Field-effect Transistor Patents (Class 326/83)
  • Patent number: 8994414
    Abstract: A voltage controlled switching element gate drive circuit makes it possible to suppress an occurrence of a malfunction, while suppressing surge voltage, surge current, and switching noise, when switching in a voltage controlled switching element. A gate drive circuit that supplies a gate voltage to the gate of a voltage controlled switching element, thus driving the voltage controlled switching element, includes a high potential side switching element and low potential side switching element connected in series, first variable resistors interposed between at least the high potential side switching element and a high potential power supply or the low potential side switching element and a low potential power supply, and a control circuit that adjusts the resistance values of the first variable resistors.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 31, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Satoshi Sugahara
  • Patent number: 8994413
    Abstract: A method for driving a controllable power semiconductor switch, having a first input terminal and first and second output terminals coupled to a voltage supply and a load, the first and second output terminals providing an output of the power semiconductor switch, includes adjusting a gradient of switch-off edges of an output current and an output voltage of the power semiconductor switch by a voltage source arrangement coupled to the input terminal. A gradient of switch-on edges of an output current and an output voltage is adjusted by a controllable current source arrangement that is coupled to the input terminal and generates a gate drive current. The profile of the gate drive current from one switching operation to a subsequent switching operation, beginning at a rise in the output current and ending at a decrease in the output voltage, is varied at most within a predefined tolerance band.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 31, 2015
    Assignee: Infineon Technologies AG
    Inventors: Peter Kanschat, Andre Arens, Hartmut Jasberg, Ulrich Schwarzer
  • Patent number: 8988106
    Abstract: A voltage mode driver circuit able to achieve a larger voltage output swing than its supply voltage. The voltage mode driver circuit is supplemented by a current source or “current booster.” The circuit includes a first inverter, a second inverter, and a current source. The first inverter receives a first input and outputs a signal at a node. The second inverter receives a second input signal and outputs an inverted second input signal at the same node. The current source provides current to the node via a first switch, the first switch receiving an input at a first input where the voltage output swing at the node is larger than a power supply voltage applied to the current source. The voltage mode driver circuit uses a stable power supply voltage using a power amplifier with feedback.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Wei Chih Chen
  • Patent number: 8988118
    Abstract: Disclosed is a high-swing voltage-mode transmitter or line driver. The transmitter can operate over a wide range of supply voltages. Increasing the available output swing merely involves increasing the supply voltage; the circuit adapts to maintain the desired output impedance. This allows for a tradeoff between output amplitude and power consumption. Another advantage of the proposed architecture is that it compensates for process, voltage, and temperature (PVT) and mismatch variations so as to keep rise and fall times matched. This feature reduces common-mode noise and hence EMI in systems in which the transmitter is used.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: March 24, 2015
    Assignee: PMC-Sierra, Inc.
    Inventors: Julien Faucher, Michael Ben Venditti
  • Patent number: 8970263
    Abstract: A semiconductor device driving unit to supply a drive signal to a gate of a semiconductor switching device, the semiconductor device driving unit comprising: a plurality of gate impedance circuits selectably connectable to the gate of the semiconductor switching device; and a selector to select one or more of the gate impedance circuits to connect to the semiconductor switching device. Also provided is a method of supplying a drive signal to a gate of a semiconductor switching device, the method comprising: selecting one or more of a plurality of gate impedance circuits to be connected to the gate of the semiconductor switching device based on one or more operating conditions and stored data relating to the one or more operating conditions; and connecting the selected one or more of the gate impedance circuits to the semiconductor switching device.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: March 3, 2015
    Assignee: Control Techniques Limited
    Inventors: Richard Samuel Gibson, Richard Mark Wain, Robert Anthony Cottell, Robert Gwyn Williams
  • Patent number: 8970258
    Abstract: In accordance with embodiments of the present disclosure, systems and methods may include a switch coupled at its gate terminal to an input signal voltage, the input signal voltage for controlling a gate voltage of a gate terminal of a driver device coupled at its non-gate terminals between a rail voltage and an output node. The systems and methods may also include a diode having a first terminal and a second terminal, the diode coupled to a non-gate terminal of the switch such that when the switch is enabled, the first terminal is electrically coupled to the gate terminal of the driver device and the second terminal is electrically coupled to the output node.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 3, 2015
    Assignee: Cirrus Logic, Inc.
