Tunnel Programming Patents (Class 365/185.28)
  • Patent number: 7936004
    Abstract: A nonvolatile semiconductor memory device includes a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; a second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory string and the first to nth electrodes of at least two other memory strings which are adjacent to the memory string in two directions are shared as first to nth conductor layers spread in two dimensions.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: May 3, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Akihiro Nitayama, Masaru Kidoh, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Yasuyuki Matsuoka, Mitsuru Sato
  • Publication number: 20110096609
    Abstract: A nonvolatile memory array has nonvolatile memory cells arranged in rows and columns where each column has a bit line and source line associated with and in parallel with the nonvolatile memory cells. In programming the nonvolatile memory cell, approximately equal program voltage levels are applied to a drain and a source of a selected charge retaining transistor such that the difference in the voltage between the drain and the source of the selected charge retaining transistor is less than a drain to source breakdown voltage of the selected charge retaining transistor to prevent drain-to-source punch through. In programming or erasing the nonvolatile memory cell a control gate and a bulk program voltage level is applied to a control gate and bulk such that the magnitude of the control gate and bulk program voltage levels is less than a breakdown voltage level of peripheral circuitry.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Inventors: Peter Wung Lee, Fu-Chang Hsu
  • Patent number: 7933153
    Abstract: The invention relates to a method for determining a set of programming conditions for a given type of charge-trapping non-volatile memory device, comprising the steps of: (a) selecting different sets of programming parameters to be applied to the corresponding number of non-volatile memory devices of said type, (b) programming said number of non-volatile memory devices by means of the sets of programming parameters, (c) determining an actual spatial charge distribution of the charge trapping layer of each of the programmed devices, (d) determining the influence of at least one of the programming parameters on the spatial charge distribution, (e) determining an optimised value for at least one of the programming parameters, (f) entering each optimized value in said sets of programming parameters and repeating steps b) to e) at least once.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: April 26, 2011
    Assignee: IMEC
    Inventor: Arnaud Furnémont
  • Patent number: 7929354
    Abstract: A flash storage device includes flash storage units that are purged in response to a condition or command wherein, during or subsequent to the purge, the purge is verified. A flash controller interface receives a command for purging the flash storage device and provides a purge command to flash controllers in the flash storage device. Alternatively, the flash storage device detects a condition in response to which the flash controller interface provides a purge command to the flash controllers. Each flash controller independently erases a flash storage unit in response to receiving the purge command such that the flash storage units are erased substantially in parallel with each other. The purge of the flash storage device is subsequently verified.
    Type: Grant
    Filed: April 11, 2009
    Date of Patent: April 19, 2011
    Assignee: STEC, Inc.
    Inventors: Nader Salessi, Hooshmand Torabi, Chak-Fai Cheng, Hosein Gazeri, Richard Mataya
  • Patent number: 7924626
    Abstract: A method for operating a dielectric charge trapping memory cell as described herein includes applying an initial voltage from the gate to the substrate of the memory cell for a predetermined period of time to reduce the threshold voltage of the memory cell. The method includes applying a sequence of voltages from the gate to the substrate of the memory cell to further reduce the threshold voltage of the memory cell, wherein a subsequent voltage in the sequence of voltages has a lower magnitude from the gate to the substrate than that of a preceding voltage in the sequence of voltages.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 12, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Hang-Ting Lue
  • Patent number: 7923327
    Abstract: Provided are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device comprises: a control gate region formed by doping a semiconductor substrate with second impurities; an electron injection region formed by doping the semiconductor substrate with first impurities, where a top surface of the electron injection region includes a tip portion at an edge; a floating gate electrode covering at least a portion of the control gate region and the tip portion of the electron injection region; a first tunnel oxide layer interposed between the floating gate electrode and the control gate region; a second tunnel oxide layer interposed between the floating gate electrode and the electron injection region; a trench surrounding the electron injection region in the semiconductor substrate; and a device isolation layer pattern filled in the trench.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung Kun Park
  • Patent number: 7924628
    Abstract: A cache programming operation which requires 2 SRAMs (one for the user and one for the array) may be combined with a multi-level cell (MLC) programming operation which also requires 2 SRAMs (one for caching the data and one for verifying the data), using only a total of two SRAMs (or buffers). One of the buffers (User SRAM) receives and stores user data. The other of the two buffers (Cache SRAM) may perform a caching function as well as a verify function. In this manner, if a program operation fails, the user can have its original data back so that he can try to reprogram it to a different place (address).
