Microscope Patents (Class 359/368)
  • Patent number: 10859802
    Abstract: A reflection phase microscope is disclosed. The reflection phase microscope includes: a light source unit irradiating light; a polarization beam splitter splitting the light irradiated from the light source unit into a sample beam and a reference beam; a sample unit reflecting the sample beam toward the polarization beam splitter; a reference mirror reflecting the reference beam toward the polarization beam splitter; a scanning mirror adjusting the angle of incidence of the light from the light source unit on the polarization beam splitter such that the angle of incidence of the sample beam on the sample unit and the angle of incidence of the reference beam on the reference mirror are adjusted; a diffraction grating diffracting the sample beam reflected by the sample unit and the reference beam reflected by the reference mirror; and an image acquisition unit receiving the beams diffracted by the diffraction grating.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: December 8, 2020
    Assignee: Korea University Research and Business Foundation
    Inventors: Youngwoon Choi, Beop-Min Kim, Min Gyu Hyeon
  • Patent number: 10859977
    Abstract: An apparatus and method to produce a hologram of an object includes an electromagnetic radiation assembly configured to receive a received electromagnetic radiation, such as light, from the object. The electromagnetic radiation assembly is further configured to diffract the received electromagnetic radiation and transmit a diffracted electromagnetic radiation. An image capture assembly is configured to capture an image of the diffracted electromagnetic radiation and produce the hologram of the object from the captured image.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: December 8, 2020
    Assignee: CellOptic Inc.
    Inventors: Joseph Rosen, Gary Brooker
  • Patent number: 10852247
    Abstract: An optical inspection apparatus, including: an optical metrology tool configured to measure structures, the optical metrology tool including: an electromagnetic (EM) radiation source configured to direct a beam of EM radiation along an EM radiation path; and an adaptive optical system disposed in a portion of the EM radiation path and configured to adjust a shape of a wave front of the beam of EM radiation, the adaptive optical system including: a first aspherical optical element; a second aspherical optical element adjacent the first aspherical optical element; and an actuator configured to cause relative movement between the first optical element and the second optical element in a direction different from a beam axis of the portion of the EM radiation path.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 1, 2020
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Stanislav Smirnov, Johannes Matheus Marie De Wit, Teunis Willem Tukker, Armand Eugene Albert Koolen
  • Patent number: 10823947
    Abstract: The present invention relates to an illumination filter system (2) for medical imaging, in particular multispectral fluorescence imaging, as performed e.g. in a microscope (1) or endoscope, such as a surgical microscope, in particular a surgical multispectral fluorescence microscope, comprising a first optical filter (35). The present invention also relates to an observation system (3) for medical imaging, in particular multispectral fluorescence imaging, as performed e.g. in a microscope (1) or endoscope, in particular a multispectral fluorescence microscope, comprising a beam splitter (21) adapted to split a light image (13) into a first light portion (16, 17) along a first light path (18) and a second light portion (20) along a second light path (19).
    Type: Grant
    Filed: February 4, 2017
    Date of Patent: November 3, 2020
    Assignee: Leica Instruments (Singapore) Pte. Ltd.
