For Fault Location Patents (Class 324/512)
  • Patent number: 9018961
    Abstract: A system and method for determining whether an anode injector that injects hydrogen gas into an anode side of a fuel cell stack has failed. The method includes monitoring a voltage of the fuel cell stack and performing spectral analysis of the stack voltage to identify amplitude peaks in the stack voltage. The method further includes determining whether the spectral analysis of the stack voltage has identified an amplitude peak at a location where an amplitude peak should occur if the injector is operating properly. If no amplitude peak is identified at that location, then the method determines that the injector is not operating properly. If an amplitude peak is identified at that location, then the method compares the amplitude peak to the desired amplitude peak to identify if it is within a threshold to determine if the injector is operating properly.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Manish Sinha, Daniel C. Di Fiore, John C. Fagley, Steven R. Falta
  • Patent number: 9018959
    Abstract: An insulating state detection unit is configured to perform failure detection for switches, which connect a flying capacitor to a sample hold circuit for acquiring a charge voltage and a ground potential, by using a failure determination threshold value according to a variable value. That is to say, the insulating state detection unit is configured to decide the failure determination threshold value by taking, as a reference, a charge voltage of a capacitor of the sample hold circuit charged with electric charge amount corresponding to a charge voltage of the flying capacitor when the flying capacitor is charged with electric charge amount corresponding to an output voltage of a DC power supply.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 28, 2015
    Assignee: Yazaki Corporation
    Inventor: Yoshihiro Kawamura
  • Patent number: 8988234
    Abstract: An alarm system for alarming whenever there is a power leakage from an electronic device, includes a voltage decreasing circuit, a switch circuit and an alarm circuit. The voltage decreasing circuit receives a first voltage from a live wire output terminal and outputs a second voltage. The switch circuit outputs a control signal when the power leakage is detected. The switch circuit is electrically connected to a connection port. The connection port is electrically connected to the live wire output terminal and a neutral wire output terminal. The alarm circuit receives the control signal and alarms. If there is power leakage from the electronic device, the first voltage from the live wire input terminal flows into the ground wire input terminal via the electronic device; the switch circuit turns on and the alarm circuit is closed to alarm.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 24, 2015
    Assignee: Zhongshan Innocloud Intellectual Property Services Co., Ltd.
    Inventor: Ke-You Hu
  • Publication number: 20150077129
    Abstract: A method of detecting a digital leakage signal originating from a leak in a coaxial cable portion of an HFC network. The network has a transmission end from which a digital signal is transmitted to the coaxial cable portion. The digital signal is emitted into free space from the leak to produce the leakage signal. The method comprises: (a) producing a first set of samples representing the digital signal; (b) transmitting the first set of samples to a leakage detector; (c) moving the leakage detector to a detection point in the vicinity of the network; (d) receiving the leakage signal from the leak; (e) sampling the leakage signal to produce a second set of samples; and (f) performing a cross-correlation of the first set of samples with the second set of samples, to produce a cross-correlation function having a peak, whereby the leakage signal is detected from the peak.