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: April 12, 2011
    Assignee: Spansion Israel Ltd
    Inventors: Kobi Danon, Shai Eisen, Marcelo Krygier
  • Patent number: 7924629
    Abstract: A programming method and a three-dimensional memory device are disclosed. The three-dimensional memory device includes a stacked plurality of layers, each layer having a memory array, and each memory array having a string of memory cells. The programming method includes, for each unselected string associated with an unselected layer in the plurality of layers, charging the channel of memory cells associated with unselected string with a shut-off voltage, and thereafter programming a selected string associated with a selected layer in the plurality of layers.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Tae Park, Yeong-Taek Lee
  • Patent number: 7924620
    Abstract: A nonvolatile semiconductor memory includes a transistor, a first MOS, a second MOS, a first voltage circuit, and a second voltage circuit. The transistor includes a accumulation layer, a control gate, and a first impurity diffused layer. The first MOS includes a first electrode and a second layer. The second MOS includes a second electrode and a third layer, after the channels being formed, the first MOS and the second MOS being cut off. The first voltage circuit applies a first voltage to an active region to generate a forward bias. The second voltage circuit applies a second voltage, and a third voltage to the control gate of the transistor, after the first voltage circuit charges the first to third impurity diffused layer to the first voltage, the second voltage circuit applying the second voltage and the third voltage to the control gate of the transistor.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuhiko Honda
  • Patent number: 7920420
    Abstract: A method of programming a flash memory device may include dividing a plurality of memory cells into a plurality of groups according to a threshold voltage state, the memory cells configured to store multi bit data. The plurality of memory cells may be programmed with a program data. The memory cells of the divided groups may be respectively selected and programmed by divided group during the programming of the plurality of memory cells.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: April 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seung-Jae Lee
  • Patent number: 7920401
    Abstract: Disclosed are apparatus, system and methods of programming and readout of a one-time programmable memory device having an array of memory cells, where the cells include an anti-fuse element and an in-cell amplifier transistor. Circuitry configured for programming and correlated double sampling readout of the cells is also disclosed.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 5, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Chen Xu, Thomas W. Voshell, Karl Holtzclaw
  • Patent number: 7920424
    Abstract: A non-volatile memory (NVM) system includes a plurality of NVM cells fabricated in a dual-well structure. Each NVM cell includes an access transistor and an NVM transistor, wherein the access transistor has a drain region that is continuous with a source region of the NVM transistor. The drain regions of each NVM transistor in a column of the array are commonly connected to a corresponding bit line. The control gates of each NVM transistor in a row of the array are commonly connected to a corresponding word line. The source regions of each of the access transistors in the array are commonly coupled. The NVM cells are programmed and erased without having to apply the high programming voltage VPP across the gate dielectric layers of the access transistors. As a result, the NVM cells can be scaled down to sub-0.35 micron geometries.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: April 5, 2011
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Sorin S. Georgescu, A. Peter Cosmin
  • Patent number: 7916532
    Abstract: A memory array and method for performing a write operation in a memory array that eliminates parasitic coupling between selected and unselected bitlines and protects memory cells on unselected bitlines. A memory array (100); has a plurality of memory cells (148, 150,152, 154), each of which is coupled to a unique array bitline (104, 106, 108,110). A unique recovery transistor (138; 140, 142, 144) coupled to each array bitline (104, 106, 108, 110). The recovery transistors (140, 144) on odd bitlines (140, 144) are coupled to a first and second voltage (128, 144), while the recovery transistors on even bitlines are coupled, to a first and third voltage (128, 126). During a write operation, each recovery transistor coupled to an unselected bitline is active during a write operation and a recovery operation, while each recovery transistor coupled; to selected bitline is active during a recovery operation.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: March 29, 2011
    Assignee: Atmel Corporation
    Inventors: Emil Lambrache, Duncan Curry, Richard F. Pang
  • Patent number: 7916546
    Abstract: Methods for programming a memory array and memory devices are disclosed. In one such method, inhibited bit lines are charged to an inhibit voltage that is less than a supply voltage. The word lines of memory cells to be programmed are biased at a programming preparation voltage that is less than a nominal programming preparation voltage as used in the conventional art. Programming pulses can be applied to selected word lines of the memory cells to be programmed when the uninhibited bit lines are at 0V.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Shigekazu Yamada