    Inventors: Manfred Kuster, George Themelis
  • Patent number: 10783697
    Abstract: One aspect of the invention provides a method for drift correction to correct a 3D point collection dataset to compensate for drift over time. The method includes: (a) separating the 3D dataset into n segments, wherein n>1; (b) for each of the n segments, reconstructing a volume image as a 3D histogram in which a count for each voxel in the histogram equals a number of localization estimates falling within the voxel; (c) performing 3D cross-correlation between pairs of the n segments; (d) identifying a correlation peak in a result of the 3D cross-correlation to determine a shift distance between pairs of the n segments; (e) solving an overdetermined system of shift distances to determine independent shifts; and (f) offsetting positions from a plurality of segments in the 3D point collection dataset with the independent shifts calculated in step (e) to correct for drift.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: September 22, 2020
    Assignee: Yale University
    Inventors: Fang Huang, Joerg Bewersdorf
  • Patent number: 10775598
    Abstract: A scanning microscope includes a laser configured to emit laser light, an objective configured to focus the laser light on an object, a scanner configured to scan the object in a direction orthogonal to an optical axis of the objective, a varifocal lens configured to scan the object in an optical-axis direction of the objective by changing a lens shape of the varifocal lens, a first relay lens configured to project the scanner onto the varifocal lens, a second relay lens configured to project a pupil of the objective onto the varifocal lens, a photodetector configured to detect fluorescence generated from the object upon the laser light being focused on the object by the objective, and a dichroic mirror configured to separate the fluorescence and the laser light emitted from the laser from each other. The varifocal lens is located between the objective and the scanner.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: September 15, 2020
    Assignee: OLYMPUS CORPORATION
    Inventor: Shingo Tamano
  • Patent number: 10761311
    Abstract: The present invention relates firstly to a method for acquiring a stack of microscopic images of a specimen. The microscopic images of the stack are acquired from different focus positions. According to the invention, a plurality of the microscopic images of the specimen are respectively acquired from at least some of the focus positions using different settings of an illumination unit for illuminating the specimen. According to the invention, the illumination settings with which the microscopic images of the specimen are acquired is decided upon individually in each case at least for several of the focus positions. The invention further relates to a digital microscope for microimaging a specimen.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: September 1, 2020
    Assignee: CARL ZEISS MICROSCOPY GMBH
    Inventor: Alexander Gaiduk
  • Patent number: 10712553
    Abstract: An arrangement, for light sheet microscopy, including: a sample vessel, for receiving a medium containing a sample, oriented with respect to a plane reference surface; illumination optics with an illumination objective for illuminating the sample with a light sheet; and detection optics with a detection objective. The optical axis of the illumination objective and the light sheet lies in a plane which forms a nonzero illumination angle with the normal of the reference surface. The detection objective has an optical axis that forms a nonzero detection angle with the normal of the reference surface. The arrangement also includes a separating-layer system for separating the sample-containing medium from the illumination and detection objectives. The separating-layer system contacts the medium with an interface parallel to the reference surface. The illumination angle and detection angle are predetermined based on numerical apertures of the detection objective and of the illumination objective, respectively.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 14, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Jörg Siebenmorgen, Thomas Kalkbrenner, Helmut Lippert
  • Patent number: 10712548
    Abstract: Systems and methods for preparing a field image of a portion of a target area or region of interest (ROI) of a microscope slide specimen, and of assembly a plurality of field images into an image of the target area, using a SSM having a movable slide stage, an objective lens, a digital video camera and a digital image sensing element (DIS).
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: July 14, 2020
    Assignee: Microscope International, LLC
    Inventors: Jonathan C. Ward, Richard K. Rainbolt
  • Patent number: 10698149
    Abstract: The invention refers to an apparatus for generating two-dimensional and/or three-dimensional objects. The apparatus comprises at least one spatial light modulator device for modulating incident light and an optical system. The optical system is designed and arranged such that a segmentation of wave fields is provided in a plane, where the plane in which the segmentation of the wave fields is provided differs with a plane that comprises object points. Adjacent segmented wave fields do have a mutual overlap. The apparatus also comprises a scanning device which couples light waves into a beam expanding waveguide with outcoupling gratings.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: June 30, 2020
    Assignee: SERREAL TECHNOLOGIES S.A.
    Inventor: Gerald Futterer
  • Patent number: 10690900
    Abstract: A microscope assembly for use in an automated microscope apparatus has a support frame; a cartridge magazine actuator assembly connected to the support frame; a subframe; a plurality of vibration isolators connecting the support frame to the subframe; an XYZ drive connected to the subframe; and an optical stage connected to the subframe. In some embodiments the assembly further includes a cartridge gripper connected to said XYZ drive. In some embodiments, the cartridge magazine actuator assembly includes an input element, an output element, and a transfer assembly interconnecting the input element and the output element, with the transfer assembly configured to linearly advance the output element upon linear depression of the input element.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: June 23, 2020
    Assignee: ADVANCED ANIMAL DIAGNOSTICS, INC.
    Inventors: Rick Sink, Jasper N. Pollard, Demetris Young, Jorge Carlos Correa, David Newcomb, Stefano Bresolin, Tobias M. Heineck, David A. Calderwood
  • Patent number: 10684207
    Abstract: Systems and methods for classifying blood cells in a blood sample are disclosed. A series of frames of the blood sample as it flows through a field of view of an image capture device are captured and analysed. Advantageously, the disclosed systems and methods combine the availability of morphological cell data with the convenience of a flow-through arrangement. The classification results can be used for estimating cell counts in a blood sample.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 16, 2020
    Assignee: Biosurfit, S.A.