    Type: Application
    Filed: November 25, 2014
    Publication date: March 19, 2015
    Applicant: ARCOM DIGITAL, LLC
    Inventor: Victor M. Zinevich
  • Patent number: 8981788
    Abstract: In a calibration process, a capacitor unit is removed from end terminals, or namely, respective capacitors are not connected to terminals. A prescribed voltage (a known voltage) is applied between these end terminals. Among bypass switches of a bypass circuit, the bypass switches connected to one terminal or two or more consecutive terminal pairs from the positive end terminal side are ON. Terminal voltages other than the negative end terminal are obtained and stored as calibration information.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: March 17, 2015
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Katsuei Ishida, Osamu Hamada
  • Patent number: 8981787
    Abstract: A method is provided for detecting a state of a connection between an electrically driven motor vehicle (1) and a corresponding charging station. The motor vehicle (1) has a control pilot (CP) function with a vehicle-side control pilot (CP) line (3). The method includes using a power line communication (PLC) chip (2) of the motor vehicle (1) to measure the length of a control pilot line between the motor vehicle and the charging station.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 17, 2015
    Assignee: Dr. Ing. h.c.F. Porsche Aktiengesellschaft
    Inventors: Michael Scheu, Daniel Spesser
  • Patent number: 8981791
    Abstract: A method, apparatus and software related product are presented for adaptive frequency-domain windowing to determine a time-domain crosstalk in a cable and produce effective TDX plots regardless of the frequency of a worst NEXT (near-end crosstalk). An adaptive window such as a low pass or pass band window may be selected based on the frequency of a measured worst NEXT margin for each pair combination.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: March 17, 2015
    Assignee: Fluke Corporation
    Inventor: Peter Q. Oakley
  • Patent number: 8963556
    Abstract: A system and method for detecting excess voltage drop (EVD) in a three-phase electrical distribution circuit includes a diagnostic system comprising a processor that is programmed to receive three-phase voltages and currents provided to terminals of the electrical machine, determine fundamental components of the three-phase voltages and currents provided to the terminals, and compute positive, negative, and zero sequence currents from the fundamental components.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: February 24, 2015
    Assignee: Eaton Corporation
    Inventors: Santosh Kumar Sharma, Xin Zhou, Steven Andrew Dimino, Supriya Karnani, Snehal Kale, Rahul Choudhary, Debsubhra Chakraborty
  • Patent number: 8933721
    Abstract: An embodiment method of diagnosing a power source arrangement includes a plurality of n power sources connected in series between output terminals, wherein n?2. At least two different groups of power sources are selected from the power source arrangement. A voltage of each of the at least two different groups is measured between the output terminals. During the measurement of the voltage of one group, the power sources of the power source arrangement that do not belong to the one group are bypassed. The at least two measured voltages obtained through measuring the voltage of each of the at least two different groups or at least two voltages that are dependent on these at least two measured voltages are compared.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 13, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Gerald Deboy
  • Patent number: 8912801
    Abstract: A method for detecting an internal failure in a capacitor bank connected to a power system, wherein the capacitor bank includes a plurality of capacitor units that are divided into two Y sections. Each phase in each of the Y sections defines a leg and each leg includes series and/or parallel-connected capacitor units. The internal failure may occur in one or more capacitor elements or units or involve one or more legs. The method includes measuring the phase current in one of the phases, calculating the root mean square value, denoted by RMS, of the measured phase currents, measuring the unbalanced current between the two sections, calculating the RMS value of the measured unbalanced currents, and detecting the phase angle between the measured phase current and the measured unbalanced current.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: December 16, 2014
    Assignee: ABB Research Ltd.
    Inventors: Zoran Gajic, Mustafa Ibrahim, Jianping Wang
  • Publication number: 20140361785
    Abstract: A method of detecting a fault in a subsea power cable or in a direct electric heating system including a subsea power cable is provided. Measuring points are distributed along the subsea power cable. The method includes measuring at each measuring point a current in the subsea power cable and comparing the currents measured at the different measuring points.
    Type: Application
    Filed: January 25, 2013
    Publication date: December 11, 2014
    Inventor: Damir Radan
  • Patent number: 8878559
