Semiconductor Patents (Class 372/43.01)
  • Patent number: 8582617
    Abstract: An 830 nm broad area semiconductor laser having a distributed Bragg reflector (DBR) structure. The semiconductor laser supports multiple horizontal transverse modes of oscillation extending within a plane perpendicular to a crystal growth direction of the laser, in a direction perpendicular to the length of the resonator of the laser. The resonator includes a diffraction grating in the vicinity of the emitting facet of the laser. The width of the diffraction grating in a plane perpendicular to the growth direction and perpendicular to the length of the resonator is different at first and second locations along the length of the resonator. The width of the diffraction grating along a direction which is perpendicular to the length of the resonator increases with increasing distance from the front facet of the semiconductor laser.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 12, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kimio Shigihara
  • Patent number: 8582616
    Abstract: A separate-confinement heterostructure, edge-emitting semiconductor laser having a wide emitter width has elongated spaced apart intermixed and disordered zones extending through and alongside the emitter parallel to the emission direction of the emitter. The intermixed zones inhibit lasing of high order modes. This limits the slow axis divergence of a beam emitted by the laser.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: November 12, 2013
    Assignee: Coherent, Inc.
    Inventors: Thomas C. Hasenberg, Jason P. Watson
  • Publication number: 20130292546
    Abstract: Schemes are described to produce quasi-static charge separation, Terahertz radiation, and programmable magnetic field generation using linearly-polarized light in unbiased, transparent insulators. The methods exploit a recently-observed magneto-electric optical nonlinearity that produces intense magnetization in undoped, homogeneous dielectrics. Analysis reveals that strong magnetic effects can be induced at modest optical intensities even with incoherent light. Consequently, efficient solar power conversion is feasible without the semiconductor processing or electron-hole pair generation that is required in conventional photovoltaic cells. Additionally, conditions and techniques are described to generate intense THz radiation in unbiased substrates and large magnetic fields orientated transverse to the direction of propagation of light, without the need for any external permanent magnetic or electromagnetic apparatus.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 7, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen C. Rand, William M. Fisher
  • Publication number: 20130294471
    Abstract: Provided is a flexible light emitting semiconductor device, such as an LED device, that includes a flexible dielectric layer having first and second major surfaces with a conductive layer on the first major surface and at least one cavity in the first major surface with a conductive layer in the cavity that supports a light emitting semiconductor device. The conductive layer in the cavity is electrically isolated from the second major surface of the dielectric layer.
    Type: Application
    Filed: October 27, 2011
    Publication date: November 7, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ravi Palaniswamy, Arokiaraj Jesudoss, Alejandro Aldrin II Agcaoili Narag, James R. White, Fong Liang Tan, Andrew J. Ouderkirk, Justine A. Mooney, Nathan P. Kreutter, Qihong Nie, Jian Xia Gao
  • Patent number: 8576889
    Abstract: A method of producing a radiation-emitting component is provided. A far field radiation pattern is predetermined. From the predetermined radiation pattern a refractive index profile for the radiation-emitting component is determined in a direction extending perpendicularly to a main emission direction of the component. A structure is determined for the component, such that the component includes the previously determined refractive index profile. The component is configured according to the previously determined structure.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: November 5, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Peter Brick
  • Patent number: 8571080
    Abstract: A slab-coupled optical waveguide laser (SCOWL) is provided that includes an upper and lower waveguide region for guiding a laser mode. The upper waveguide region is positioned in the interior regions of the SCOWL. The lower waveguide region also guides the laser mode. The lower waveguide region is positioned in an area underneath the upper waveguide region. An active region is positioned between the upper waveguide region and the lower waveguide region. The active region is arranged so etching into the SCOWL is permitted to define one or more ridge structures leaving the active region unetched.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: October 29, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Robin K. Huang, Reuel P. Swint, Joseph P. Donnelly
  • Patent number: 8565278
    Abstract: A semiconductor component includes a semiconductor body with a semiconductor layer sequence having an active region, provided for generating coherent radiation, and an indicator layer. With respect to an interface which delimits the semiconductor body in regions in a vertical direction, on that side of said interface which is remote from the active region, the semiconductor body has a web-like region extending in a vertical direction between the interface and a surface of the semiconductor body. The indicator layer has a material composition that differs from that of the material of the web-like region which adjoins the indicator layer. A distance between the indicator layer and the surface is at most of the same magnitude as a distance between the interface and the surface.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: October 22, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Christoph Eichler, Uwe Strauss