  • Patent number: 7916551
    Abstract: A method of programming a first cell in a memory, wherein the first cell has a first S/D region and shares a second S/D region with a second cell that has a third S/D region opposite to the second S/D region. The channels of the first and the second cells are turned on, a first voltage is applied to the first S/D region, a second voltage is applied to the second S/D region and a third voltage is applied to the third S/D region. The second voltage is between the first voltage and the third voltage, and the first to third voltages make carriers flow from the third S/D region to the first S/D region and cause hot carriers in the channel of the first cell to be injected into the charge storage layer of the first cell.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: March 29, 2011
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Wen-Jer Tsai, Ta-Hui Wang, Chih-Wei Lee
  • Patent number: 7916552
    Abstract: Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Additionally, some memory systems that use multi-state memory cells will apply rotation data schemes to minimize wear. The rotation scheme can be encoded in the tracking cells based on the states of multiple tracking cells, which is decoded upon reading.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 29, 2011
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Stephen J. Gross, Shazad Khalid, Geoffrey S. Gongwer
  • Publication number: 20110069559
    Abstract: Methods of forming and operating a back-side trap non-volatile memory cell. Method of forming a back-side trap non-volatile memory cell include forming a trapping material, forming two or more sub-layers of dielectric material on the trapping material, wherein a conduction band offset of each sub-layer of dielectric material is less than the conduction band offset of the material upon which it is formed, and forming a channel region on the two or more sub-layers of dielectric material. Methods of operating a back-side trap non-volatile memory cell include programming the memory cell via direct tunneling of carriers through an asymmetric band-gap tunnel insulator layer having two or more sub-layers formed beneath a channel region and having layers of material of increasing conduction band offset, and trapping the carriers in a trapping layer formed under the tunnel insulator layer.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Inventor: Arup Bhattacharyya
  • Patent number: 7911837
    Abstract: A multi-state NAND memory cell is comprised of two drain/source areas in a substrate. An oxide-nitride-oxide structure is formed above the substrate between the drain/source areas. The nitride layer acting as an asymmetric charge trapping layer. A control gate is located above the oxide-nitride-oxide structure. An asymmetrical bias on the drain/source areas causes the drain/source area with the higher voltage to inject an asymmetric distribution hole by gate induced drain leakage injection into the trapping layer substantially adjacent that drain/source area.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: March 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Kirk Prall
  • Patent number: 7911843
    Abstract: A method of programming a non-volatile memory device employing program loops. Each program loop comprises a programming operation and a subsequent plurality of verifying operations. The method includes preventing the next program loop based on the results of performing the plurality of verifying operations of a current program loop each verifying operation verifying whether the selected memory cell transistors are program-passed. The decision to re-program may be based on a program pass number of the memory cell transistors obtained as a result of the plurality of verifying operations of the current program loop.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Young Chun, Jae-Yong Jeon
  • Patent number: 7911842
    Abstract: Provided are a memory cell programming method and a semiconductor device which may be capable of simultaneously writing a bit of data and then another bit of the data to a plurality of memory blocks. The memory programming method, in which M bits of data are written to a plurality of memory blocks, may include a data division operation and a data writing operation where M may be a natural number. In the data division operation, the plurality of memory blocks may be divided into a plurality of memory block groups. In the data writing operation, an ith bit of the data may be simultaneously written to two or more memory block groups from among the plurality memory block groups, and then an i+1th bit of the data may be simultaneously written to the two or more memory block groups from among the plurality memory block groups, where i is a natural number less than M.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-hee Park, Jae-woong Hyun, Yoon-dong Park, Kyoung-lae Cho, Sung-jae Byun, Seung-hwan Song, Jun-jin Kong, Sung-chung Park
  • Publication number: 20110063923
    Abstract: Memory cells utilizing dielectric charge carrier trapping sites formed in trenches provide for non-volatile storage of data. The memory cells of the various embodiments have two control gates. One control gate is formed adjacent the trench containing the charge carrier trap. The other control gate has a portion formed over the trench, and, for certain embodiments, this control gate may extend into the trench. The charge carrier trapping sites may be discrete formations on a sidewall of a trench, a continuous layer extending from one sidewall to the other, or plugs extending between sidewalls.
