitter electrode and leading surfaces of a collector electrode that are substantially exposed to ion bombardment. Heat transfer surfaces downstream of the emitter electrode along a fluid flow path include a first portion not substantially exposed to the ion bombardment that is conditioned with a first ozone reducing material. The leading surfaces of the collector electrode are not conditioned with the first ozone reducing material, but may include a different surface conditioning. The downstream heat transfer surfaces and the leading surfaces can be separately formed and joined to form the unitary structure or can be integrally formed. The electrohydrodynamic fluid accelerator can be used in a thermal management assembly of an electronic device with a heat dissipating device thermally coupled to the conditioned heat transfer surfaces.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: January 7, 2014
    Assignee: Panasonic Precision Devices Co., Ltd.
    Inventors: Nels Jewell-Larsen, Yan Zhang, Matt Schwiebert, Ken Honer
  • Publication number: 20130342105
    Abstract: A laser sustained plasma light source includes a plasma bulb containing a working gas flow driven by an electric current sustained within the plasma bulb. Charged particles are introduced into the working gas of the plasma bulb. An arrangement of electrodes maintained at different voltage levels drive the charged particles through the working gas. The movement of the charged particles within the working gas causes the working gas to flow in the direction of movement of the charged particles by entrainment. The resulting working gas flow increases convection around the plasma and increases laser to plasma interaction. The working gas flow within the plasma bulb can be stabilized and controlled by control of the voltages present on the each of the electrodes. A more stable flow of working gas through the plasma contributes to a more stable plasma shape and position within the plasma bulb.
    Type: Application
    Filed: June 23, 2013
    Publication date: December 26, 2013
    Inventors: Anatoly Shchemelinin, Ilya Bezel
  • Publication number: 20130334964
    Abstract: (EN): A microwave power delivery system for supplying microwave power to a plurality of microwave plasma reactors (8), the microwave power delivery system comprising: a tuner (14) configured to be coupled to a microwave source (4) and configured to match impedance of the plurality of microwave plasma reactors to that of the microwave source; and a waveguide junction (18) coupled to the tuner and configured to guide microwaves to and from the plurality of microwave plasma reactors, wherein the waveguide junction comprises four waveguide ports including a first port coupled to the tuner, second and third ports configured to be coupled to respective microwave plasma reactors, and a fourth port coupled to a microwave sink (20), wherein the waveguide junction is configured to evenly split microwave power input from the tuner through the first port between the second and third ports for providing microwave power to respective microwave plasma reactors, wherein the waveguide junction is configured to decouple the se
    Type: Application
    Filed: December 14, 2011
    Publication date: December 19, 2013
    Applicant: ELEMENT SIX LIMITED
    Inventors: Christopher John Howard Wort, John Robert Brandon
  • Patent number: 8610353
    Abstract: An apparatus for generating plasma, comprises: a microwave generator configured to generate a microwave; a wave guide which is connected to the microwave generator, wherein the wave guide is elongated in a traveling direction of the microwave and has a hollow shape having a rectangular section in a direction perpendicular to the traveling direction; a gas feeder which is connected to the wave guide and feeds process gas into the wave guide; and an antenna unit which is a part of the wave guide and discharges plasma generated by the microwave to the outside, wherein the antenna unit has one or more slots formed on a wall constituting a short side in a section of the antenna unit, plasmarizes the process gas fed into the wave guide under an atmospheric pressure in the slots by the microwave, and discharges the plasma out of the slots.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 17, 2013
    Assignees: Tokyo Electron Limited, National University Corporation Nagoya University
    Inventors: Hitoshi Itoh, Hidenori Miyoshi, Masaru Hori, Hirotaka Toyoda, Makoto Sekine
  • Patent number: 8610355
    Abstract: A distance from a negative output terminal of a secondary winding of the transformer to a feeding terminal of the cathode plate is longer than a distance from a positive output terminal of the secondary winding to a feeding terminal of the anode. The anode side feeding path electrically connects the feeding terminal of the anode bar to the positive output terminal of the secondary winding. The cathode side feeding path electrically connects the feeding terminal of the cathode plate to the negative output terminal of the secondary winding. A path length of the cathode side feeding path is longer than a path length of the anode side feeding path. The housing is formed by an electric conductor and is electrically connected to the cathode side feeding path.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: December 17, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Tatsuya Terazawa, Wataru Shionoya
  • Patent number: 8610354
    Abstract: The invention is related to a gas discharge-based radiation source which emits short-wavelength radiation, wherein an emitter is ionized and compressed by pulse-shaped currents between two electrodes arranged in a vacuum chamber and is excited to form an emitting plasma. According to the invention, the plasma is preserved by means of a high-frequency sequence of pulse-shaped currents the pulse repetition period of which is adjusted so as to be shorter than a lifetime of the plasma so that the plasma is kept periodically alternating between a high-energy state of an emitting compressed plasma and a low-energy state of a relaxing plasma. For exciting the relaxing plasma to the compressed plasma, excitation energy is coupled into the relaxing plasma by making use of pulse-shaped currents with repetition frequencies between 50 kHz and 4 MHz and pulse widths equal to the pulse repetition period.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: December 17, 2013
    Assignee: XTREME technologies GmbH
    Inventors: Max Christian Schuermann, Lutz Dippmann, Juergen Kleinschmidt, Guido Schriever
  • Patent number: 8610356
    Abstract: An iodine fueled plasma generator system includes a plasma generator. At least one storage vessel is configured to store condensed phase iodine therein. A heating device proximate to the storage vessel is configured to create iodine vapor from the condensed phase iodine. A propellant management subsystem is configured to deliver the iodine vapor to the plasma generator. A feedback control subsystem is responsive to one or more of plasma generator discharge current, the pressure of the iodine vapor, and/or the temperature of the iodine vapor configured to regulate the flow rate of the iodine vapor to the plasma generator.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: December 17, 2013
    Assignee: Busek Co., Inc.