    Abstract: An IC current measuring apparatus is provided between an IC and a substrate. The IC current measuring apparatus electrically connects each of a plurality of IC-facing terminals and a different one of a plurality of substrate-facing terminals. Especially, resistances are each inserted into a path between an IC terminal targeted for measurement and a substrate terminal corresponding thereto. Furthermore, the IC current measuring apparatus is provided with terminals each used to measure a voltage between both ends of an inserted resistance corresponding thereto. Accordingly, a measurer who measures current flowing through an IC-facing terminal can measure the current flowing through the IC-facing terminal by providing the IC current measuring apparatus between the IC targeted for measurement and the substrate and measuring a voltage between both ends of an inserted resistance corresponding to the IC terminal through which current he/she wishes to measure flows.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: November 4, 2014
    Assignee: Panasonic Corporation
    Inventors: Takeshi Nakayama, Yoshiyuki Saito, Masahiro Ishii, Kouichi Ishino, Yukihiro Ishimaru
  • Patent number: 8878561
    Abstract: This invention is to detect defective products of semiconductor devices with high accuracy even when the characteristics of the semiconductor devices vary according to their positions on each of wafers.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuhiro Sakaguchi
  • Patent number: 8847605
    Abstract: A connection diagnostic apparatus for a ground fault detector including an oscillator connected via a coupling capacitor to an electric circuit with a first connection line and a second connection line, and a voltage detector for detecting a voltage value between the oscillator and the coupling capacitor is provided with a first relay and a second relay provided in the first connection line and the second connection line, and a programmable controller. The programmable controller determines a connected state of the ground fault detector based on a change amount of a voltage value detected by the voltage detector when the first relay is turned on or off and determines the connected state of the ground fault detector based on a change amount of a voltage value detected by the voltage detector when the second relay is turned on or off.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: September 30, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Tsuyoshi Morita
  • Publication number: 20140266237
    Abstract: A dynamic real time transmission line monitor, a dynamic real time transmission line monitoring system, and a method of dynamic real time transmission line monitoring. A dynamic real time transmission line monitor includes a housing installable on a transmission line, the housing including a base portion, and a cover portion coupled to the base portion and defining a cavity of the housing together with the base portion; a sensor configured to sense in real time at least one of a temperature, a position, a current, an acceleration, a vibration, a tilt, a roll, or a distance to a nearest object; and an antenna in the cavity of the housing and configured to transmit a signal including information sensed by the sensor away from the monitor in real time.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: LINDSEY MANUFACTURING COMPANY
    Inventors: Keith E. LINDSEY, Philip E. SPILLANE, An-Chyun WANG
  • Patent number: 8829916
    Abstract: In one embodiment, the method for locating a defect in a wired transmission line, which extends between a first end and a second end, includes measuring a first modified noise signal at the first end by a first measuring unit, and making a first representation of the first modified noise signal. A second modified noise signal is measured at the second end by a second measuring unit, and a second representation of the second modified noise signal is made. The location of the defects are derived from the representations.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: September 9, 2014
    Assignee: Alcatel Lucent
    Inventors: Frank Cyriel Michel Defoort, Danny Van Bruyssel
  • Patent number: 8810532
    Abstract: A test system for testing a capacitive-sense touchscreen is disclosed. Specifically, the test system may be incorporated within a controller that is also used to control operations of the touchscreen. The controller may include an Integrated Circuit and the test system may correspond to a test capacitor embedded into the Integrated Circuit.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: August 19, 2014
    Assignee: Pixart Imaging, Inc.
    Inventors: Sarangan Narasimhan, Mercedes E. Gil
  • Patent number: 8791704
    Abstract: Disclosed herein are systems and methods for identifying a fault type in an electric power delivery system using an angle difference between a total zero-sequence current and a total negative-sequence current and a comparison of phase-to-phase currents against a threshold. The angle difference falls into one of a number of predetermined angle difference sectors. Each sector is associated with a phase-to-ground fault type and a phase-to-phase-to-ground fault type or two phase-to-phase-to-ground fault types. The phase-to-phase current(s) of the indicated phase-to-phase-to-ground fault type(s) associated with the sector are compared with a threshold to determine which of the fault types of the sector is the actual fault type. The threshold may be a multiple of a maximum phase-to-phase current.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: July 29, 2014
    Assignee: Schweitzer Engineering Laboratories Inc.