    Type: Application
    Filed: November 22, 2010
    Publication date: March 17, 2011
    Inventor: Ramin Ghodsi
  • Patent number: 7907444
    Abstract: Memory devices and methods are disclosed, such as those facilitating an assignment scheme of reference cells throughout an array of memory cells. For example, one such assignment scheme assigns reference cells in a staggered pattern by row wherein each column contains a single reference cell. Additional schemes of multiple reference cells assigned in a repeating or a pseudo-random pattern are also disclosed.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: March 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sarin, Frankie F. Roohparvar
  • Patent number: 7907450
    Abstract: A NAND memory device is constructed using Silicon On Insulator (SOI) techniques. In particular, Thin Film Transistor (TFT) techniques can be used to fabricate the NAND Flash memory device. In both SOI and TFT structures, the body, or well, is isolated. This can be used to enable a bit-by-bit programming and erasing of individual cells and allows tight control of the threshold voltage, which can enable MLC operation.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: March 15, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Hang-Ting Lue, Erh Kun Lai
  • Patent number: 7903474
    Abstract: A flash storage device includes flash storage units that are purged in response to a condition or command. A flash controller interface receives a command for purging the flash storage device and provides a purge command to flash controllers in the flash storage device. Alternatively, the flash storage device detects a condition in response to which the flash controller interface provides a purge command to the flash controllers. Each flash controller independently erases a flash storage unit in response to receiving the purge command, by writing a pattern of data to the flash storage unit, such that the flash storage units are purged substantially in parallel with each other.
    Type: Grant
    Filed: April 11, 2009
    Date of Patent: March 8, 2011
    Assignee: STEC, Inc.
    Inventors: Nader Salessi, Hooshmand Torabi, Chak-Fai Cheng, Hosein Gazeri, Richard Mataya
  • Patent number: 7903464
    Abstract: An embodiment of a method includes applying a first voltage to a selected word line commonly coupled to portions of a row of memory cells respectively formed on first well regions of a plurality of first well regions of a first conductivity type formed in a second well region of a second conductivity type, at least one target memory cell coupled to the selected word line and formed on one of the first well regions, the first well regions electrically isolated from each other; applying a second voltage to unselected word lines, each unselected word line commonly coupled to portions of a row of memory cells not targeted for programming and respectively formed on the first well regions; and applying a third voltage to those first well regions that do not include the at least one target memory cell.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Micron Technologies, Inc.
    Inventor: Aaron Yip
  • Patent number: 7903471
    Abstract: A method for programming and erasing a PHINES memory device is comprising providing one or more additional pulses that are associated with a program or erase pulse, wherein the additional pulses are of similar polarity, but of lesser magnitude than the program or erase pulses. For an erase pulse on a PHINES memory device, two additional pulses can be utilized. For a program pulse on the source-side of a PHINES memory device, one additional pulse can be utilized that comprises a negative bias measured from a gate of the memory device to a source of the memory device. For a program pulse on the drain-side of a PHINES memory device, one additional pulse can be utilized that comprises a negative bias measured from a gate of the memory device to a drain of the memory device.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Macronix International Co. Ltd.