    Inventors: James J. Szabo, Jr., Bruce Pote, Surjeet Paintal, Michael Robin, Vladimir Hruby
  • Publication number: 20130329204
    Abstract: A laser driven light source comprises laser and focusing optics. These produce a beam of radiation focused on a plasma forming zone within a container containing a gas (e.g., Xe). Collection optics collects photons emitted by a plasma maintained by the laser radiation to form a beam of output radiation. Plasma has an elongate form (L>d) and collecting optics is configured to collect photons emerging in the longitudinal direction from the plasma. The brightness of the plasma is increased compared with sources which collect radiation emerging transversely from the plasma. A metrology apparatus using the light source can achieve greater accuracy and/or throughput as a result of the increased brightness. Back reflectors may be provided. Microwave radiation may be used instead of laser radiation to form the plasma.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 12, 2013
    Inventors: Henricus Petrus Maria PELLEMANS, Pavel Stanislavovich ANTSIFEROV, Vladimir Mihailovitch KRIVTSUN, Johannes Matheus Marie DE WIT, Ralph Jozef Johannes Gerardus Anna Maria SMEETS, Gerbrand VAN DER ZOUW
  • Patent number: 8604697
    Abstract: An apparatus for generating plasma is provided. The apparatus may include a vacuum chamber and a plasma source part. The plasma source part may include a dielectric part, an upper electrode, and an inductive coil. The dielectric part may be installed to protrude upward along a circumference of a through-hole provided at a top of the vacuum chamber. The upper electrode may be coupled to seal an opened top of the dielectric part. The inductive coil may spirally extend along an outer circumference surface of the dielectric part.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: December 10, 2013
    Assignee: Jehara Corporation
    Inventor: Hongseub Kim
  • Patent number: 8603402
    Abstract: A microwave-excited plasma device is proposed. The device comprises of a plurality of microwave plasma reaction units which are capable of generating plasma independently such that a large-area plasma is able to be generated by all of the units. Besides, the high cost of the large-area microwave coupling window and its deformation together with possible breakage caused by atmospheric pressure can be prevented. Moreover, when a plurality of permanent magnets is assembled upon each of the plasma reaction units, the microwave-excited plasma device is improved to be a large-area electron cyclotron resonance (ECR) plasma device.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 10, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Chen Chang, Kun-Ping Huang, Yu-Tse Hsieh
  • Patent number: 8604696
    Abstract: A plasma excitation module including a chamber, a plurality of coils and a multi-duct gas intake system is provided. The chamber has a dielectric layer. The coils are disposed at an outer side of the dielectric layer, and the coils are separated from each other by an interval and in parallel connection. The multi-duct gas intake system surrounds the dielectric layer and is communicated with the chamber.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: December 10, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Tung-Ying Lin, Ming-Hsien Ko, Hui-Ta Chen, Chun-Hao Chang
  • Publication number: 20130320852
    Abstract: A phase difference detector detects the phase difference between two AC signals at a high speed and with high accuracy. A phase difference computation unit computes the phase difference ?r(=?2??1) between two detected voltages v1 (phase angle: ?1) and v2 (phase angle: ?2). The phase difference computation unit uses a sine wave vs and a cosine wave vc generated separately and having the same frequency as the fundamental frequency of the voltages v1 and v2, to perform computation of v2s=v2×vs, v2c=v2×vc, v1s=v1×vs, v1c=v1×vc, and then extracts DC components I2=(?A2/2)·sin(?2), R2=(A2/2)·cos(?2), I1=(?A1/2)·sin(?1), R1=(A1/2)·cos(?1) at low-pass filters. The phase difference computation unit computes R3=R1×R2+I1×I2 at a complex multiplying unit to obtain R3=(A1·A2/4)·cos(?r), computes I3=R2×I1?R1×I2 to obtain I3=(A1·A2/4)·sin(?r), and computes ?r=tan?1(I3/R3) at the arctangent calculation unit, thereby obtaining the phase difference ?r.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Inventors: Toyokazu KITANO, Yoshinobu KASAI, Yuji YOSHIZAKO
  • Patent number: 8597428
    Abstract: A linear actuator comprised of an actuator body having a first portion and a second portion, each arranged along a longitudinal axis of the actuator body. A vacuum bellows is concentrically located in the first portion and is configured to seal a vacuum environment from the second portion. A linear motion shaft is concentrically located substantially within the actuator body and is configured to move in a linear direction along the longitudinal axis. An electrically conductive portion of the shaft is concentrically located substantially within the vacuum bellows and electrically insulated therefrom and is configured to receive and conduct a signal. A lift force generating portion of the shaft is concentrically located substantially within the second portion. An electrical contact pad is electrically coupled to the conductive portion of the shaft and is configured to couple the signal to another surface upon activation of the shaft.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Danny Brown, Allan Ronne, Arthur Sato, John Daugherty, Leonard Sharpless