    Inventors: Francisco Correia De Matos Nolasco Lamas, João Manuel De Oliveira Garcia Da Fonseca, André Do Rosário Magalhães, José Pedro Santos Manso Côrte-Real, Ricardo Manuel Marquest Caleiro Cabeca
  • Patent number: 10684206
    Abstract: Systems and methods for classifying blood cells in a blood sample are disclosed. A series of frames of the blood sample as it flows through a field of view of an image capture device are captured and analysed. Advantageously, the disclosed systems and methods combine the availability of morphological cell data with the convenience of a flow-through arrangement. The classification results can be used for estimating cell counts in a blood sample.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 16, 2020
    Assignee: Biosurfit, S.A.
    Inventors: Francisco Correia De Matos Nolasco Lamas, João Manuel De Oliveira Garcia Da Fonseca, André Do Rosário Magalhães, José Pedro Santos Manso Co̊rte-Real, Ricardo Manuel Marques Caleiro Cabeça
  • Patent number: 10663485
    Abstract: A new resonant-cavity-enhanced Atomic Force Microscopy (AFM) active optical probe integrates a semiconductor laser source and an aperture AFM/near-field scanning optical microscopy (NSOM) probe in either external-resonant-cavity or internal-resonant-cavity configuration to enable both conventional AFM measurements and optical imaging and spectroscopy at the nanoscale.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 26, 2020
    Assignee: ACTOPROBE LLC
    Inventors: Alexander A. Ukhanov, Gennady A. Smolyakov
  • Patent number: 10656368
    Abstract: An objective lens is used for DNA sequencing. An example system includes a flow cell, the objective lens, and a camera. Light from the flow cell is imaged by the camera through the objective lens. The objective lens can provide a long working distance; a flat field curvature; a high numerical aperture; and/or a wide field of view.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: May 19, 2020
    Assignee: OMNIOME, INC.
    Inventors: Donald V. Rosenberry, Dale Buermann
  • Patent number: 10649186
    Abstract: The invention relates to a mobile microscopic imaging device comprising a sample stage for holding a sample to be imaged, at least one light source for illumination of the sample, an imaging panel capable of capturing an image of the sample upon transmission illumination of the sample by the light source, and an optical magnification unit between the sample and the imaging panel for guiding light from the illuminated sample to the imaging panel so that a magnified image of at least portion of the sample is formed at the imaging panel. According to the invention, the optical magnification unit comprises a filter integrated polymeric lens assembly in a transmitted light fluorescence configuration which allows for both miniaturization of the device to a truly mobile level and reducing manufacturing costs.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: May 12, 2020
    Assignee: HELSINGIN YLIOPISTO
    Inventors: Johan Lundin, Antti Suutala, Hannu Moilanen
  • Patent number: 10649196
    Abstract: A structured illumination microscope includes: a first illumination optical system configured to irradiate, from a first direction, a sample with activating light for activating a fluorescent substance included in the sample; a second illumination optical system configured to irradiate, from a second direction that is different from the first direction, the sample with interference fringes of exciting light for exciting the fluorescent substance; a control unit configured to control a direction and a phase of the interference fringes; an imaging optical system configured to form an image of the sample irradiated with the interference fringes; an imaging element configured to take the image formed by the imaging optical system to generate a first image; and a demodulation unit configured to generate a second image by using a plurality of the first images generated by the imaging element.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: May 12, 2020
    Assignee: NIKON CORPORATION
    Inventor: Hisao Osawa
  • Patent number: 10642015
    Abstract: A light sheet microscope which includes an illumination apparatus generating coherent illumination light for several illumination wavelengths, a beam-shaping module generating a light sheet from illumination light, an illumination objective illuminating a specimen with the light sheet and a detection objective for imaging light which is emitted by the specimen onto a laminar detector, wherein the optical axes of the detection objective and of the illumination objective are not parallel to each other. In such a light sheet microscope, the beam-shaping module includes a phase-selective element with several selection areas separated from each other spatially, wherein in each case one selection area is assigned to one specific illumination wavelength, and wherein a phase distribution predefined for the respective illumination wavelength is impressed on each selection area.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: May 5, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Helmut Lippert, Tobias Kaufhold, Thomas Kalkbrenner, Joerg Siebenmorgen
  • Patent number: 10634888
    Abstract: The invention relates to a light microscope for examining microscopic objects with high throughput. The microscope comprises a light source for illuminating a measuring zone, a sample vessel, in which the microscopic objects can be successively moved into the measuring zone, and a detection device for measuring detection light, which originates from a microscopic object located in the measuring zone. According to the invention, the microscope is characterized in that the imaging means comprise a detection lens having a stationary front optics and movable focusing optics, wherein the focusing optics is arranged behind the front optics and in front of an intermediate image plane, and can be adjusted for the height adjustment of a detection plane. The invention further relates to a corresponding microscopy method.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: April 28, 2020