    Inventors: Dan Shen, Johann Gaboriau, Lingli Zhang, Christian Larsen
  • Patent number: 8965304
    Abstract: A multi-mode I/O circuit or cell (10) is provided for transmitting and receiving data between ICs, where each IC contains at least one of the I/O circuits. Each data link includes transmitter circuitry (12) and receiver circuitry (14). The transmitter circuitry sends data to a receiver circuitry in another IC, and the receiver circuitry receives data from a transmitter circuitry in another IC. The I/O circuit is constructed with CMOS-based transistors (e.g., CMOS or BiCMOS) that are selectively interconnected together by a plurality of switches to operate as two single-ended, current or voltage mode links, or as a single differential current or voltage mode link. In the preferred embodiment the transmitter circuitry sends data to the receiver circuitry in another IC over a first pair of adjacently disposed conductors, and the receiver circuitry receives data from the transmitter circuitry in another IC over a second pair of adjacently disposed conductors.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 24, 2015
    Assignee: Nokia Corporation
    Inventors: Antti Ruha, Tarmo Ruotsalainen, Jussi-Pekka Tervaluoto
  • Patent number: 8963583
    Abstract: Disclosed is a voltage level converter that includes: a first conversion unit which receives at least one input signal of a logic 1 signal and a logic 0 signal from a signal input terminal and converts the signal; a second conversion unit and a third conversion unit which alternately output a logic ?1 signal and the logic 1 signal respectively in accordance with the input signal; a fourth conversion unit and a fifth conversion unit which alternately output the logic ?1 signal and the logic 0 signal respectively in accordance with the input signal; and a latch which has a complementary characteristic in which if a first transistor becomes an on-state, then a second transistor becomes an off-state in accordance with the input signal, and performs a positive feedback operation. A drain output of the first transistor is input to the fourth conversion unit. A drain output of the second transistor is input to the fifth conversion unit.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: February 24, 2015
    Assignee: HiDeep Inc.
    Inventors: Donggu Im, Seunghyun Park, Bonkee Kim, Youngho Cho
  • Patent number: 8963448
    Abstract: An output buffer circuit includes an amplifier and a transmission circuit. The amplifier includes a plurality of inputs and an output. The inputs provide first input signals and second input signals to the amplifier. The output provides an output signal as a first input signal of the first input signals to the amplifier. The transmission circuit has an input coupled to the output of the amplifier and further has an output that provides a transmission circuit output signal as a second input signal of the second input signals to the amplifier.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung Tae Kim, Soo Ik Cha, Jun Ho Song, Jin Chul Choi, Chul Ho Choi
  • Patent number: 8957703
    Abstract: Circuitry comprises a high voltage rail providing a high voltage level corresponding to a higher voltage domain, an intermediate voltage source, a low voltage rail, and devices that operate in a lower voltage domain. First devices in an upper voltage region are powered between the high voltage rail and an intermediate voltage rail powered by the intermediate source. Second devices in a lower voltage region are powered between the intermediate and low rails. On power up, the intermediate source is powered before the high voltage rail. An isolating circuit connects the intermediate source to a node when the high voltage rail is powered and isolates the node from the intermediate source when the high voltage rail is not powered to impede current flow from the intermediate source to the high voltage rail.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: February 17, 2015
    Assignee: ARM Limited
    Inventors: Mikael Rien, Jean-Claude Duby, Flora Leymarie, Fabrice Blanc, Thierry Padilla
  • Patent number: 8957702
    Abstract: A signalling circuit for a signal channel of a communication network comprises a communication network terminal connectable to the signal channel and to a voltage supply; an input terminal connectable to receive a transmit signal; a driver device comprising a first driver terminal connected to the communication network terminal, a second driver terminal connected to ground, and a driver control terminal connected to the input terminal; wherein the driver device is arranged to connect the communication network terminal to ground in response to a transition from a low to a high voltage driver control signal state of a driver control signal received at the driver control terminal.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: February 17, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mathieu Lesbats, Hubert Bode, Rafael Pena Bello
  • Patent number: 8957715