    Inventors: Mangapathirao Venkata Mynam, Yanfeng Gong
  • Patent number: 8781783
    Abstract: A system and method for checking a ground via of control chips of a printed circuit board (PCB) provides a graphical user interface (GUI) displaying a layout of the PCB. The control chip has a plurality of ground pins. The computer searches for signal path routing of each ground pin and ground vias along each signal path routing of each ground pin. If there are any ground vias having the same absolute coordinates, the computer determines that the ground vias are shared by more than one ground pin.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: July 15, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsien-Chuan Liang, Shen-Chun Li, Chun-Jen Chen, Shou-Kuo Hsu, Yung-Chieh Chen, Wen-Laing Tseng
  • Patent number: 8773142
    Abstract: An electronic component includes an oscillator element, a driving circuit outputting a driving signal to the oscillator element, a clock frequency generator outputting a clock signal to the driving circuit, a clock frequency controller controlling a frequency of the clock signal, a consumption-current detection unit detecting a consumption current of the driving circuit, and a fault detection unit electrically connected to the consumption-current detection unit and the clock frequency controller. When the clock frequency controller changes the frequency of the clock signal, the detected consumption current changes, and allows the consumption-current detection unit to detect the change of the consumption current. The fault detection unit detects a fault based on the change of the frequency of the clock signal and the change of the consumption current. This electronic component can have a fault detection function and a small size.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Takeshi Fujii, Keisuke Kuroda
  • Patent number: 8766645
    Abstract: A method for tracking the deterioration of the insulators in a rotating machine, a method for preventive maintenance of these machines using this tracking and devices using the tracking method is presented.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: July 1, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Gérard Friedrich, Marie Jaillet-Delclaud, Emilie Renouard-Mouren, David Laurent, Bernard Mineur, Emmanuel Odic
  • Patent number: 8762081
    Abstract: A method for locating partial discharges occurring at a discharge site (2) in an electric apparatus (3) with elongate geometry and generating corresponding electric pulses (4) propagating in opposite directions along the apparatus (3) from the discharge site (2) comprises the steps of detecting (11) the electric pulses (4) picked up by a first and a second sensor (5, 7), operatively connected to the apparatus (3) and spaced out along it, and generating corresponding electric signals representative of the waveform of the pulses (4), selecting (12) at least one pair of signals, detected in the consecutive sensors (5, 7), and representative of a pair of homologous pulses (4), relating to the same partial discharge and propagating in opposite directions along the apparatus, deriving, for the signals of the selected pair of homologous pulses (4), at least one attenuation parameter, correlated with a quantity that is variable depending on the distance travelled by the pulses (4), calculating (13) the distance betwe
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 24, 2014
    Assignee: Techimp Technologies S.R.L.
    Inventors: Stefano Serra, Andrea Cavallini, Gian Carlo Montanari, Gaetano Pasini
  • Patent number: 8731853
    Abstract: A method for fault location in series compensated power transmission lines using two-end unsynchronized voltage and current measurements in stations A and B. The method includes performing a subroutine I for determining whether the fault occurred in a line section LA between the station A and a SC&MOV and the distance dA to the fault from station A. Subroutine II determines whether the fault occurred in a line section LB between the station B and the SC&MOV and the distance dB to the fault from station B. The synchronization angle ej?A is determined in subroutine I, and the synchronization angle ej?B is determined in subroutine II. Then, the distance to fault dA or dB is determined. Finally, an equivalent impedance of compensating banks at fault stage ZSC1—phSUB—A and ZSC1—phSUB—B, and pre-fault stage ZSC1—pre is calculated in order to determine whether distance dA or dB is the final result.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: May 20, 2014
    Assignee: ABB Research Ltd.
    Inventors: Przemyslaw Balcerek, Marek Fulczyk, Eugeniusz Rosolowski, Jan Izykowski, Murari Saha
  • Patent number: 8729905
    Abstract: This invention relates to a method of detecting faults on an electrical power line (7) and a sensor (5) for use in such a method. Preferably, the sensor is a line-mounted sensor (5). The method comprises the initial step of determining an initial impedance profile for the power line (7), and thereafter the method comprises the subsequent steps of the line-mounted sensor (5) transmitting a conducted communication signal (41) along the power line, receiving a reflected signal (43) particular to the transmitted communication signal and correlating the transmitted signal and the reflected signal. By correlating the signals, it is possible to determine the actual impedance of the power line. The actual impedance of the power line may then be compared with the initial impedance profile and it is possible to ascertain whether a fault exists on the power line. Preferably, the method uses an adaptive filter to determine the location of the fault.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: May 20, 2014
    Assignee: General Electric Company
    Inventors: Michael Anthony McCormack, Charles Brendan O'Sullivan
  • Patent number: 8704526
    Abstract: A system for detecting a location of fault in a cable includes a cable transmitting a fault current, a current transforming unit connected to the cable and receiving the fault current and detecting an original signal of fault current, a detecting unit detecting a first detail signal and a second detail signal from the original signal of fault current, where both signals are detail components in a high frequency band, a comparing unit comparing the first detail signal with a preset reference value and determining a fault in the cable, and a signal filtering unit generating a first filtering signal and a second filtering signal by use of the first detail signal and the second detail signal and outputting a fault detection signal based on a result of comparing both signals.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 22, 2014
    Assignee: Korea Electric Power Corporation
    Inventors: Chae-Kyun Jung, Ji-Won Kang
  • Patent number: 8698504
    Abstract: A method is provided for detection of a ground fault in a high resistance network in a voltage source power conversion circuit comprising a power converter that converts incoming AC power to DC power applied to a DC bus and an inverter that converts DC power from the DC bus to output AC power. The method includes detecting a midpoint-to-ground voltage between a low side of the DC bus and a ground potential and detecting the presence of a ground fault in a high resistance network based upon the detected midpoint-to-ground voltage.