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e. V., Carl Zeiss Microscopy GmbH
    Inventors: Helmut Lippert, Jörg Siebenmorgen, Jan Huisken, Florian Fahrbach
  • Patent number: 10634614
    Abstract: Devices and methods are disclosed for the substantially uniform epi-illumination of samples such as western blots using high power lasers. The uniformity of illumination is provided by particular configurations of optical diffusers, spatial or temporal laser modalities, or numbers of lasers. The increased excitation light produced by the high power lasers can enhance fluorescence emission signal strength and reduce required imaging exposure times.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 28, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Evan Thrush, Steven Swihart
  • Patent number: 10634890
    Abstract: A microscope is provided. The microscope includes an illumination source configured to provide illumination beams to image a portion of a biological sample. The microscope also includes an optical unit configured to enable both phase contrast imaging and multicolor fluorescence imaging of the portion of the biological sample utilizing parallel point scanning. The microscope further includes a detector configured to simultaneously acquire multiple point images at different locations of the portion of the biological sample.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: April 28, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ansas Matthias Kasten, William Albert Challener, Jason Harris Karp, Sudeep Mandal
  • Patent number: 10634896
    Abstract: A medical observation apparatus includes a columnar microscope unit configured to image a minute part of an object to be observed with magnification and thereby output an imaging signal. A support unit includes a first joint unit holding the microscope unit in a rotationally movable manner around a first axis parallel to a height direction of the microscope unit, a first arm unit holding the first joint unit and extending in a direction different from the height direction of the microscope unit, a second joint unit holding the first arm unit in a rotationally movable manner around a second axis orthogonal to the first axis, and a second arm unit holding the second joint unit.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 28, 2020
    Assignee: SONY OLYMPUS MEDICAL SOLUTIONS INC.
    Inventors: Yoshiyuki Kamata, Kenji Hirose, Shigeru Tamura
  • Patent number: 10610091
    Abstract: An endoscope light source device is constituted by a first light source unit that emits light in a first wavelength band, a second light source unit that emits light in a second wavelength band, a light path combining means for combining the light paths of the light emitted from the first and second light source units, and a light source control means for controlling light emission of the light source units separately. When the light source units are driven to emit light in a first mode, the respective wavelength bands of light are emitted at a first intensity ratio and combined with each other to obtain normal light, which is supplied to an endoscope.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: April 7, 2020
    Assignee: HOYA CORPORATION
    Inventors: Kunihiko Onobori, Masaaki Fukuda
  • Patent number: 10607389
    Abstract: Microscopic imaging system and method with three-dimensional refractive index tomography are provided. The microscopic imaging system includes: an illumination providing module, configured to provide a beam of parallel lights with a modulated intensity; a microscopic sample, arranged at downstream of the illumination providing module, and configured to modulate a phase of the beam of parallel lights, such that emergent lights passing through the microscopic sample carry information of a three-dimensional refractive index field of the microscopic sample; a microscopic imaging module, arranged at downstream of the microscopic sample, and configured to form an image by using the emergent lights; and a controlling module, configured to process the image to reconstruct three-dimensional refractive index information of the microscopic sample.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: March 31, 2020
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Qionghai Dai, Mingjie Zhang, Jiamin Wu
  • Patent number: 10568499
    Abstract: A medical apparatus is described for providing visualization of a surgical site. The medical apparatus includes an electronic display disposed within a display housing, the electronic display configured to produce a two-dimensional image. The medical apparatus includes a display optical system disposed within the display housing, the display optical system comprising a plurality of lens elements disposed along an optical path. The display optical system is configured to receive the two-dimensional image from the electronic display, produce a beam with a cross-section that remains substantially constant along the optical path, and produce a collimated beam exiting the opening in the display housing. The medical apparatus can also include an auxiliary video camera configured to provide an oblique view of a patient on the electronic display without requiring a surgeon to adjust their viewing angle through oculars viewing the electronic display.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: February 25, 2020
    Assignee: CAMPLEX, INC.