  • Publication number: 20130313971
    Abstract: In one embodiment, a method for generating an ion beam having gallium ions includes providing at least a portion of a gallium compound target in a plasma chamber, the gallium compound target comprising gallium and at least one additional element. The method also includes initiating a plasma in the plasma chamber using at least one gaseous species and providing a source of gaseous etchant species to react with the gallium compound target to form a volatile gallium species.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Costel Biloiu, Craig R. Chaney, Neil J. Bassom, Benjamin Colombeau, Dennis P. Rodier
  • Patent number: 8592712
    Abstract: A mounting table structure for mounting thereon an object to be processed to form a metal-containing thin film on the object includes a ceramic mounting table in which a chuck electrode and a heater are embedded, and a metal flange connected to a bottom surface of a peripheral portion of the mounting table. The mounting table structure further includes a metal base which is joined to the flange by screws and has a coolant path for flowing a coolant therein, and a metal seal member interposed between the flange and the base.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: November 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Toshiaki Fujisato, Ronald Nasman
  • Patent number: 8586954
    Abstract: An extreme ultraviolet light source apparatus generating an extreme ultraviolet light from plasma generated by irradiating a target material with a laser light within a chamber, and controlling a flow of ions generated together with the extreme ultraviolet light using a magnetic field or an electric field, the extreme ultraviolet light source apparatus comprises an ion collector device collecting the ion via an aperture arranged at a side of the chamber, and an interrupting mechanism interrupting movement of a sputtered particle in a direction toward the aperture, the sputtered particle generated at an ion collision surface collided with the ion in the ion collector device.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: November 19, 2013
    Assignee: Gigaphoton Inc.
    Inventors: Takeshi Asayama, Kouji Kakizaki, Akira Endo, Shinji Nagai
  • Patent number: 8587202
    Abstract: The invention relates to an ion accelerator arrangement comprising an electrostatic acceleration field between a cathode to which a frame potential is applied and an anode to which a high-voltage potential is applied. The ion accelerator arrangement further comprises a gas supply system into which a gas-permeable, open porous insulator member is introduced. Also described is a high-voltage insulator arrangement that comprises such an insulator member and is suitable, inter alia, for such an ion accelerator arrangement and for the corona-resistant insulation of other components to which a high voltage is applied.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: November 19, 2013
    Assignee: Thales Electronic Systems GmbH
    Inventors: Hans-Peter Harmann, Norbert Koch, Guenter Kornfeld
  • Patent number: 8585862
    Abstract: An object is to provide a plasma processing device capable of highly accurately monitoring an operation state including whether or not the plasma discharge is executed, whether the discharge is normal or abnormal and whether or not the maintenance work of the vacuum chamber is necessary. A discharge detection sensor 23, in which a dielectric member 21 and a probe electrode unit 22 are combined with each other, is attached to an opening portion 2a provided in a lid portion 2 composing a vacuum chamber. A change in electric potential induced according to a change in plasma discharge in a probe electrode is received by a plurality of wave-form detecting portions and a detection signal is outputted each time a change in electric potential agreeing with a predetermined different condition appears. The detection signal outputted from the corresponding wave-form detecting portion is counted by the plurality of wave-form detecting portions and the counted value is held.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: November 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Tatsuhiro Mizukami, Kiyoshi Arita, Masaru Nonomura
  • Publication number: 20130299090
    Abstract: A plasma generator 1 includes: a liquid storage section 4 that stores a liquid containing water; a gas storage section 5 that stores a gas; a partition 3 provided with a gas passage 3a to introduce the gas in the gas storage section 5 into the liquid storage section 4 and separating the liquid storage section 4 from the gas storage section 5; a first electrode 12 provided in the gas storage section 5; and a second electrode 13 separated from the first electrode 12 and provided in a manner such that at least the portion coupled with the first electrode 12 is in contact with the liquid in the liquid storage section 4. A predetermined voltage is applied between the first electrode 12 and the second electrode 13 while the second electrode 13 is grounded.