    Type: Grant
    Filed: October 9, 2010
    Date of Patent: April 15, 2014
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Lixiang Wei, Zhijun Liu, Brian Patrick Brown, David W. Kirschnik, Russ J. Kerkman, Richard A. Lukaszewski, Gary Skibinski, Carlos Daniel Rodriguez-Valdez
  • Patent number: 8694148
    Abstract: A method and system increase processed specimen yield in the laser processing of target material that includes multiple specimens formed on a common substrate. Preferred embodiments implement a feature that enables storage in the laser processing system a list of defective specimens that have somehow been subject to error during laser processing. Once the common substrate has been completely processed, the system alerts an operator to the number of improperly processed specimens and gives the operator an opportunity to run a software routine, which in a preferred embodiment uses a laser to scribe a mark on the top surface of each improperly processed specimen.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: April 8, 2014
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Michael Tyler, Robert W. Colby, Jeffrey W. Leonard, Lindsey M. Dotson, David A. Watt, Cris E. Hill, Laura H. Campbell
  • Patent number: 8669767
    Abstract: Aspects of the present disclosure provide for a cable tester that tests a cable to determine the cable length. The cable tester can include a clock generator that generates a clock that has clock period that is a multiple of the data symbol period and a signal generator that injects the training signal, which can be synchronous with the clock, into the cable. The cable tester can also include a receiver that samples the returned signal from the cable and adaptively filters the returned signal based on the training signal and a controller that determines the cable length from the adaptive filter tap coefficients.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: March 11, 2014
    Assignee: Marvell International Ltd.
    Inventors: Ozdal Barkan, William Lo, Tak-Lap Tsui
  • Patent number: 8653823
    Abstract: A system for the detection of welded contacts in a circuit of a line converter system has a plurality of inverter switches, a plurality of utility switches in which a pair of utility switches is connected in series through a line to a utility, a voltage detector, an electronic controller, and a DC input source. The line converter system converts incoming DC power into AC output power that is delivered to the utility grid. The voltage detector measures the voltage across a first node and a second node of the circuit and provides an output that is interpreted by an electronic controller for each step performed during a method of detection of welded contacts. The detection method has a sequence of test steps in which at least one switch is opened and/or closed, a DC bus of the inverter or the utility grid is used as a stimulus voltage, and the voltage is measured.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 18, 2014
    Assignees: ABB Inc., ABB Oy
    Inventors: Kalyan P. Gokhale, Douglas W. Karraker, Ilkka T. Pajari, Matti T. Jussila
  • Publication number: 20140035372
    Abstract: A Low Voltage, “LV”, network automation system is provided which enables utilities to remotely identify location of LV faults on their networks, isolate these faults and re-energising the healthy LV circuit by remote control. The hardware for this system is designed to be retrofitted into existing LV switchgears and panels which enables the network changeover to be done cost effectively and with minimum interruption to the network. The system also enables utilities to monitor load flows on the LV networks and identify circuits which are overloaded and gives control room operator options for redistribution of network load where possible.