    Inventor: John Tesar
  • Patent number: 10527493
    Abstract: A spectrophotometric device is disclosed having a plurality of spectral measurement bands including a single telescope and a single spectrophotometer. The plurality of spectral bands is obtained by placing pupillary separating prisms at an entrance pupil of the telescope, and by using spectral band selection filters. Such a device has a lower weight, smaller dimensions, and a lower price. In particular, it may be integrated into a satellite, in particular for a mission to characterize flows of carbon compounds that are produced on the Earth's surface.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 7, 2020
    Assignee: AIRBUS DEFENCE AND SPACE SAS
    Inventor: Frédéric Pasternak
  • Patent number: 10520715
    Abstract: The information budget of a light field microscope is increased by increasing the field of view and image circle diameter of the microscope, while keeping the ratio of overall magnification of the microscope to the numerical aperture of the microscope unchanged. Alternatively, the information budget is increased by increasing the field of view and image circle diameter of the microscope by a first factor, while increasing the ratio of overall magnification of the microscope to the numerical aperture of the microscope by a smaller, second factor. In some cases, an infinity-corrected light field microscope has an overall magnification that is greater than the nominal magnification of the objective lens.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: December 31, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Moshe Ben Ezra, Edward Boyden, Christopher Rowlands, Young Gyu Yoon
  • Patent number: 10514534
    Abstract: The information budget of a light field microscope is increased by increasing the field of view and image circle diameter of the microscope, while keeping the ratio of overall magnification of the microscope to the numerical aperture of the microscope unchanged. Alternatively, the information budget is increased by increasing the field of view and image circle diameter of the microscope by a first factor, while increasing the ratio of overall magnification of the microscope to the numerical aperture of the microscope by a smaller, second factor. In some cases, an infinity-corrected light field microscope has an overall magnification that is greater than the nominal magnification of the objective lens.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: December 24, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Moshe Ben Ezra, Edward Boyden, Christopher Rowlands, Young Gyu Yoon
  • Patent number: 10473908
    Abstract: An optical observation device having an imaging optical system for forming an image of light from an object on a sample stage, a movement information retaining unit for retaining the movement information on the sequence of the movement to each relative position and a plurality of relative positions of the sample stage to the imaging optical system, a moving unit for moving the sample stage and allowing the stage to rest at each relative position, an imaging data acquisition unit for continuously acquiring the imaging data of observation images obtained by the imaging optical system at a time interval shorter than the time to move the stage to each relative position and the time of rest at each resting position, and a discrimination information providing unit for providing to the imaging data discrimination information for distinguishing whether the imaging data is imaged at a timing when the stage is moving.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: November 12, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Kazumi Yokota
  • Patent number: 10477097
    Abstract: Instruments, assemblies and methods are provided for undertaking imaging techniques (e.g., microscopic imaging techniques). The present disclosure provides improved imaging techniques, equipment and systems. More particularly, the present disclosure provides advantageous microscopy/imaging assemblies with single-frame sample autofocusing using multi-LED illumination. The present disclosure provides for assemblies and methods for single-frame rapid sample autofocusing without a z-scan. Potential applications for the disclosed assemblies/methods include, without limitation, whole slide imaging, optical metrology, wafer inspection, DNA sequencing and other high-throughput imaging applications where the sample may need to be scanned over a large field of view. The assemblies/methods advantageously utilize multiple LEDs for sample illumination. A captured image includes multiple copies of the sample, and one can recover the distance between these copies. The distance is directly related to the defocus distance.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: November 12, 2019
    Assignee: University of Connecticut
    Inventor: Guoan Zheng
  • Patent number: 10466458