    Inventor: Chao-I Wu
  • Patent number: 7903472
    Abstract: An operating method of a non-volatile memory adapted for a non-volatile memory disposed on an SOI substrate including a first conductive type silicon body layer is provided. The non-volatile memory includes a gate, a charge storage structure, a second conductive type drain region, and a second conductive type source region. In operating such a non-volatile memory, voltages are applied to the gate, the second conductive type drain region, the second conductive type source region and the first conductive type silicon body layer beneath the gate, to inject electrons or holes in to the charge storage structure or evacuate the electrons from the charge storage structure by a method selected from a group consisting of channel hot carrier injection, source side injection, band-to-band tunnelling hot carrier injection and Fowler-Nordheim (F-N) tunnelling.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 8, 2011
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Hai-Ming Lee, Shih-Jye Shen, Ching-Hsiang Hsu
  • Publication number: 20110051526
    Abstract: A memory structure includes a first memory cell and a second memory cell located at an identical bit line and adjacent to the first memory cell. Each memory cell includes a substrate, a source, a drain, a charge storage device, and a gate. A method for programming the memory structure includes respectively providing a first gate biasing voltage and a second gate biasing voltage to the gates of the first memory cell and the second memory cell, boosting an absolute value of a channel voltage of the first memory cell to generate electron and hole pairs at the drain of the second memory cell through gate-induced drain leakage or band-to-band tunneling, and injecting the hole of the generated electron and hole pairs into the charge storage device of the first memory cell to program the first memory cell.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 3, 2011
    Inventors: Riichiro Shirota, Ching-Hsiang Hsu, Cheng-Jye Liu
  • Patent number: 7898850
    Abstract: Some embodiments include memory cells having vertically-stacked charge-trapping zones spaced from one another by dielectric material. The dielectric material may comprise high-k material. One or more of the charge-trapping zones may comprise metallic material. Such metallic material may be present as a plurality of discrete isolated islands, such as nanodots. Some embodiments include methods of forming memory cells in which two charge-trapping zones are formed over tunnel dielectric, with the zones being vertically displaced relative to one another, and with the zone closest to the tunnel dielectric having deeper traps than the other zone. Some embodiments include electronic systems comprising memory cells. Some embodiments include methods of programming memory cells having vertically-stacked charge-trapping zones.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: March 1, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kyu S. Min, Rhett T. Brewer, Tejas Krishnamohan, Thomas M. Graettinger, D. V. Nirmal Ramaswamy, Ronald A. Weimer, Arup Bhattacharyya
  • Patent number: 7894257
    Abstract: Methods, circuits, processes, devices, and/or arrangements for providing a non-volatile memory (NVM) cell are disclosed. In one embodiment, an NVM cell can include: (i) a floating gate in a gate layer, where the floating gate is over an insulating layer, and the insulating layer is over a first channel between first and second diffusion regions; and (ii) a control gate in the gate layer, where the control gate is configured to control the floating gate using direct sidewall capacitive coupling, and where a first coupling ratio from the direct sidewall capacitive coupling is greater than a second coupling ratio from the second diffusion region.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: February 22, 2011
    Inventor: Venkatraman Prabhakar
  • Patent number: 7894273
    Abstract: A group of non-volatile memory cells are programmed in a programming pass by a series of incremental programming pulses where each pulse is followed by a program-verify and possibly program-inhibition step. Performance is improved during the programming pass by delayed starting and prematurely terminating the various verify levels that demarcate the multiple memory states. This amounts to skipping the verifying and inhibiting steps of the fastest and slowest programming (fringe) cells of the group. A reference pulse is established when the fastest cells have all been program-verified relative to a first verify level. The starting of what verify level at what pulse will then be delayed relative to the reference pulse. Verifying stops for a given verify level when only a predetermined number of cells remain unverified relative to that given level. Any errors arising from over- or under-programming of the fringe cells are corrected by an error correction code.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: February 22, 2011
    Assignee: Sandisk Corporation
    Inventors: Yan Li, Yupin Kawing Fong, Siu Lung Chan
  • Patent number: 7889549
    Abstract: A nonvolatile semiconductor memory comprises: a semiconductor substrate; a first gate electrode formed on a surface of the semiconductor substrate through a first gate insulating film; a second gate electrode formed on the surface of the semiconductor substrate through a second gate insulating film and being adjacent to the first gate electrode through an insulating film; a charge trapping film formed at least in a trap region surrounded by the semiconductor substrate, the first gate electrode and the second gate electrode; and a tunnel insulating film formed between the charge trapping film and the second gate electrode. In one of programming and erasing, electrons are injected into the charge trapping film from the second gate electrode through the tunnel insulating film by Fowler-Nordheim tunneling.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 15, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Tomoya Saitou