    Type: Application
    Filed: January 18, 2012
    Publication date: November 14, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Akihiko Saitoh, Wataru Sanematsu, Kenji Narita, Masaharu Machi
  • Patent number: 8581597
    Abstract: An arc detection system for a plasma generation system includes a radio frequency (RF) sensor that generates first and second signals based on a respective electrical properties of (RF) power that is in communication with a plasma chamber. A correlation module generates an arc detect signal based on the first and second signals. The arc detect signal indicates whether an arc is occurring in the plasma chamber and is employed to vary an aspect of the RF power to extinguish the arc.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: November 12, 2013
    Assignee: MSK Instruments, Inc.
    Inventor: David J. Coumou
  • Patent number: 8581495
    Abstract: An apparatus for producing plasma, includes a container provided with at least one discharge electrode and a power supply unit that has at least one coupling electrode that can be capacitively coupled to the discharge electrode. The power supply unit is adapted to be removable from the container. The at least one coupling electrode is disposed beneath an insulating layer. In this way, the user can not come into direct contact with a coupling electrode after removing the power supply unit.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: November 12, 2013
    Assignee: Reinhausen Plasma GmbH
    Inventors: Michael Bisges, Thorsten Krüger, Patrick Wichmann, Hans-Jürgen Arning
  • Patent number: 8581496
    Abstract: A plasma torch is formed from a hollow electrode forming a first gap to an isolated plasma tube, the isolated plasma tube forming a second gap with a plasma outlet tube having electrically common plasma tubes which terminate into a plasma outlet. The first gap and second gap of the isolated plasma tubes are fed by a source of plasma gas such that when a voltage is applied across the electrodes, plasmas initially form across the first plasma gap and second plasma gap. The formed plasmas spread laterally until the plasmas are formed entirely from electrode to electrode and self-sustaining. Plasma gasses which are fed to the plasma torch can be metered on both sides of the electrodes to steer the plasma arc attachment axially over the extent of the hollow electrodes, thereby reducing surface wear and increasing electrode life.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 12, 2013
    Assignee: Oaks Plasma, LLC.
    Inventors: Alexander Filippovich Rutberg, Philipp Grigorevich Rutberg, Sergei Dmitrievich Popov, Valentin Anatolevich Spodobin
  • Patent number: 8575844
    Abstract: The plasma klystron switching device of the present invention may include a low-dielectric substrate, a plasma cavity internally pressurized by an inert gas, a circuit assembly formed on the first surface of the low-dielectric substrate and enclosed by the plasma cavity, wherein the circuit assembly includes a first electrode and a second electrode configured to form a switching gap, wherein the switching gap is configured to act as a high conductance plasma generation zone during an ON state of the plasma klystron switching device and a low conductance zone during an OFF state of the plasma klystron switching device, an evacuated klystron resonance generator, wherein the klystron resonance generator includes a klystron resonance cavity, wherein the klystron resonance generator includes a coupling aperture configured to RF couple the klystron resonance cavity and the plasma cavity, and a field emitter array configured to energize the klystron resonance generator.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Don L. Landt, Nathan P. Lower, Roger A. Dana, Mark M. Mulbrook
  • Patent number: 8575843
    Abstract: A plasma generating system, related method and device are disclosed. The plasma generation system includes a plasma generation device, a source of ionizable gas and a driver network. The plasma generation device includes a housing, an electrode, and a resonant circuit. The housing includes a passage defined therein and directs a flow of ionizable gas therethrough. The electrode is coupled to the ionizable gas flowing through the passage of the housing. The resonant circuit includes a capacitor and an inductor connected together in series. The resonant circuit has a resonance frequency and is coupled to the electrode. The resonant circuit receives an AC signal. The driver network provides the AC signal such that the AC signal has a frequency and excites the ionizable gas flowing through the passage of the housing to a plasma.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: November 5, 2013
    Assignee: Colorado State University Research Foundation
    Inventors: Cameron A. Moore, Douglas A. Scott, George J. Collins
  • Patent number: 8575875
    Abstract: In a converter of a motor drive control device, one of a first switching element and a second switching element is selected in accordance with a current command value of a current flowing through a reactor. The converter is then controlled so that a drive command for the selected switching element is generated. In this way, the efficiency of the converter is improved while a voltage step-up or step-down operation is performed by the converter.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoyoshi Takamatsu, Masaki Okamura
  • Publication number: 20130287968
    Abstract: A method for generating radiation includes supplying a fuel to a discharge space, creating a discharge in the fuel to form a plasma, and reducing a volume defined by the plasma by controlling radiation emission by the plasma. The reducing includes supplying a substance including at least one of Ga, In, Bi, Pb or Al to the plasma to control the radiation emission.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Applicant: ASML NETHERLAND B.V.