    Abstract: An integrated circuit includes an output driver circuit having a plurality of output driver devices connected in a parallel arrangement and an output driver controller that is capable of individually controlling the conducting states of the output driver devices. In at least one embodiment, the controller is capable of achieving any of a plurality of different fall times (and/or rise times) in an output signal by appropriately controlling the conducting states of the output devices if a change in the state of the output signal is desired, in some implementations, the controller is capable of achieving different waveshapes during rising and/or failing edges of an output signal.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: February 17, 2015
    Assignee: Allegro Microsystems, LLC
    Inventor: Jeff Eagen
  • Patent number: 8952731
    Abstract: A voltage controlled switching element gate drive circuit makes it possible to suppress an occurrence of a malfunction, while suppressing surge voltage, surge current, and switching noise, when switching in a voltage controlled switching element. A gate drive circuit that supplies a gate voltage to the gate of a voltage controlled switching element, thus driving the voltage controlled switching element, includes a high potential side switching element and low potential side switching element connected in series, first variable resistors interposed between at least the high potential side switching element and a high potential power supply or the low potential side switching element and a low potential power supply, and a control circuit that adjusts the resistance values of the first variable resistors.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: February 10, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Satoshi Sugahara
  • Patent number: 8952724
    Abstract: A semiconductor device includes a first pad and a second pad. A first conductivity type transistor is coupled between a first potential and the second pad, and a second conductivity type transistor is coupled between a second potential and the second pad. A comparator includes a first input node coupled to the first pad and a second input node coupled to the second pad. A circuit receives a signal from the first pad or outputs a signal to the first pad, wherein the first pad is coupled to gate electrodes of the first and second conductivity type transistors.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: February 10, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroyoshi Fukuda
  • Patent number: 8947131
    Abstract: An input buffer capable of interfacing higher-voltage logic signals to lower voltage internal circuitry includes a first stage configured to generate a first output signal in response to an input signal, the first stage configured to receive a first power supply voltage and including semiconductor circuit components configured to be variably biased responsive to a variable voltage. The input buffer also includes a second stage configured to receive the first output voltage and to responsively generate a second output signal, the second stage biased according to the first power supply voltage. The input buffer further includes a bias circuit configured to generate the variable voltage responsive to a state of the input signal.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seungho Lee
  • Patent number: 8947130
    Abstract: A driver having low power consumption includes a first input terminal, a second input terminal, an output terminal, a power supply terminal, a ground terminal, a driving circuit, an adjusting circuit connected to the driving circuit and a biasing circuit which is connected to the driving circuit and the adjusting circuit. A method for accomplishing low power consumption of a driver is also provided. The method accomplishes an object of low power consumption by dynamically adjusting a driving current of a driver according to a difference between inputted differential signals.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: February 3, 2015
    Assignee: IPGoal Microelectronics (Sichuan) Co., Ltd.
    Inventor: Fangping Fan
  • Patent number: 8941407
    Abstract: Described are integrated-circuit die with differential receivers, the inputs of which are coupled to external signal pads. Termination legs coupled to the signal pads support multiple termination topologies. These termination legs can support adjustable impedances, capacitances, or both, which may be controlled using an integrated memory.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: January 27, 2015
    Assignee: Rambus Inc.
    Inventor: Huy Nguyen
  • Patent number: 8941418
    Abstract: A driving circuit is provided. The driving circuit is capable of driving a load coupled to an output node of the driving circuit. The driving circuit includes an output-stage element, a first N-type metal-oxide-semiconductor (NMOS) transistor, and a first P-type metal-oxide-semiconductor (PMOS) transistor. The output-stage element is coupled between an operation voltage source and the output node. The first NMOS transistor has a gate, a drain coupled to the output node, and a source coupled to a ground. The first PMOS transistor has a gate, a drain coupled to the ground, and a source coupled to the output node. When the first NMOS transistor begins to be turned off, the first PMOS transistor is turned on, and a voltage at the drain of the first NMOS transistor is clamped to be lower than a breakdown trigger voltage of the first NMOS transistor.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 27, 2015
    Assignee: Mediatek Inc.