  • Patent number: 7888209
    Abstract: A semiconductor memory device with the thickness of both a tunnel film and a top film provided thereon configured to be in the FN tunneling region (4 nm or more). Data retention characteristics can be improved by configuring both a tunnel film and a top film to have a thickness in the FN tunneling region. Secondly, a high-concentration impurity region of a conductivity type the same as that of the substrate is provided in a substrate region arranged between assist gates provided adjacently to each other. The aforementioned high-concentration impurity region makes a depletion layer extremely thin when bias is applied to the assist gates. Hot holes generated between bands in the depletion region are injected into a charge storage region and the holes and electrons make pairs and disappear, enabling easy data erasing.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: February 15, 2011
    Assignee: Spansion LLC
    Inventor: Hiroyuki Nansei
  • Patent number: 7889558
    Abstract: A nonvolatile semiconductor memory device having a plurality of word lines and a plurality of bit lines and a plurality of sense amplifiers, each amplifier being connected to one of the plurality of bit lines respectively and a memory cell array including a memory cell region including a plurality of memory strings having a plurality of electrically reprogrammable memory cells connected in series, each of the memory cells having two or more storage states, said plurality of memory cells being connected to a corresponding word line of the plurality of word lines respectively, the plurality of memory strings being connected to a corresponding bit line of the plurality of bit lines respectively, and at the time of programming all of the plurality of bit lines are selected, the number of the storage states being different in two of the memory cells which are adjacent on the same bit line.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazushige Kanda
  • Patent number: 7881123
    Abstract: Disclosed are various embodiments that program a memory array with different carrier movement processes. In one application, memory cells are programmed with a particular carrier movement process depending on the pattern of data usage, such as code flash and data flash. In another application, memory cells are programmed with a particular carrier movement process depending on particular threshold voltage state to be programmed, in a multi-level cell scheme.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: February 1, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Hang Ting Lue, Kuang Yeu Hsieh
  • Patent number: 7876613
    Abstract: Multi-bit flash memory devices are provided. The multi-bit flash memory device includes an array of memory cells and a page buffer block including page buffers. Each of the page buffers has a single latch structure and performs a write operation with respect to memory cells according to loaded data. A buffer random access memory (RAM) is configured to store program data provided from an external host device during a multi-bit program operation. Control logic is provided that is configured to control the page buffer block and the buffer RAM so that program data stored in the buffer RAM is reloaded into the page buffer block whenever data programmed before the multi-bit program operation is compared with data to be currently programmed. The control logic is configured to store data to be programmed next in the buffer RAM before the multi-bit program operation is completed.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: January 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Chul Kang, Ho-kil Lee, Jin-Yub Lee
  • Patent number: 7869280
    Abstract: A semiconductor memory device with NAND cell units arranged therein, the NAND cell unit including: a plurality of electrically rewritable and non-volatile memory cells connected in series; first and second select gate transistors disposed at the both ends of the NAND cell unit for coupling it to a bit line and a source line, respectively; and dummy cells disposed adjacent to the first and second select gate transistors in the NAND cell unit, wherein the dummy cells are set at a state with a threshold voltage higher than that of an erase state of the memory cell.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: January 11, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasukazu Kosaki, Noboru Shibata
  • Patent number: 7869283
    Abstract: A method for determining native threshold voltage of nonvolatile memory includes following steps. A memory cell including a control gate, a charge storage layer, a source region, and a drain region is provided. A programming operation is performed on the memory cell by using F-N tunneling effect to obtain a programming curve of time versus threshold voltage. In the programming operation, a positive voltage is applied to the control gate. An erase operation is performed on the memory cell by using F-N tunneling effect to obtain an erasure curve of time versus threshold voltage. In the erase operation, a negative voltage is applied to the control gate. The absolute values of the positive voltage and the negative voltage are the same. The native threshold voltage of memory cell is determined from the cross point of the programming curve and the erasure curve.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 11, 2011
    Assignee: Windbond Electronics Corp.