    Type: Application
    Filed: April 4, 2012
    Publication date: February 6, 2014
    Applicants: TYCO ELECTRONICS UK LTD., RAYCHEM INTERNATIONAL
    Inventors: Brendan Normoyle, Aidan Quinn, Jean-Christophe Bouche, Philip Foxley, Leslie Allen, Melvyn McGann, Conor McLoughlin
  • Publication number: 20140015539
    Abstract: A system for detecting a location of fault in a cable includes a cable transmitting a fault current, a current transforming unit connected to the cable and receiving the fault current and detecting an original signal of fault current, a detecting unit detecting a first detail signal and a second detail signal from the original signal of fault current, where both signals are detail components in a high frequency band, a comparing unit comparing the first detail signal with a preset reference value and determining a fault in the cable, and a signal filtering unit generating a first filtering signal and a second filtering signal by use of the first detail signal and the second detail signal and outputting a fault detection signal based on a result of comparing both signals.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 16, 2014
    Applicant: KOREA ELECTRIC POWER CORPORATION
    Inventors: Chae-Kyun JUNG, Ji-Won KANG
  • Patent number: 8618808
    Abstract: Disclosed is a field device which determines whether or not an abnormality which was detected is the type of abnormality which may not allow the output of a burn-out H signal, and sets a signal output for the abnormality to a burn-out L signal when the type of abnormality was one which may not allow the output of a burn-out H signal. For example, an abnormality in the D/A converter or the power supply. Therefore, a burn-out L signal is always output for an abnormality judged likely not to be able to output a burn-out H signal, and the certainty of reporting an abnormality when burn-out H is set is enhanced.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: December 31, 2013
    Assignee: Azbil Corporation
    Inventor: Kentaro Ohya
  • Patent number: 8593150
    Abstract: A motor drive system provides for analysis of current flow in the DC bus to identify ground faults and their locations. Low-frequency positive polarity and negative polarity current differences indicate ground faults from the positive DC bus and negative DC bus respectively. High-frequency signals indicate ground faults in the motor windings and connecting leads.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: November 26, 2013
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Zoran V. Vrankovic, Lixiang Wei, Gary L. Skibinski, Craig R. Winterhalter
  • Patent number: 8581608
    Abstract: The present invention provides an apparatus for easily detecting an abnormal status of power generation of a solar cell panel in a solar cell power generation system having the power generation of 1 MW or higher. The present invention provides an abnormality detecting apparatus for a solar cell power generation system including a plurality of solar cell strings each having a plurality of solar cell modules connected to each other in series and a backflow preventing diode connected to a power output terminal of each of the solar cell strings, characterized in that the abnormality detecting apparatus further includes measuring means for measuring a current flowing in the backflow preventing diode; and that the measuring means is supplied with electric power from both terminals of the backflow preventing diode.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: November 12, 2013
    Assignee: Onamba Co., Ltd.
    Inventors: Osamu Shizuya, Jun Ishida, Hideki Furubayashi, Yukitaka Miyata
  • Patent number: 8548760
    Abstract: An apparatus and a method for detecting a nonlinearity in a cable plant and for determining cable length to a source of the nonlinearity are disclosed. Upstream signal peaks are detected by averaging upstream signal waveforms. The upstream signal peaks are generated at the source of the nonlinearity from naturally occurring downstream signal peaks propagating in the cable plant. The downstream signal peaks occur due to constructive superposition of the downstream channel signals. Acquisition of the upstream signal waveforms is triggered by the downstream signal peaks. The cable length to the source of nonlinearity is determined from a time delay between the downstream signal peaks and the upstream signal peaks.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: October 1, 2013
    Assignee: JDS Uniphase Corporation
    Inventor: Daniel K. Chappell
  • Patent number: 8531175
    Abstract: A monitoring device for an electric power system includes a detection unit and a display unit. The detection unit has a power module, a current detecting module and a transmission module. The power module includes positive and negative electrodes and is coupled to the current detecting module. The current detecting module includes a first switching unit and a second switching unit. The first and second switching units are coupled between the positive and negative electrodes to detect currents on detection points of the electric power system. The transmission module includes a micro-controller unit and a transmission device coupled to the micro-controller unit. The micro-controller unit includes a first end and a second end. The first end is coupled to the first switching unit and the second end is coupled to the second switching unit. The display unit is coupled to the transmission device for receiving signals from the detection unit.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 10, 2013
    Assignee: I-Shou University
    Inventors: Jen-Hao Teng, Shang-Wen Luan, Chao-Shun Chen
  • Patent number: 8525542
    Abstract: A short circuit detection device is provided to check a circuit layout. The circuit layout includes electronic components connected in parallel. Any of the electronic components includes two contacts on the circuit layout. The short circuit detection device includes a determination circuit configured to determine whether a short circuit has occurred in the circuit layout, and a detection circuit configured to determine the specific electronic component or components responsible for the short circuit. The determination circuit connects with one contact of any of the electronic components. The detection circuit connects with two contacts of any of the electronic components.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: September 3, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Jin-Liang Xiong
  • Patent number: 8519718
    Abstract: The present invention relates to a tester (100) for testing operational reliability of a cockpit oxygen distribution circuit (1) having a plurality of components (20, 30, 40, 50) ensuring supply of oxygen from the cockpit oxygen distribution circuit (1) to a cockpit crew of an aircraft in an emergency situation. The tester (100) comprises means (20?, 30?, 40?, 500 for electrically connecting the tester (100), in place of at least one of the components (20, 30, 40, 50), to the cockpit oxygen distribution circuit (1), an indicator (120) for indicating that the electrical connection of the tester (100) to the cockpit oxygen distribution circuit (1) has been established in a predefined manner, and switching means (RL1, RL2, RL3, RL4) for initiating an output signal of the tester (100), wherein the output signal is indicative of an operating condition of the component (20, 30, 40, 50) when being connected to the cockpit oxygen distribution circuit (1).