    Inventor: Chun-Chi Chen
  • Patent number: 8937489
    Abstract: An inverter is capable of improving the reliability of driving. The inverter includes a first transistor and a second transistor. The first transistor is coupled between a first power source and an output terminal of the inverter, and has a first gate electrode coupled to a first input terminal of the inverter and a second gate electrode coupled to a third power source. The second transistor is coupled between the output terminal and a second power source, and has a first gate electrode coupled to a second input terminal of the inverter and a second gate electrode coupled to the third power source.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: January 20, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yong-Sung Park, Dong-Yong Shin
  • Patent number: 8937490
    Abstract: An integrated circuit comprising an output driver including an output terminal, and a receiving circuit including a termination resistor connected between the output terminal and a ground. The output driver comprising a first NMOS transistor configured to pull up a voltage of the output terminal to a pull-up voltage in response to a pull-up signal, and a second NMOS transistor configured to pull down the output terminal to a ground voltage in response to a pull-down signal.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: January 20, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: David Moon, Yong Cheol Bae, Min Su Ahn, Young Jin Jeon
  • Patent number: 8933727
    Abstract: An integrated circuit comprising a first circuit and a second circuit. The first circuit may be configured to generate a plurality of complementary outputs based upon a plurality of inputs, a first control signal, and a second control signal. The plurality of inputs may be received in parallel in a first mode and as a serial bit stream in a second mode. The second circuit may be configured to generate a plurality of outputs in response to a third control signal and a fourth control signal.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: January 13, 2015
    Assignee: M/A-COM Technology Solutions Holdings, Inc.
    Inventors: Chengxin Liu, Christopher D. Weigand
  • Patent number: 8928355
    Abstract: There is presented a high bandwidth circuit for high-speed transceivers. The circuit may comprise an amplifier combining capacitor splitting, inductance tree structures, and various bandwidth extension techniques such as shunt peaking, series peaking, and T-coil peaking to support data rates of 45 Gbs/s and above while reducing data jitter. The inductance elements of the inductance tree structures may also comprise high impedance transmission lines, simplifying implementation. Additionally, the readily identifiable metal structures of inductors and t-coils, the equal partitioning of the load capacitors, and the symmetrical inductance tree structures may simplify transceiver implementation for, but not limited to, a clock data recovery circuit.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: January 6, 2015
    Assignee: Broadcom Corporation
    Inventors: Delong Cui, Afshin Momtaz, Jun Cao
  • Patent number: 8922263
    Abstract: The power consumption of a data sampling unit that selects a phase of a clock signal appropriate for sampling payload data is reduced at an input interface. A semiconductor integrated circuit includes an input interface and internal core circuits. The input interface includes a hysteresis circuit and a data sampling unit. The hysteresis circuit detects an input signal between first and second input thresholds as a sleep command. The data sampling unit selects an appropriate phase of a sampling clock signal in accordance with a synchronizing signal and samples payload data. When a sleep command is detected, a sleep signal is also supplied to the internal core circuits and the data sampling unit and they are controlled into a low-power consumption state.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: December 30, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Kamizuma, Taizo Yamawaki, Yukinori Akamine, Koji Maeda
  • Patent number: 8922247
    Abstract: A power control integrated circuit is provided having a voltage switching device and a retention switching device that has an input from an overdrive voltage supply such that in a retention enabled configuration a retention switching device is switched on more strongly relative to being both coupled to and driven from the voltage supply input signal associated with the voltage switching device. An overdriven retention switching device is provided as a separate entity from the voltage switching device itself and a computer readable storage medium is provided storing a data structure comprising a standard cell circuit definition for use in generating validating the circuit layout of a circuit cell of an integrated circuit. The circuit cell comprising an overdriven retention switching device.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: December 30, 2014
    Assignee: ARM Limited
    Inventors: James Edward Myers, David Walter Flynn, John Philip Biggs
  • Patent number: 8922258
    Abstract: A switching element driver IC has one or more photocouplers, a driver circuit, a detection circuit and a setting circuit. The photocoupler receives setting data transmitted from a microcomputer, and transmits the received setting data to the setting circuit, wherein an input side as a high voltage side is electrically insulated from an output side as a low voltage side in the photocoupler. The setting circuit transmits the setting data to the driver circuit and the detection circuit. The driver circuit and the detection circuit operate on the basis of the received setting data. The setting data can be provided to the driver circuit and the detection circuit through the photocoupler and the setting circuit. This structure makes it possible to suppress increasing the number of terminals at the high voltage side of the switching element driver IC, and decrease the entire size of the switching element driver IC.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: December 30, 2014