    Inventors: Chao-Hua Chang, Chien-Min Wu
  • Patent number: 7864595
    Abstract: A method of programming a nonvolatile memory device. The method may include pre-programming one memory cell among a plurality of memory cells by storing data in a first data storage layer using a first program voltage applied to one word line corresponding to the one memory cell among the plurality of memory cells; and while pre-programming other memory cells among the plurality of memory cells, background-programming the pre-programmed memory cell by moving the stored data to a second data storage layer using a second program voltage that is higher than the first program voltage applied to the word line of the pre-programmed memory cell.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Il Bae
  • Patent number: 7864592
    Abstract: Data having three values or more is stored in a memory cell in a nonvolatile manner. A data circuit has a plurality of storage circuits. One of the plurality of storage circuits is a latch circuit. Another one of the plurality of storage circuits is a capacitor. The latch circuit and the capacitor function to temporarily store program/read data having two bits or more. Data held by the capacitor is refreshed using the latch circuit if data variation due to leakage causes a program. As a result, the data circuit does not become large in size even if multi-level data is used.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: January 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ken Takeuchi, Tomoharu Tanaka, Noboru Shibata
  • Patent number: 7864591
    Abstract: A non-volatile semiconductor memory device includes an electrically data rewritable non-volatile semiconductor memory cell and a write circuit for writing data in the memory cell, the write circuit writing a data in the memory cells by supplying a write voltage Vpgm and a write control voltage VBL to the memory cell, continuing the writing of the data in the memory cell by changing the value of the write control voltage VBL in response to an advent of a first write state of the memory cell and inhibiting any operation of writing a data to the memory cell by further changing the value of the write control voltage VBL to Vdd in response to an advent of a second write state of the memory cell.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoharu Tanaka, Jian Chen
  • Patent number: 7864573
    Abstract: A method includes defining a nominal level of a physical quantity to be stored in analog memory cells for representing a given data value. The given data value is written to the cells in first and second groups of the cells, which have respective first and second programming responsiveness such that the second responsiveness is different from the first responsiveness, by applying to the cells in the first and second groups respective, different first and second patterns of programming pulses that are selected so as to cause the cells in the first and second groups to store respective levels of the physical quantity that fall respectively in first and second ranges, such that the first range is higher than and the second range is lower than the nominal level. The given data value is read from the cells at a later time.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 4, 2011
    Assignee: Anobit Technologies Ltd.