    Inventors: Vladimir Vitalevich Ivanov, Vadim Yevgenyevich Banine, Konstantin Nikolaevich Koshelev, Vladimir Mihailovitch Krivtsun
  • Patent number: 8569955
    Abstract: A plasma generator generates a plasma by ionizing a gas with a high-frequency discharge in a plasma generating chamber so that electrons from the plasma are emitted outside the plasma generator through an electron emitting hole. The plasma generator includes an antenna that is provided in the plasma generating chamber and that emits a high-frequency wave, and an antenna cover that is made of an insulating material and that covers an entire body of the antenna. A plasma electrode having the electron emitting hole is made of a conductive material. A frame cover with a protrusion ensures conductivity by preventing an insulating material from accumulating on a surface of the plasma electrode on a plasma side in sputtering by the plasma.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: October 29, 2013
    Assignee: Nissin Ion Equipment Co., Ltd
    Inventors: Hideki Fujita, Tetsuya Igo
  • Publication number: 20130278140
    Abstract: An electrodeless plasma lamp is described that employs acoustic resonance. The plasma lamp includes a metal enclosure having a conductive boundary forming a resonant structure, and a radio frequency (RF) feed to couple RF power from an RF power source into the resonant cavity. A bulb is received at least partially within an opening in the metal enclosure. The bulb contains a fill that forms a light emitting plasma when the power is coupled to the fill. The RF power source includes a controller to modulate the RF power to induce acoustic resonance in the plasma.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 24, 2013
    Applicant: Luxim Corporation
    Inventors: Sandeep Mudunuri, Marc DeVincentis, Abdeslam Hafidi, Walter P. Lapatovich
  • Patent number: 8563924
    Abstract: An ionization device comprises: a plasma source configured to generate a plasma. The plasma comprises light, plasma ions and plasma electrons. The plasma source comprises an aperture disposed such that at least part of the light passes through the aperture and is incident on a gas sample. The ionization device further comprises an ionization region; and a plasma deflection device comprising a plurality of electrodes configured to establish an electric field, wherein the electric field substantially prevents the plasma ions from entering the ionization region.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: October 22, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: James Edward Cooley, Sameer Kothari
  • Patent number: 8558460
    Abstract: A plasma processing apparatus includes: a vacuum chamber; a plasma processing execution portion; a discharge state detecting unit; a window portion; a camera; a first storing portion; a second storing portion; and an image data extracting unit. The image data extracting unit extracts at least moving image data, which show the generation state of the abnormal discharge, from the first storing portion and stores the extracted moving image data in the second storing portion when the discharge state detecting unit detects the abnormal discharge.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 15, 2013
    Assignee: Panasonic Corporation
    Inventors: Masaru Nonomura, Hiroshi Haji, Kiyoshi Arita
  • Publication number: 20130264938
    Abstract: A surface wave plasma (SWP) source is described. The SWP source comprises an electromagnetic (EM) wave launcher configured to couple EM energy in a desired EM wave mode to a plasma by generating a surface wave on a plasma surface of the EM wave launcher adjacent the plasma. The EM wave launcher comprises a slot antenna having at least one slot. The SWP source further comprises a first recess configuration and a second recess configuration formed in the plasma surface, wherein at least one first recess of the first recess configuration differs in size and/or shape from at least one second recess of the second recess configurations. A power coupling system is coupled to the EM wave launcher and configured to provide the EM energy to the EM wave launcher for forming the plasma.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 10, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Tokyo Electron Limited
  • Patent number: 8552650
    Abstract: There is provided a plasma formation region control apparatus, with which a large-scale plasma can be obtained under a high pressure with ease and at low cost. The plasma formation region control apparatus comprises a microwave oscillator, an antenna connected to the microwave oscillator, and controller for controlling the position of each of the microwave oscillator and the antenna. The controller positions the antenna towards a plasma formation region in accordance with a specification for a plasma region for respective points in time t; establishes a driving sequence for the microwave oscillator based on the temperature state of the specified plasma; and drives the microwave oscillator according to the driving sequence.