    Assignee: Denso Corporation
    Inventors: Masatoshi Taguchi, Tsuneo Maebara
  • Patent number: 8912688
    Abstract: A power supply switch circuit according to an aspect of the present invention includes a first switch element that is connected between a first power supply line and a second power supply line and switches connection and disconnection between the first power supply line and the second power supply line according to a first enable signal; a second switch element that is connected between the first power supply line and the second power supply line and switches connection and disconnection between the first power supply line and the second power supply line; and a switch control circuit that includes at least one logic gate supplied with power from the second power supply line and controls the second switch element. The switch control circuit controls the second switch element based on a second enable signal supplied to the switch control circuit and on a voltage of the second power supply line.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: December 16, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiaki Kosuge
  • Patent number: 8912823
    Abstract: Described herein is a voltage compensated level-shifter with nearly constant duty cycle and matching rise and fall slopes of the output of the level-shifter, no meta-stability, and nearly constant propagation delay across power supply levels. The voltage compensated level-shifter comprises a first inverter to receive an input signal for level shifting from a first power supply level to a second power supply level, and to generate a first inverted signal, the first inverter operating on the first power supply level; a second inverter to receive the input signal and to generate a second inverted signal, the second inverter operating on the second power supply level; and a NOR logical gate to receive the first and second inverted signals and to generate an output signal, the NOR logical gate operating on the second power supply level, wherein the output signal is level shifted to the second power supply level.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: December 16, 2014
    Assignee: Intel Corporation
    Inventors: Venkatesh Rao, Alok Shah, Pravas Pradhan
  • Patent number: 8901972
    Abstract: A circuit may include a controller, at least one bridge circuit, and a plurality of switches. The plurality of switches may be connected parallel to each other, each may have a switch output connected to the bridge circuit. The bridge circuit, upon receiving a current from the plurality of switches, may generate an output based on a reference voltage. The controller may generate a plurality of control signals, based on a voltage transition range, to selectively turn on the plurality of the switches in more than one combination, to supply a current to the output.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: December 2, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Christopher C. McQuilkin
  • Patent number: 8890574
    Abstract: Provided are a MIT device self-heating preventive-circuit that can solve a self-heating problem of a MIT device and a method of manufacturing a MIT device self-heating preventive-circuit integrated device. The MIT device self-heating preventive-circuit includes a MIT device that generates an abrupt MIT at a temperature equal to or greater than a critical temperature and is connected to a current driving device to control the flow of current in the current driving device, a transistor that is connected to the MIT device to control the self-heating of the MIT device after generating the MIT in the MIT device, and a resistor connected to the MIT device and the transistor.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: November 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Sun-Jin Yun, Dae-Yong Kim
  • Patent number: 8884651
    Abstract: To reduce a leakage current of a transistor so that malfunction of a logic circuit can be suppressed. The logic circuit includes a transistor which includes an oxide semiconductor layer having a function of a channel formation layer and in which an off current is 1×10?13 A or less per micrometer in channel width. A first signal, a second signal, and a third signal that is a clock signal are input as input signals. A fourth signal and a fifth signal whose voltage states are set in accordance with the first to third signals which have been input are output as output signals.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Masashi Tsubuku, Kosei Noda
  • Patent number: 8878573
    Abstract: A voltage controlled switching element gate drive circuit makes it possible to suppress an occurrence of a malfunction, while suppressing surge voltage, surge current, and switching noise, when switching in a voltage controlled switching element. A gate drive circuit that supplies a gate voltage to the gate of a voltage controlled switching element, thus driving the voltage controlled switching element, includes a high potential side switching element and low potential side switching element connected in series, first variable resistors interposed between at least the high potential side switching element and a high potential power supply or the low potential side switching element and a low potential power supply, and a control circuit that adjusts the resistance values of the first variable resistors.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 4, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Satoshi Sugahara
  • Publication number: 20140320169
    Abstract: A circuit comprises a control circuit having an output node. The circuit also comprises a half latch keeper circuit coupled to the control circuit. The half latch keeper circuit is configured to control the output node during a standby mode. The circuit also comprises a transistor coupled to the output node. The control circuit is configured to turn off the transistor during the standby mode.