    Inventors: Uri Perlmutter, Ofir Shalvi
  • Patent number: 7864594
    Abstract: A memory apparatus, a controller, and a method thereof for programming non-volatile memory cells are provided. The memory apparatus includes a plurality of memory cells, wherein each memory cell shares a source/drain region with a neighboring memory cell. The method utilizes a compensation electron flow applied into a source/drain region between two memory cells to provide enough electron flow to program one of the two memory cells, even under the circumstances that the other memory cell has a greater threshold voltage, such that the dispersion of the programming speed of the memory cells is reduced.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: January 4, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Wen-Jer Tsai, Tien-Fan Ou, Jyun-Siang Huang
  • Patent number: 7859911
    Abstract: The invention provides circuits and systems for programming a floating gate. A floating gate tunneling device is used with an analog comparing device in a circuit having a floating reference node and an offset-mitigating feedback loop for iteratively programming a floating gate, or multiple floating gates.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 28, 2010
    Assignee: Triune IP LLC
    Inventors: Ross E. Teggatz, Wayne T. Chen, Brett Smith, Eric Blackall
  • Patent number: 7859912
    Abstract: A method of operating a non-volatile memory (NVM) cell structure that utilizes gated diode is provided. The cell architecture, utilizing about 4-10 um2 per bit, includes gated diodes that are used to program the cells while consuming low programming current. The cell architecture also allows a large number of cells to be programmed at the same time, thereby reducing the effective programming time per bit. Erase and read mode bias conditions are also provided.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: December 28, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Yuri Mirgorodski, Peter J. Hopper, Roozbeh Parsa
  • Patent number: 7859046
    Abstract: A nitride read only memory cell comprising a silicon-germanium layer with a pair of source/drain regions. A strained silicon layer is formed overlying the silicon-germanium layer such that the pair of source/drain regions is linked by a channel that is generated in the strained silicon layer during operation of the cell. A nitride layer is formed overlying the substrate. The nitride layer has at least one charge storage region. The nitride layer may be a planar layer, a planar split gate nitride layer, or a vertical split nitride layer. A control gate is formed overlying the nitride layer. Ballistic direct injection is used to program the memory cell. A first charge storage region of the nitride layer establishes a virtual source/drain region in the channel. The virtual source/drain region has a lower threshold voltage than the remaining portion of the channel.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: December 28, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7859910
    Abstract: A nonvolatile semiconductor memory device according to one embodiment of the present invention includes: a memory cell array including a plurality of word lines; a parameter storage part which stores a parameter related to a programming voltage which is applied to a word line for programming data; a word line selection circuit which selects a word line among the plurality of word lines which is connected to a memory cell to be programmed with data; a voltage application circuit which applies a programming voltage to the selected word line according to the parameter; a verify circuit which performs verification of programmed data; a control part which outputs a signal for selecting a word line and repeats the operations of the voltage application circuit until the verification is successful; a calculation circuit which calculates an average value of the number of times the control part repeats the operations of the voltage application circuit per each word line; and a parameter setting circuit which sets the p
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 28, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hitoshi Shiga
  • Patent number: 7859904
    Abstract: Methods include performing a soft bulk programming operation in the memory array in a first cycle, performing a bulk erase operation in the memory array in a second cycle and, in a third cycle, selectively inhibiting one or more memory cells in the memory array while applying a programming voltage to the memory array.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 28, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Fredrick B. Jenne, Cynthia Ratnakumar
  • Patent number: 7855912
    Abstract: A control apparatus programs, reads, and erases trapped charges representing multiple data bits from a charge trapping region of a NMOS dual-sided charge-trapping nonvolatile memory cell includes a programming circuit, an erasing circuit, and a reading circuit. The programming circuit provides a negative medium large program voltage to cell's gate along with positive drain and source voltage to inject hot carriers of holes to two charge trapping regions, one of a plurality of threshold adjustment voltages representing a portion of the multiple data bits to the drain and source regions to set the hot carrier charge levels to the two charge trapping regions. The erasing circuit provides a very large positive erase voltage to tunnel the electrons from cell's channel to whole trapping layer including the two charge trapping regions.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: December 21, 2010
    Assignee: Aplus Flash Technology, Inc.
    Inventors: Peter Lee, Fu-Chang Hsu
  • Patent number: 7855913
    Abstract: Memory devices and methods are disclosed, such as those facilitating a data conditioning scheme for multilevel memory cells. For example, one such memory device is capable of inverting the lower page bit values of a complete page of MLC memory cells when a count of the lower page data values is equal to or greater than a particular value or a comparison of current levels compared with a reference current level is equal to or exceeds some threshold condition. Memory devices and methods are also disclosed providing a means for determining initial programming pulse conditions for a population of memory cells based on the number of lower page data values being programmed to a logical 0 or a logical 1 data state.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: December 21, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Brandon Lee Fernandes