    Type: Grant
    Filed: July 12, 2008
    Date of Patent: October 8, 2013
    Assignee: Imagineering, Inc.
    Inventor: Yuji Ikeda
  • Patent number: 8551414
    Abstract: A plasma generating apparatus includes a linear electrode for generating a high voltage by resonance caused when the linear electrode is supplied with an AC signal current, an grounded electrode for defining an internal space spaced from the linear electrode around the linear electrode, and a control device for controlling the power feed to the linear electrode. The control device has a field probe for measuring the electric field in the internal space, and a bandpass filter for filtering the measurement signal into a predetermined frequency band to output an AC signal, a variable phase shifter for shifting the phase of the AC signal so that the AC signal is synchronized with the resonance signal in the internal space when the AC signal is supplied to the linear electrode as a current, and an amplifier for amplifying the AC signal of which the phase is shifted.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: October 8, 2013
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventor: Noriaki Kimura
  • Patent number: 8547020
    Abstract: A radiofrequency plasma generating device including: a supply circuit including a switch controlled by a control signal for applying a voltage on an output of the control circuit at a control frequency; at least two plasma-generating circuits connected in parallel at the output of the supply circuits, each circuit having its own resonance frequency and being capable of generating plasma when a high voltage level is applied to the output of the supply circuit at a frequency substantially equal to the resonance frequency of the plasma generation circuit; and a supply control device determining the control frequency from the resonance frequencies of the plasma generation circuits to selectively control each circuit according to the control frequency used.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: October 1, 2013
    Assignee: Renault S.A.S.
    Inventors: Paulo Barroso, Clement Nouvel, Nabil Meziti
  • Patent number: 8547021
    Abstract: A plasma processing device includes a first electrode plate (3), a second electrode plate (4), a matching device (8), a power distribution device (9) and a power supply device (1). The first electrode plate (3) includes at least two sub-electrode plates (31, 32) insulated from each other; the power supply device (1) is connected to the power distribution device (9) via the matching device (8); the power distribution device (9) is connected to the first electrode plate (3) for inputting and distributing the power of the power supply device (1) to each of the sub-electrode plates (31, 32); the power distribution device (9) at least includes capacitors (C1, C2) and/or inductances (L1, L2).
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 1, 2013
    Assignee: Beijing NMC Co. Ltd.
    Inventor: Gang Wei
  • Patent number: 8547085
    Abstract: An arrangement for measuring process parameters within a processing chamber is provided. The arrangement includes a probe arrangement disposed in an opening of an upper electrode. Probe arrangement includes a probe head, which includes a head portion and a flange portion. The arrangement also includes an o-ring disposed between the upper electrode and the flange portion. The arrangement further includes a spacer made of an electrically insulative material positioned between the head portion and the opening of the upper electrode to prevent the probe arrangement from touching the upper electrode. The spacer includes a disk portion configured for supporting an underside of the flange portion. The spacer also includes a hollow cylindrical portion configured to encircle the head portion. The spacer forms a right-angled path between the o-ring and an opening to the processing chamber to prevent direct line-of-sight path between the o-ring and the opening to the processing chamber.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: October 1, 2013
    Assignee: Lam Research Corporation
    Inventors: Jean-Paul Booth, Douglas Keil
  • Patent number: 8546719
    Abstract: A plasma arc torch both cutting and marking of metal workpieces includes a plasma nozzle having a plasma nozzle orifice through which an electric arc from an electrode and a stream of plasma gas are emitted toward a workpiece, and a liquid-injection shield cup that injects liquid tangentially inwardly to the arc and stream of plasma gas. A power supply is operable to selectively deliver electrical power to the electrode at either a low power level suitable for marking of a workpiece or a high power level suitable for workpiece cutting. The torch may be selectively operated to mark at the low power level, with a plasma marking gas being delivered to the plasma gas passage, or to cut at the high power level, with a plasma cutting gas being delivered to the plasma gas passage, and liquid being delivered to the liquid injection passage for both cutting and marking.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 1, 2013
    Assignee: The ESAB Group, Inc.