    Type: Application
    Filed: July 15, 2014
    Publication date: October 30, 2014
    Inventors: Chan-Hong CHERN, Fu-Lung HSUEH, Ming-Chieh HUANG, Bryan SHEFFIELD, Chih-Chang LIN
  • Patent number: 8866510
    Abstract: When a semiconductor device is provided with an inverter comprising a transistor having a first gate and a second gate, the semiconductor device does not require a circuit for generating a potential to be input to the second gate of the transistor and has a small number of wirings. Moreover, a semiconductor device having high reliability is provided. The semiconductor device includes a plurality of stages of circuits each provided with two inverter circuits in parallel. Two inverter circuits in a given stage output respective signals of opposite polarities, which is utilized for interchanging signals output from inverter circuits in the previous stage. Thus, an inverted signal is input to the second gate of the transistor included in each of two inverter circuits in the subsequent stage.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: October 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Tanabe, Hiroyuki Miyake
  • Patent number: 8860462
    Abstract: To provide a circuit used for a shift register or the like. The basic configuration includes first to fourth transistors and four wirings. The power supply potential VDD is supplied to the first wiring and the power supply potential VSS is supplied to the second wiring. A binary digital signal is supplied to each of the third wiring and the fourth wiring. An H level of the digital signal is equal to the power supply potential VDD, and an L level of the digital signal is equal to the power supply potential VSS. There are four combinations of the potentials of the third wiring and the fourth wiring. Each of the first transistor to the fourth transistor can be turned off by any combination of the potentials. That is, since there is no transistor that is constantly on, deterioration of the characteristics of the transistors can be suppressed.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsushi Umezaki
  • Patent number: 8854100
    Abstract: A clock driver for a resonant clock network includes a delay circuit that receives and supplies a delayed clock signal. A first transistor is coupled to receive a first pulse control signal and supply an output clock node of the clock driver. An asserted edge of the first control signal is responsive to the falling edge of the delayed clock signal. A second transistor is coupled to receive a second control signal and to supply the output clock node of the clock driver. An asserted edge of the second control signal is responsive to a rising edge of the delayed clock signal.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 7, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Visvesh S. Sathe, Samuel D. Naffziger, Srikanth Arekapudi
  • Patent number: 8854078
    Abstract: Circuits, methods, and apparatus for dynamic control of source and termination impedances. One output stage provides a series termination when transmitting and a parallel termination when receiving data. A pull-up device has a nominal impedance of 50 ohms when the output stage pulls a pin from a low voltage to a high voltage, while a pull-down device has a nominal impedance of 50 ohms when the pin is pulled from a high voltage to a low voltage. Both the pull-up and pull-down devices are turned on when receiving data. Due to their non-linear current-voltage characteristics, the pull-up device appears as 50 ohms when the pin voltage is higher than one half the supply voltage, while the pull-down device appears as 50 ohms when the pin voltage is lower than one half the supply voltage. The pull-up and pull-down devices can be calibrated to provide a nominal 50 ohm impedance.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 7, 2014
    Assignee: Altera Corporation
    Inventors: Xiaobao Wang, Bonnie I. Wang, Chiakang Sung, Khai Q. Nguyen
  • Patent number: 8854089
    Abstract: In one embodiment, a power switch driving circuit can include: (i) an upper switch having a first power terminal coupled to a voltage source, and a second power terminal coupled to a driving signal; (ii) a lower switch having a first power terminal coupled to the driving signal, and a second power terminal coupled to a first voltage level, where the first voltage level is higher than a first ground potential; (iii) an upper switch driving sub circuit configured to receive a control signal, and to drive the upper switch in response thereto; and (iii) a lower switch driving sub circuit configured to receive the control signal, and to drive the lower switch in response thereto, where the upper and lower switch driving sub circuits are coupled to a second ground potential.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: October 7, 2014
    Assignee: Silergy Semiconductor Technology (Hangzhou) Ltd
    Inventors: Wei Chen, Xiaoru Xu
  • Patent number: 8841942
    Abstract: A voltage switch circuit uses PMOS transistors to withstand high voltage stress. Consequently, the NMOS transistors are not subject to high voltage stress. The lightly-doped PMOS transistors are compatible with a logic circuit manufacturing process. Consequently, the voltage switch circuit may be produced by a logic circuit manufacturing process.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 23, 2014
    Assignee: eMemory Technology Inc.