    Abstract: An image acquisition device includes a light source, a spatial light modulator having a plurality of pixels two-dimensionally arranged and fro modulating a phase of excitation light output from the light source for each of the plurality of pixels, a first objective lens, a second objective lens, a photodetector, and a control unit for controlling an amount of phase modulation for each of the plurality of pixels in accordance with a two-dimensional phase pattern corresponding to the plurality of pixels. The phase pattern is generated based on a predetermined basic phase pattern. The basic phase pattern includes a first region in which the phase value continuously increases in a predetermined direction and a second region in which the phase value continuously decreases in the direction and facing the first region in the direction.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: November 5, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Yuu Takiguchi
  • Patent number: 10451860
    Abstract: A microscope system as an optical microscope system for observing a specimen includes: an imaging optical system that forms an image of transmitted light or reflected light from the specimen; an illumination light source that illuminates illumination light on the specimen; an illumination optical system that has a first spatial light modulation element, which changes intensity distribution of the illumination light at a conjugate position of a pupil of the imaging optical system, and illuminates light, which is originated from the illumination light source, on the specimen; an image sensor that detects light through the imaging optical system; and a calculation section that calculates the intensity distribution of the illumination light appropriate for observation of the specimen on the basis of the intensity distribution of the illumination light formed by the first spatial light modulation element and output data detected by the image sensor.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: October 22, 2019
    Assignee: Nikon Corporation
    Inventor: Hiroshi Ohki
  • Patent number: 10444486
    Abstract: Systems and methods for rapidly identifying blank fields while capturing a plurality of color field images using a slide scanning microscope having a movable slide stage, a movable objective lens, and a digital video camera having a color digital image sensor that encodes RGB color data for each pixel in a field image.
    Type: Grant
    Filed: September 4, 2017
    Date of Patent: October 15, 2019
    Assignee: Microscopes International, LLC
    Inventors: Richard K. Rainbolt, Jonathan C. Ward
  • Patent number: 10438825
    Abstract: Methods and systems for performing in-situ, selective spectral reflectometry (SSR) measurements of semiconductor structures disposed on a wafer are presented herein. Illumination light reflected from a wafer surface is spatially imaged. Signals from selected regions of the image are collected and spectrally analyzed, while other portions of the image are discarded. In some embodiments, a SSR includes a dynamic mirror array (DMA) disposed in the optical path at or near a field plane conjugate to the surface of the semiconductor wafer under measurement. The DMA selectively blocks the undesired portion of wafer image. In other embodiments, a SSR includes a hyperspectral imaging system including a plurality of spectrometers each configured to collect light from a spatially distinct area of a field image conjugate to the wafer surface. Selected spectral signals associated with desired regions of the wafer image are selected for analysis.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: October 8, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Prateek Jain, Daniel Wack, Kevin A. Peterlinz, Andrei V. Shchegrov, Shankar Krishnan
  • Patent number: 10436409
    Abstract: In described examples of a headlamp to project a beam of light from a lens, the headlamp includes: an illumination module to output a light beam to an illumination path; and illumination optics to receive the light beam and to provide illumination to a programmable spatial light modulator. The programmable spatial light modulator is arranged to receive the illumination and to output non-uniform illumination as patterned light to projection optics. The projection optics are arranged to receive the patterned light and to output the patterned light through the lens. At least one of the illumination optics and the projection optics includes an anamorphic lens to shape the light beam.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: October 8, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vikrant R. Bhakta, Alexander Lyubarsky
  • Patent number: 10429276
    Abstract: A sampling apparatus (100) employs a cell-positioning system to move a sample capture cell (138) relative to a specimen positioning system (124). The cell-positioning system may be controlled to move sample capture cell (138) opposite to movement of the specimen positioning system (124) to maintain alignment of the sample capture cell (138) with an optical path of a laser beam of a sample generator (108). Alternatively or additionally, the cell-positioning system may be controlled to move sample capture cell (138) in response to alignment deviation of a reference beam on a quadrant detector (404).