    Inventors: Joseph V. Warren, Jr., Koustubh Dnyandeo Ashtekar
  • Publication number: 20130249398
    Abstract: A device (200) for generating a plasma that comprises a plasma source (241) designed as a hollow space and a resonator (201) that includes a waveguide (211, 212, 2131) and the plasma source (241), wherein the waveguide (212, 213) is operatively connected with the plasma source (241); the device further comprising a first coupling means (231) for energy introduction (251) and a second coupling means (232) for energy extraction (252), wherein each coupling means (231, 232) is in an energy- and signal-carrying (251, 252) operative connection with the waveguide; the device further comprising an active element (261) for energy supply to the resonator (201), operatively connected with the first (231) and the second (232) coupling means, wherein the plasma source (241) is at least partially integrated into a section of the waveguide (211, 212, 213) that extends between the first coupling means (231) and the second coupling means (232).
    Type: Application
    Filed: March 20, 2013
    Publication date: September 26, 2013
    Applicant: Forschungsverbund Berlin E.V.
    Inventor: Silvio Kühn
  • Publication number: 20130249399
    Abstract: The present invention provides a plasma processing apparatus. The apparatus includes a vacuum chamber, a plasma reactor arranged in the vacuum chamber for plasma processing, an RF power source for providing RF signals to the plasma reactor and an RF power transmission unit for transmitting RF signals from the RF power source to the plasma reactor inside the vacuum chamber. The RF power transmission unit includes a transmission line for transmitting RF signals and an outer conductor for shielding the electromagnetic field around the transmission line. The invention can effectively avoid the problem of electric discharge when RF signals transmit in a vacuum chamber, resulting in more security and less transmission power loss.
    Type: Application
    Filed: August 5, 2011
    Publication date: September 26, 2013
    Inventors: Jinyuan Chen, Jiawei Dong, Feiyun Yang, Lei Yu, Xiaohong Song
  • Publication number: 20130240145
    Abstract: A plasma processing system having a plasma processing chamber comprising at least one of a chamber wall and a chamber liner is disclosed. The plasma processing system includes a plurality of ground straps disposed around a circumference of a chamber surface, the chamber surface being one of the chamber walls and the chamber liner of the plasma processing chamber. The plasma processing system further includes at least a first impedance device coupled to at least a first ground strap of the plurality of ground straps, wherein a second ground strap of the plurality of ground straps is not provided with a second impedance device having the same impedance value as the first impedance device.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Inventors: Sang Ki Nam, Rajinder Dhindsa
  • Patent number: 8536549
    Abstract: A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: September 17, 2013
    Assignee: The Regents of the University of California
    Inventors: Yezheng Tao, Mark S. Tillack
  • Publication number: 20130234597
    Abstract: The plasma shield device (13) comprises a hollow structure (40) made of monocrystal body of silicon carbide and having an inside space (40a) and a first and second openings (40b,40c) which are opposed to each other across the inside space. During operation of the plasma generation apparatus, the internal space of the hollow structure forms a discharge zone in which the plasma is generated. Discharge gas is supplied to the internal space of the hollow structure through the first opening and the EUV radiation is mainly emitted through the second opening.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 12, 2013
    Applicant: LASERTEC CORPORATION
    Inventors: Haruhiko KUSUNOSE, Kiwamu TAKEHISA, Tomohiro SUZUKI, Hiroki MIYAI
  • Patent number: 8530854
    Abstract: Various technologies described herein pertain to a micro gas-puff based source of neutrons, x-rays, and/or energetic particles. The micro gas-puff based source can generate plasma, which can emit neutrons, x-rays, and the like. The micro gas-puff based source includes a diode, which further includes an anode and a cathode. Further, a chamber is between the anode and the cathode. Moreover, a MEMS gas supply can inject a puff of gas between the anode and the cathode within the chamber, where the MEMS gas supply shapes the puff of gas to form a quasispherical density profile of gas created in various of geometries. Further, a pulsed power supply applies a voltage across the anode and the cathode to cause compression of the puff of gas to form the plasma.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: September 10, 2013
    Assignee: Sandia Corporation
    Inventors: Mark S. Derzon, Paul C. Galambos
  • Patent number: 8525418
    Abstract: An electrostatic chuck including a metal base having a through hole; a ceramic body covering the through hole; a suction electrode provided in the ceramic body; and a heating element provided in the ceramic body. A projection region defined by projecting the through hole toward the ceramic body is differentiated from an outer region which is determined by magnifying the projection region at a similarity ratio of three while setting an areal center of gravity of the projection region as a center of similarity, but excluding an interior of the projection region. Furthermore, the heating element is arranged such that a heating value per unit area in the projection region is 50% or less of a heating value per unit area in the outer region.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: September 3, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Naotoshi Morita, Ryosuke Kameyama
  • Patent number: 8525412
    Abstract: A plasma lamp system is described with the capability to tune the resonant frequency of the resonator of the plasma lamp system after the manufacturing process has been completed. The tuning method developed allows a simple low-cost approach to continuously tune the resonant frequency and set the desired frequency to an ISM (Industrial Scientific Medical) band or set the resonant frequency to optimize the performance of the system. The tuning ability of the resonator relaxes the tolerance required for the dimensions of the resonator reducing the manufacturing cost and improving the manufacturing yield of the plasma lamp.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 3, 2013
    Assignee: Topanga Technologies, Inc.