    Inventors: Chen-Hao Po, Chiun-Chi Shen
  • Patent number: 8836383
    Abstract: The present invention discloses a multipurpose half bridge signal output circuit. The multipurpose half bridge signal output circuit is capable of selectively operating under a charge sharing mode or a gate pulsing modulation mode. The multipurpose half bridge signal output circuit includes: a first output pin; a second output pin; a first circuit zone having a first common end coupled to the first output pin; and a second circuit zone having a second common end coupled to the second output pin.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: September 16, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Wei-Lun Hsieh, Hung-Sung Chu, Chung-Hsien Tso
  • Patent number: 8836381
    Abstract: A hybrid output driver includes a voltage mode main driver having an adjustable differential output voltage swing, and a current mode emphasis driver. Differential output voltage swing is adjusted by controlling the resistance of a first adjustable resistor coupled to a first voltage supply terminal, and the resistance of a second adjustable resistor coupled to a second voltage supply terminal. Resistances of the first and second adjustable resistors are adjusted by modifying a number of resistors connected in parallel. A calibration process measures the actual resistance of a similar resistor, and uses this resistance measurement to determine the number of resistors to be connected in parallel to provide the desired resistance. The current mode emphasis driver sources/sinks currents to/from differential output terminals of the hybrid output driver in response to an emphasis signal. These currents are selected in view of the selected differential output voltage swing and selected emphasis level.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: September 16, 2014
    Assignee: MoSys, Inc.
    Inventors: Charles W. Boecker, Eric Groen
  • Patent number: 8829949
    Abstract: A driving circuit for at least one voltage controlled power switch device comprises a driver signal generating circuit and a trigger signal generating circuit adapted to generate trigger signals for said voltage controlled power switch device (PT). The trigger signal generating circuit includes a first driving transistor, and at least one energy buffer component coupled between the trigger signal generating circuit and the control electrode of said power switch device (PT).
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 9, 2014
    Inventor: Franc Zajc
  • Patent number: 8823424
    Abstract: A floating gate driver uses a single-end level shifter to translate a set signal and a reset signal induced by a rising edge and a falling edge of a switch signal to a common output terminal to generate an output voltage for a bistable circuit to generate a level shifted switch signal. Under control of a well transient detect signal asserted by detecting noise in the output voltage, a masking circuit between the single-end level shifter and the bistable circuit masks noise in the output voltage. This configuration has lower area penalty and better noise immunity.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: September 2, 2014
    Assignee: Richtek Technology Corp.