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: October 1, 2019
    Assignee: Elemental Scientific Lasers, LLC
    Inventors: Shane Robert Hilliard, Leif Christian Summerfield, Erik Barnholt Larsen
  • Patent number: 10422983
    Abstract: The invention relates to a light microscope for examining microscopic objects with high throughput. The microscope comprises a light source for illuminating a measuring zone, a sample vessel, in which the microscopic objects can be successively moved into the measuring zone, and a detection device for measuring detection light, which originates from a microscopic object located in the measuring zone. According to the invention, the microscope is characterized in that the imaging means comprise a detection lens having a stationary front optics and movable focusing optics, wherein the focusing optics is arranged behind the front optics and in front of an intermediate image plane, and can be adjusted for the height adjustment of a detection plane. The invention further relates to a corresponding microscopy method.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: September 24, 2019
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e. V., Carl Zeiss Microscopy GmbH
    Inventors: Helmut Lippert, Jörg Siebenmorgen, Jan Huisken, Florian Fahrbach
  • Patent number: 10401258
    Abstract: A device for connecting to an optical cable having a set of optical fibers may include a microscope, an assembly to move the microscope in a continuous manner about an axis substantially parallel to a mating surface of the optical cable, and without moving the device, to bring one or more optical fibers, of the set of optical fibers, within a field of view of the microscope without moving the optical cable, and one or more processors. The device may receive an indication to perform a set of analyzes of the set of optical fibers of the optical cable. The device may perform the set of analyzes of the set of optical fibers by modifying a position of the microscope of the assembly of the device in a set of directions. The device may output a result of the set of analyzes for display.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: September 3, 2019
    Assignee: VIAVI Solutions Inc.
    Inventors: Jay Brace, Kevin Cassady
  • Patent number: 10379334
    Abstract: A light measurement device is a light measurement device for measuring light coming from a sample, and is provided with a moving-image acquisition part for acquiring moving image data, and an analysis processing part for performing analysis processing on moving image data. The analysis processing part includes: a luminance-value-data acquisition part for acquiring luminance value data indicating a chronological change in a luminance value; a luminance-value extraction part for extracting a peak value and a bottom value of the luminance value, from the luminance value data; and a pixel specifying part for calculating an evaluation value evaluating a state of a change in a luminance value on the basis of the peak value and the bottom value and specifying a target pixel that is to be analyzed from a plurality of pixels on the basis of a repeat state of the evaluation value.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: August 13, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takuji Kataoka, Masanori Matsubara
  • Patent number: 10379493
    Abstract: An apparatus and method to produce a hologram of an object includes an electromagnetic radiation assembly configured to receive a received electromagnetic radiation, such as light, from the object. The electromagnetic radiation assembly is further configured to diffract the received electromagnetic radiation and transmit a diffracted electromagnetic radiation. An image capture assembly is configured to capture an image of the diffracted electromagnetic radiation and produce the hologram of the object from the captured image.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: August 13, 2019
    Assignee: CELLOPTIC, INC.
    Inventors: Joseph Rosen, Gary Brooker
  • Patent number: 10365466
    Abstract: A method for microscopically imaging a volume sample includes focusing a microscope objective having a correcting element successively in at least two reference planes which are located within the volume sample at different volume sample depths along the optical axis of the microscope objective; determining, for each reference plane, a reference setting of the correcting element in which an imaging error which is dependent upon the volume sample depth is corrected by the correcting element; determining, on the basis of the reference settings determined for at least one target plane in the volume sample, a target setting for the correcting element in which the imaging error occurring at the volume sample depth of the target plane is corrected by the correcting element; and focusing the microscope objective on the target plane and bringing the correcting element into the target setting in order to image the volume sample.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: July 30, 2019
    Assignee: LEICA MICROSYSTEMS CMS GMBH
    Inventors: Christian Schumann, Andrea Muelter
  • Patent number: 10346973
    Abstract: A method of providing a prognosis in a cancer patient comprising analyzing a tumor image to calculate a metric of immune infiltration for the tumor, and a method of analyzing a tumor image.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 9, 2019
    Assignee: THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOS
    Inventor: Yinyin Yuan
  • Patent number: 10340053