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: August 27, 2013
    Assignee: Airbus Operations GmbH
    Inventor: Guenther Kruse
  • Patent number: 8513952
    Abstract: Aspects of the present disclosure provide for a cable tester that tests a cable to determine the cable length. The cable tester can include a clock generator that generates a clock that has clock period that is a multiple of the data symbol period and a signal generator that injects the training signal, which can be synchronous with the clock, into the cable. The cable tester can also include a receiver that samples the returned signal from the cable and adaptively filters the returned signal based on the training signal and a controller that determines the cable length from the adaptive filter tap coefficients.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: August 20, 2013
    Assignee: Marvell International Ltd.
    Inventors: Ozdal Barkan, William Lo, Tak-Lap Tsui
  • Patent number: 8513951
    Abstract: A method and apparatus are provided for detecting a fault condition on a power system. By rectifying power system phase voltages to produce a rectified waveform, and filtering the rectified waveform or a representation of the rectified waveform through a finite gain synchronous band pass filter to generate a synchronous band pass filter output waveform that indicates the magnitude of a predefined harmonic frequency component, a fault condition on a power system can be identified.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: August 20, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Scott Wunderlich, Gerald Andrew Garland
  • Patent number: 8506231
    Abstract: A handler includes a device holding portion, which holds an uninspected device and loads the device in a measuring socket on a device tester, having a suction means for sucking the device by a very weak pushing force at the time of sucking the device from an uninspection tray and for loading the device in a measuring socket and also having a clamper capable of outputting a pushing force which can be changed at the time of the measurement contact. The device holding portion includes a position correcting mechanism for making a device position correction executed by an image recognizing and position correcting means.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 13, 2013
    Assignee: Tohoku Seiki Industries, Ltd.
    Inventors: Masayoshi Yokoo, Koichi Yoshida, Norikazu Kainuma
  • Patent number: 8502542
    Abstract: An appliance and a method are intended to monitor a phase line of a section of an electrical energy grid line. The appliance comprises a device for monitoring a parameter of a phase line. The parameter is representative of routine operating conditions of the phase line and has a known propagation speed. The appliance also comprises a device for generating an event detection signal each time the parameter has a value that exceeds a threshold, and for storing a reception time when the detection signal is generated. The appliance also has a device for sending a signal representative of a geographic location of the end of the section and a device for performing a geographic location of the event once two consecutive detection signals are generated from the signal representative of the geographic location, and reception times associated with the two detection signals.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 6, 2013
    Assignee: Hydro Quebec
    Inventor: Pierre Couture
  • Patent number: 8487634
    Abstract: Disclosed is power management system based on a “smart” wire-device installable in an electric power line (i.e., the “drop-grid” or “micro-grid”) at a premises, such as a business or residence. The “smart” wire-device includes a management node integrated into the form of a typical electrical power outlet, circuit breaker or switch as would be found in such a premises, and is installable in the power line in a manner similar to existing wire-device. The “smart” wire-device requires no special skill to install beyond that of an ordinary skilled electrician. The present wire-device is “smart” in that the node has a detector circuit that senses the electrical characteristic(s) of the power line at the point at which it is installed. The node's communications circuit signals what it detects to a spatially separated remote controller device, and receives instructions from one or more spatially separated remote controller devices.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 16, 2013
    Assignee: Enmetric Systems, Inc.