    Inventors: Pei-Kai Tseng, Chien-Fu Tang, Issac Y. Chen
  • Patent number: 8803565
    Abstract: A power device includes a switching device having a control terminal and an output terminal; and a driving circuit configured to provide a driving voltage to the control terminal such that a voltage between the control terminal and the output terminal remains less than or equal to a critical voltage. A rise time required for the driving voltage to reach a target level is determined according to current-voltage characteristics of the switching device. And, when the voltage between the control terminal and the output terminal exceeds the critical voltage, leakage current is generated between the control terminal and the output terminal.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 12, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-jung Kim, Jae-kwang Shin, Jae-joon Oh, Jong-seob Kim, Hyuk-soon Choi, In-jun Hwang, Ki-ha Hong
  • Patent number: 8797064
    Abstract: In one embodiment, a hybrid output buffer having both an H-bridge mode and a CML mode of operation includes a plurality of transistor switches arranged between an upper rail and a bottom rail. A first pair of the transistor switches couples between the upper rail and respective output nodes. A pair of resistors couples between the output nodes and a central node. During H-bridge mode, the hybrid output buffer controls a potential of the upper rail responsive to a feedback signal proportional to a difference between a potential of the central node and a common-mode voltage.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: August 5, 2014
    Assignee: Lattice Semiconductor Corporation
    Inventors: Vinh Ho, Magathi Jayaram, Allan Lin
  • Patent number: 8791720
    Abstract: A control circuit comprises a first NOR gate, a first NMOS transistor, and a first PMOS transistor. The control circuit also comprises an output node. The control circuit further comprises a half latch keeper circuit coupled to a gate of the first NMOS transistor and to a gate of the first PMOS transistor. The half latch keeper circuit is configured to keep the output node at a logical 1 during a standby mode. The control circuit additionally comprises an operational PMOS transistor coupled to the output node. An output of the first NOR gate is coupled to a gate of the operational PMOS transistor. The control circuit is configured to turn off the operational PMOS transistor during the standby mode.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: July 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan-Hong Chern, Fu-Lung Hsueh, Ming-Chieh Huang, Bryan Sheffield, Chih-Chang Lin
  • Patent number: 8791724
    Abstract: A post driver implemented using core device transistors to drive an output connection between the high and low voltage levels of an I/O voltage range. The post driver is made from a plurality of core devices operable within a core voltage range that is less than the I/O voltage range. The plurality of core devices is cascaded between upper and lower power connections set to the full I/O voltage range. The post driver has a voltage clamping element, such as a diode, having a predefined threshold voltage and connected to the core devices so as to maintain the voltage difference across the terminals thereof within the core voltage range.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: July 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tien-Chien Huang, Ruey-Bin Sheen
  • Patent number: 8786322
    Abstract: There are provided a gate driver circuit and an operating method thereof. The gate driver circuit includes an output signal generating unit including a plurality of switch devices generating output signals, a selecting circuit unit generating a plurality of control signals according to a set selection state, and a plurality of driving circuit units receiving a reference signal and the plurality of control signals to control the plurality of switch devices, wherein the plurality of switch devices determine a level of the output signal by the plurality of control signal.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 22, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chang Jae Heo, Sung Man Pang
  • Patent number: 8779806
    Abstract: A floating gate driver uses a single-end level shifter to translate a set signal and a reset signal induced by a rising edge and a falling edge of a switch signal to a common output terminal to generate an output voltage for a bistable circuit to generate a level shifted switch signal. Under control of a well transient detect signal asserted by detecting noise in the output voltage, a masking circuit between the single-end level shifter and the bistable circuit masks noise in the output voltage. This configuration has lower area penalty and better noise immunity.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: July 15, 2014
    Assignee: Richtek Technology Corp.
    Inventors: Pei-Kai Tseng, Chien-Fu Tang, Isaac Y. Chen
  • Patent number: 8760200
    Abstract: A gate driving apparatus according to the embodiment includes a first switching device, a second switching device that outputs a signal to charge a capacitance of the first switching device, a third switching device connected in parallel to the second switching device to prevent a drop of a voltage output from the second switching device, and a fourth switching device that outputs a signal to discharge the capacitance of the first switching device. An NMOS transistor is used as a main switching device and a PMOS transistor connected in parallel to the NMOS transistor is used as a sub-switching device, so that the chip size is reduced without dropping the output voltage of the gate driving apparatus. The loss of the switching device is prevented by preventing the output voltage of the gate driving apparatus from being dropped.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: June 24, 2014
    Assignee: LSIS Co., Ltd.
    Inventors: Jae Seok Choung, Gyoung Hun Nam, Sung Hee Kang, Jong Bae Kim
  • Patent number: 8754672
    Abstract: A reversible, switched capacitor voltage conversion apparatus includes a plurality of individual unit cells coupled to one another in stages, with each unit cell comprising multiple sets of inverter devices arranged in a stacked configuration, such that each set of inverter devices operates in separate voltage domains wherein outputs of inverter devices in adjacent voltage domains are capacitively coupled to one another such that a first terminal of a capacitor is coupled to an output of a first inverter device in a first voltage domain, and a second terminal of the capacitor is coupled to an output of a second inverter in a second voltage domain; and wherein, for both the first and second voltage domains, outputs of at least one of the plurality of individual unit cells serve as corresponding inputs for at least another one of the plurality of individual unit cells.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Brian L. Ji