    Abstract: The radiation-irradiation device includes: a radiation generating unit that generates radiation; a collimator unit that controls an irradiation range to be irradiated with the radiation generated by the radiation generating unit; and an interval ensuring unit that includes a contact member being in contact with a subject to be irradiated with the radiation in a case in which a distance between the radiation generating unit and the subject is shorter than a preset distance, and ensures an interval between the radiation generating unit and the subject. The interval ensuring unit is detachably mounted on the collimator unit and is capable of being mounted at different rotational positions about an axis, which passes through a center of a diaphragm of the collimator unit and extends in the direction of an optical axis of the radiation, as a central axis.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: July 2, 2019
    Assignee: FUJIFILM CORPORATION
    Inventors: Misaki Kawahara, Koichi Kitano, Kenji Nakamura, Masaru Sato, Masayuki Iwasaka, Takeyasu Kobayashi
  • Patent number: 10310212
    Abstract: The invention relates to a surgical microscope stand (100) encompassing: a first carriage (16) that is arranged on a first carrier arm (14) and is drivable by a first drive unit; and a second carriage (18) that is arranged on a second carrier arm (22) and is drivable by a second drive unit. The surgical microscope stand (100) further encompasses an operating region (34) within which at least one operating unit for manual application of control to the first and second drive units is provided.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: June 4, 2019
    Assignee: Leica Microsystems (Schweiz) AG
    Inventor: Marco Schutz
  • Patent number: 10302925
    Abstract: To provide a microscope including: an objective optical system that condenses light from a sample; a relay optical system that relays the light condensed by the objective optical system; a photodetector detects the light coming from the objective optical system and relayed by the relay optical system; and a variable-focus optical system disposed at a position between the photodetector and the objective optical system, the position being optically conjugate to a pupil of the objective optical system, the variable-focus optical system being capable of changing a focal position of the objective optical system in a direction along an objective optical axis.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: May 28, 2019
    Assignee: OLYMPUS CORPORATION
    Inventors: Tatsuo Nakata, Kenichi Kusaka
  • Patent number: 10264953
    Abstract: An exemplary optical device for stereoscopic imaging that includes an aperture unit. The aperture unite may be configured to adjust an aperture value of first and second aperture portions while maintaining a binocular disparity between a first alignment location of the first aperture portion and a second alignment location of the second aperture portion.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: April 23, 2019
    Assignee: Sony Corporation
    Inventors: Hiroshi Kosugi, Masahito Kikuchi
  • Patent number: 10269097
    Abstract: A microscope (10) for generating a combined image (34; 54; 64) from multiple individual images (28a to 28d; 52a to 52d; 62a to 62d) of an object (30; 50; 60) encompasses at least one illumination device (22) for illuminating the object (30; 50; 60) from at least two different illumination directions (24a, 24b); an image acquisition unit (26) for acquiring multiple individual images (28a to 28d; 52a to 52d; 62a to 62d) of the object (30; 50; 60) illuminated from the at least two different illumination directions (24a, 24b); and an image combination unit (32) for combining the individual images (28a to 28d; 52a to 52d; 62a to 62d) in order to obtain the combined image (34; 54; 64).
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: April 23, 2019
    Assignee: Leica Instruments (Singapore) Pte. Ltd.
    Inventors: Harald Schnitzler, Robert Paulus, Guenter Grabher
  • Patent number: 10254105
    Abstract: An interferometric measuring machine includes an exchangeable lens module system for an optical probe. The probe includes a lens body containing the optical apparatus of an interferometer and a lens module containing an objective lens along an object arm of the interferometer that can be exchanged with other lens modules for varying the measuring characteristics of the probe. The lens modules are adapted to accommodate objective lenses having different focal lengths while maintaining a desired optical path length of the object arm of the interferometer.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: April 9, 2019
    Assignee: Quality Vision International, Inc.
    Inventor: David B. Kay
  • Patent number: 10241314
    Abstract: A microscope apparatus includes a monitoring optical system, an imaging unit capturing an image of an observation target through the monitoring optical system to generate a plurality of images, a correction unit disposed in the optical monitoring system and correcting various aberrations which occur due to an observation condition, and a decision unit deciding a correction amount of the correction unit based on the plurality of images generated by the imaging unit, whereby an image deterioration ascribable to the aberration occurring due to the observation condition in the microscope apparatus is appropriately and easily corrected according to a use condition of the microscope apparatus.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: March 26, 2019
    Assignee: NIKON CORPORATION
    Inventors: Yumiko Ouchi, Takashi Kawahito
  • Patent number: 10234664
    Abstract: An image quality is improved although a medical stereomicroscope optical system and a medical observation apparatus are small and light. An objective optical system and a plurality of imaging optical systems are arranged in an order from an object side to an image side, and the imaging optical system has at least a single aspheric surface. Accordingly, a spherical aberration and a field curvature are improved, and the image quality is improved although the medical stereomicroscope optical system and a medical observation apparatus are small and light.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: March 19, 2019
    Assignee: Sony Corporation
    Inventors: Takeshi Hatakeyama, Sota Miyatani, Masaki Tamura, Atsushi Oohata, Miki Sato