  • Patent number: 8565280
    Abstract: This semiconductor laser element includes a semiconductor element layer including an active layer and having an emitting side cavity facet and a reflecting side cavity facet, and a facet coating film on a surface of the emitting side cavity facet. The facet coating film includes a photocatalytic layer arranged on an outermost surface of the facet coating film and a dielectric layer arranged between the photocatalytic layer and the emitting side cavity facet. A thickness of the dielectric layer is set to a thickness defined by m×?/(2×n) (m is an integer), where a wavelength of a laser beam emitted from the active layer is ? and a refractive index of the dielectric layer is n, and at least 1 ?m.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: October 22, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shingo Kameyama, Hiroyuki Yukawa
  • Patent number: 8558245
    Abstract: A p-type cladding layer (3) of p-type semiconductor is formed over a substrate. An active layer (5) including a p-type semiconductor region is disposed over the p-type cladding layer. A buffer layer (10) of non-doped semiconductor is disposed over the active layer. A ridge-shaped n-type cladding layer (11) of n-type semiconductor is disposed over a partial surface of the buffer layer. The buffer layer on both sides of the ridge-shaped n-type cladding layer is thinner than the buffer layer just under the ridge-shaped n-type cladding layer.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Limited
    Inventors: Tsuyoshi Yamamoto, Hisao Sudo
  • Patent number: 8553741
    Abstract: The invention includes a single chip having multiple different devices integrated thereon for a common purpose. The chip includes a substrate having a peripheral area, a mid-chip area, and a central area. A plurality of FETs are formed in the peripheral area with each FET having a layer of single crystal rare earth material in at least one of a conductive channel, a gate insulator, or a gate stack. A plurality of photonic devices including light emitting diodes or vertical cavity surface emitting lasers are formed in the mid-chip area with each photonic device having an active layer of single crystal rare earth material. A plurality of photo detectors are formed in the central area.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 8, 2013
    Assignee: Translucent Inc.
    Inventor: Michael Lebby
  • Patent number: 8552410
    Abstract: A radiation-emitting device (e.g., a laser) includes an active region configured to generate a radiation emission linearly polarized along a first polarization direction and a device facet covered by an insulating layer and a metal layer on the insulating layer. The metal layer defines an aperture through which the radiation emission from the active region can be transmitted and coupled into surface plasmons on the outer side of the metal layer. The long axis of the aperture is non-orthogonal to the first polarization direction, and a sequential series of features are defined in or on the device facet or in the metal layer and spaced apart from the aperture, wherein the series of features are configured to manipulate the surface plasmons and to scatter surface plasmons into the far field with a second polarization direction distinct from the first polarization direction.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 8, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Federico Capasso, Nanfang Yu, Romain Blanchard
  • Publication number: 20130259076
    Abstract: An optically pumped semiconductor laser is assembled in an enclosure comprising a base, a first mounting frame attached to the base, a second mounting frame attached to the first mounting frame and a cover attached to the second mounting frame. The assembly base, frames, and cover forms an undivided enclosure, with the frames contributing to walls of the enclosure. Components of the laser are assembled sequentially on the base and the frames. The frames are irregular in height to permit flexibility in the mounting-height of components. This reduces the extent to which compactness of the enclosure is limited by any one component.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: Coherent, Inc.
    Inventor: Matthias ROTH
  • Patent number: 8548019
    Abstract: In a GaN-based laser device having a GaN-based semiconductor stacked-layered structure including a light emitting layer, the semiconductor stacked-layered structure includes a ridge stripe structure causing a stripe-shaped waveguide, and has side surfaces opposite to each other to sandwich the stripe-shaped waveguide in its width direction therebetween. At least part of at least one of the side surfaces is processed to prevent the stripe-shaped waveguide from functioning as a Fabry-Perot resonator in the width direction.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: October 1, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshiyuki Kawakami, Tomoki Ono, Shigetoshi Ito, Susumu Omi
  • Publication number: 20130243021
    Abstract: A method of fabricating epitaxial structures including applying an etch stop to one side of a substrate and then growing at least one epitaxial layer on a first side of said substrate, flipping the substrate, growing a second etch stop and at least one epitaxial layer on a second side of the substrate, applying a carrier medium to the ultimate epitaxial layer on each side, dividing the substrate into two parts generally along an epitaxial plane to create separate epitaxial structures, removing any residual substrate and removing the etch stop.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: MASIMO SEMICONDUCTOR, INC.