    Inventors: Frederick M. Espiau, Erik H. M. Lundin
  • Patent number: 8525417
    Abstract: A discharge electrode array for a silicon-based thin film solar cell deposition chamber is provided, relating to solar cell technologies. The discharge electrode array includes a signal feed component having a rectangular-shaped end, a flat waist corresponding to a feed-in port located in a hallowed rectangular area on a center region of a cathode plate having a shielding cover, connecting a feed-in power supply signal by surface contact. The electrode array includes at least a set of cathode plates and an anode plate, with two cathode plates sharing or surrounding one anode plate. Uniform large area and stable discharge driven by the RF/VHF power supply signal can be achieved, and the standing wave and the skin effect can be effectively removed. The production efficiency can be improved and the cost can be reduced.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: September 3, 2013
    Assignee: Shenzhen TRONY Science & Technology Development Co., Ltd.
    Inventors: Zhijian Li, Yi Li, Zhubing He, Shengming Hu, Chunzhu Wang, Jianhua Zhou
  • Patent number: 8525140
    Abstract: A chamber apparatus for operating with a laser apparatus includes a chamber, a target supply unit, a first optical system and a second optical system. The chamber has an inlet for introducing a laser beam thereinto. The target supply unit supplies a target material to a region inside the chamber. The first optical system focuses the laser beam in the region. The guide beam output device outputs a guide beam. The second optical system directs the guide beam such that an axis of a beam path of the guide beam substantially coincides with an axis of a beam path of the laser beam and such that the guide beam enters the focusing optical system through the region.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: September 3, 2013
    Assignee: Gigaphoton Inc.
    Inventors: Tooru Abe, Osamu Wakabayashi
  • Patent number: 8525069
    Abstract: An improved electrode for use in a plasma arc torch. The electrode includes an electrode body, a cavity in a front face at a first end of the electrode body, and an insert disposed in the cavity. The first end of the electrode body is formed of high purity copper containing at least 99.81% copper. The insert has a first end and a second end and is formed of a high emissivity material. A diameter of the first end of the insert is less than a diameter of a second end of the insert. An electrode is compressed to retain the insert using radial compression. The invention also includes a method for forming the electrode, and a method of operation of an electrode in a plasma torch.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 3, 2013
    Assignee: Hypertherm, Inc.
    Inventors: Jonathan P. Mather, Peter J. Twarog
  • Patent number: 8525419
    Abstract: A plasma source for processing or imaging a substrate, for ion source for proton therapy, for ion thrusters, or for high energy particle accelerators includes a coolant circuit passing adjacent to a plasma ion reactor chamber and RF antenna coils. In a method for operating the plasma ion source having an induction coil adjacent to a reaction chamber for inductively coupling power into the plasma from a radio frequency power source, the method comprises pumping a dielectric fluid into contact with induction coils of the plasma ion source along the coolant circuit. Use of the dielectric fluid both electrically insulates the plasma chamber, so that it can be biased to 30 kV and up, and efficiently transfers heat away from the plasma chamber.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: September 3, 2013
    Assignee: Oregon Physics, LLC
    Inventors: Noel S. Smith, Noel P. Martin, Paul P. Tesch
  • Patent number: 8519354
    Abstract: The present invention generally relates to a low temperature plasma probe for desorbing and ionizing at least one analyte in a sample material and methods of use thereof. In one embodiment, the invention generally relates to a low temperature plasma probe including: a housing having a discharge gas inlet port, a probe tip, two electrodes, and a dielectric barrier, in which the two electrodes are separated by the dielectric barrier, in which application of voltage from a power supply generates a low temperature plasma, and in which the low temperature plasma is propelled out of the discharge region by the electric field and/or the discharge gas flow.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: August 27, 2013
    Assignee: Purdue Research Foundation
    Inventors: Nicholas Charipar, Jason Harper, Zheng Ouyang, Robert Graham Cooks