    Inventors: Gilbert J. Masters, Marcos S. Pernia
  • Patent number: 8410810
    Abstract: A system for testing a DC power supply performance includes a load module electrically coupled to the DC power supply, a switch module electrically coupled to the DC power supply, a control module electrically coupled to the load module and the switch module respectively, and an indication module electrically coupled to the control module. The control module includes a judge module and a comparison module. The judge module is configured for receiving DC voltage signals from the DC power supply; wherein the judge module is capable of turning on when the DC power supply is normal. The comparison module is configured for comparing the DC voltage signals with a reference voltage; wherein the comparison module is capable of outputting a control signal when the DC voltage signals are greater than the reference voltage. The indication module is configured for receiving the control signal and indicating status of the DC power supply.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: April 2, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Ling-Yu Xie
  • Publication number: 20130069667
    Abstract: According to one aspect, embodiments of the invention provide a method of operating a UPS system having a first UPS and a second UPS, the method comprising coupling at least one control line between the first UPS and the second UPS to operate the first UPS and the second UPS in a parallel mode of operation, providing output power from each of the first UPS and the second UPS to a load, detecting a fault condition in the UPS system, decoupling the at least one control line, operating the first UPS in a diagnostic mode of operation, and determining if the fault condition is associated with the first UPS.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Inventor: Mirza Akmal Beg
  • Patent number: 8395403
    Abstract: A semiconductor device and a defect analysis method of a semiconductor device, in which a failure location can be easily identified. The semiconductor device is provided with at least 2N resistor patterns having a fixed form, and being divided into N groups; the resistor patterns of each group are disposed in parallel, in sequence, and at an equal pitch, so that (N?1) resistor patterns of another group interpose between a resistor pattern of each of the groups and another resistor pattern within the group in question; the resistor patterns of each of the groups is connected in series with other resistor patterns with the group; and the resistor patterns of each of the groups, which are connected in series, are additionally connected in series to resistor patterns of another group. Measuring pads are provided respectively between two ends of resistor patterns that are connected in series, and groups.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Tomomi Ukai
  • Patent number: 8392129
    Abstract: A method is provided for managing a fault event in a network for distributing low-voltage or high-voltage electrical energy, which comprises at least one voltage source and a load. The method includes performing at least one step of a first procedure for detecting the existence of fault conditions in the load and performing at least one step of a second procedure for determining, on the basis of the evolution in time of the derivative of the instantaneous current in the load, the state of execution of an interruption manoeuvre started by at least one protection device adapted to interrupt locally the passage of current in the load. An electronic protection unit is also provided that is able to execute the aforesaid method.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: March 5, 2013
    Assignee: ABB S.p.A.
    Inventors: Antonio Maria Gabello, Massimo Pozzi
  • Patent number: 8390298
    Abstract: A method for determining an adjustment value for an electrical protection device wherein, upon occurrence of a ground short circuit, first current indicator measured values and first voltage indicator measured values are captured by a first measurement device at a first end of a segment of an electrical power supply line, and second current indicator measured values and second voltage indicator measured values are captured by a second measurement device at a second end of the segment of an electrical power supply line. In order to design a method of this type such that an adjustment value for a ground impedance can be determined in a relatively simple fashion.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: March 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Matthias Kereit, Tevfik Sezi
  • Publication number: 20130027050
    Abstract: A system for inspection of electrical circuits including a calibration subsystem operative to apply a time varying voltage to an electrical circuit being inspected during calibration and to sense differences in an electrical state at various different locations in the electrical circuit being inspected, thereby providing an indication of location of defects therein.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: PHOTON DYNAMICS, INC
    Inventors: Sam-Soo JUNG, Raul MARTIN
  • Patent number: RE44256
    Abstract: An apparatus for monitoring and measuring the electrical, thermal and mechanical operating parameters of high voltage power conductors. A toroidal shaped housing, which can be mounted onto an energized conductor, contains all of the necessary electrical instruments to monitor the parameters associated with the conductor. Moreover, the housing includes the processing capability to analyze disturbance and fault events based on these parameters.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: June 4, 2013
    Assignee: Underground Systems, Inc.
    Inventors: Larry Fish, John Engelhardt, Paul Alex, Duncan Breese