    Inventor: Brad M. Siskavich
  • Patent number: 8537872
    Abstract: A light emitting device includes first and second cladding layers and an active layer therebetween including first and second side surfaces and first and second gain regions, a second side reflectance is higher than a first side reflectance, a first end surface part of the first gain region overlaps a second end surface part of the second gain region in an overlapping plane, the first gain region obliquely extends from the first end surface to a third end surface, the second gain region obliquely extends from the second end surface to a fourth end surface, a first center line connecting the centers of the first and third end surfaces and a second center line connecting the centers of the second and fourth end surfaces intersect, and the overlapping plane is shifted from the intersection point toward the first side surface.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: September 17, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Masamitsu Mochizuki
  • Patent number: 8526477
    Abstract: A semiconductor light emitting device of one embodiment includes: a substrate; an n-type layer of an n-type nitride semiconductor on the substrate; an active layer of a nitride semiconductor on the n-type semiconductor layer; a p-type layer of a p-type nitride semiconductor on the active layer. The p-type layer has a ridge stripe shape. The device has an end-face layer of a nitride semiconductor formed on an end face of the n-type semiconductor layer, the active layer, and the p-type semiconductor layer. The end face is perpendicular to an extension direction of the ridge stripe shape. The end-face layer has band gap wider than the active layer. The end-face layer has Mg concentration in the range of 5E16 atoms/cm3 to 5E17 atoms/cm3 at a region adjacent to the p-type layer.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Saito, Jongil Hwang, Shinya Nunoue
  • Patent number: 8520707
    Abstract: The aberration takes place according to the height of the image because the laser light tilts from the optical axis when it enters to the object lens in the optical pickup device which is equipped with a laser diode for BD and the monolithic laser diode capable of irradiating laser lights with two different wavelengths for DVD and CD as one package to read the signal by single object lens and single optical system. This is because the light sources of the three lights with different wavelengths are away from each other in the optical pickup device. The emission point of the laser diode for BD is formed at the location shifted from the center of the chip. The laser diode for BD is disposed adjacent to the monolithic laser diode capable of irradiating laser lights with two wavelengths for DVD and CD to make the emission point closer to the monolithic laser diode. The sizes of these two laser diodes is minimized by employing half dicing during the cleavage processing for separating the chips.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 27, 2013
    Assignees: SANYO Electric Co., Ltd., SANYO Optec Design Co., Ltd.
    Inventors: Masahito Ogata, Yoshio Noishiki
  • Patent number: 8509276
    Abstract: Hybrid plasmonic waveguides are described that employ a high-gain semiconductor nanostructure functioning as a gain medium that is separated from a metal substrate surface by a nanoscale thickness thick low-index gap. The waveguides are capable of efficient generation of sub-wavelength high intensity light and have the potential for large modulation bandwidth >1 THz.
    Type: Grant
    Filed: November 3, 2012
    Date of Patent: August 13, 2013
    Assignee: The Regents of the University of California
    Inventors: Xiang Zhang, Volker Jendrik Sorger, Rupert Francis Maximillian Oulton, Ren-Min Ma
  • Patent number: 8509275
    Abstract: A laser dazzler device and method. More specifically, embodiments of the present invention provide laser dazzling devices power by one or more green laser diodes characterized by a wavelength of about 500 nm to 540 nm. In various embodiments, laser dazzling devices according to the present invention include non-polar and/or semi-polar green laser diodes. In a specific embodiment, a single laser dazzling device includes a plurality of green laser diodes. There are other embodiments as well.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: August 13, 2013
    Assignee: Soraa, Inc.
    Inventors: James W. Raring, Paul Rudy
  • Patent number: 8509278
    Abstract: A light emitting device includes: a support base; a first light emitting element which is provided at one surface side of the support base and has a first substrate; and a second light emitting element which is provided between the first light emitting element and the support base and has a second substrate, which has a light emitting section as a semiconductor layer and a peripheral section other than the light emitting section at the first light emitting element side of the second substrate, and which has an embedded layer formed of a material with higher heat conductivity than the semiconductor layer in the peripheral section.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventors: Kazunari Saito, Noriyuki Banno, Kota Tokuda
  • Patent number: 8509277
    Abstract: A multiwavelength optical device includes a substrate; a first mirror section including a plurality of first mirror layers stacked on the substrate; an active layer stacked on the first mirror section, the active layer including a light emission portion; a second mirror section including a plurality of second mirror layers stacked on the active layer; a first electrode disposed between the active layer and the second mirror section; and a second electrode disposed between the first mirror section and the active layer.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: August 13, 2013
    Assignee: Fujitsu Limited
    Inventor: Yoshikazu Hattori
  • Patent number: 8503498
    Abstract: A multi-beam semiconductor laser apparatus includes three or more stripe semiconductor laser emission units which are arranged on a substrate, isolation grooves which separate the semiconductor laser emission units from each other, and pad electrodes which are disposed on outer sides of the outermost semiconductor laser emission units. The isolation grooves are formed between the pad electrodes and the semiconductor laser emission units adjacent to the pad electrodes and between adjacent semiconductor laser emission units. A distance between two isolation grooves formed on outer sides of the outermost semiconductor laser light emission units is smaller than a distance between two isolation grooves formed on both sides of inner ones of the semiconductor laser light emission units.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: August 6, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Yoshinori Tanaka, Eiji Miyai, Dai Ohnishi
  • Patent number: 8503500
    Abstract: A light emitting device and the fabrication method includes forming one or more light emitting modules on a substrate. The light emitting module receives an alternating current input and has at least two micro diodes. Each micro diode has at least two active layers and is electrically connected by a conductive structure so as to allow the active layers of the micro diodes to alternately emit light during positive and negative cycles of the alternating-current input.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: August 6, 2013
    Assignee: Epistar Corporation
    Inventors: Ming-Te Lin, Hsi-Hsuan Yen, Wen-Yung Yeh, Ming-Yao Lin, Sheng-Pan Huang
  • Publication number: 20130195134
    Abstract: A semiconductor laser device having stable heat dissipation property is provided. The semiconductor laser device includes a semiconductor laser element, a mounting body on which the semiconductor laser element is mounted, and a base body connected to the mounting body. The base body has a recess configured to engage with the mounting body and a through portion penetrating through a part of a bottom of the recess. In the specification, the remainder, which is a part of the bottom of the recess except for the through portion has a thickness equal or less than half of the largest thickness of the base body. The lowermost surface of the mounting body is spaced apart from the lowermost surface of the base body through the remainder.
    Type: Application
    Filed: January 23, 2013
    Publication date: August 1, 2013
    Applicant: NICHIA CORPORATION
    Inventor: Nichia Corporation
  • Patent number: 8498501
    Abstract: Provided are a semiconductor optical modulator and a semiconductor Mach-Zehnder optical modulator of high efficiency and high reliability.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: July 30, 2013
    Assignee: NEC Corporation
    Inventors: Kenji Sato, Tomoaki Kato
  • Patent number: 8498318
    Abstract: A light (2) emitting system (1) includes an optical cavity (10) having at least one optical mode and including at least one transmissive reflector (12), a first set (20) of quantum wells (21, 22) and elements (31, 32, 33) of electrical injection of the quantum wells of the first set. The quantum wells of the first set are arranged so that at least one of their electronic resonances is a strong coupling regime with an optical mode of the optical cavity and emits a light according to a mixed exciton-polariton mode. The optical cavity further includes a second set (40) of quantum wells (41, 42, 43, 44, 45) arranged outside of the direct range of the elements of electrical injection and arranged in relation to the quantum wells of the first set so that at least one of their electronic resonances is in a strong coupling regime with the mixed exciton-polariton mode of the optical cavity.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: July 30, 2013
    Assignee: Centre National de la Recherche Scientifique - CNRS
    Inventors: Guillaume Malpuech, Dmitry Solnyshkov, Aldo Di Carlo, Eleonora Petrolati
  • Patent number: 8498319
    Abstract: A disclosed surface emitting laser device includes a light emitting section having a mesa structure where a lower reflection mirror, an oscillation structure, and an upper reflection mirror are laminated on a substrate, the oscillation structure including an active layer, the upper reflection mirror including a current confined structure where an oxide surrounds a current passage region, a first dielectric film that coats the entire surface of an emitting region of the light emitting section, the transparent dielectric including a part where the refractive index is relatively high and a part where the refractive index is relatively low, and a second dielectric film that coats a peripheral part on the upper surface of the mesa structure. Further, the dielectric film includes a lower dielectric film and an upper dielectric film, and the lower dielectric film is coated with the upper dielectric film.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: July 30, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Hiroyoshi Shouji, Shunichi Sato
  • Patent number: 8494019
    Abstract: Within a semiconductor laser device, mounting a semiconductor laser element array of multi-beam structure on a sub-mount, the semiconductor laser element array of multi-beam structure comprises one piece of a semiconductor substrate 11; a common electrode 1, which is formed on a first surface of the semiconductor substrate; a semiconductor layer 2, which is formed on the other surface of the semiconductor substrate, and has a plural number of light emitting portions 7 within an inside thereof; a plural number of anode electrodes 3 of a second conductivity type, which are formed above the plural number of light emitting portions, respectively; and a supporting portion 25, which is provided outside a region of forming the light emitting portions, wherein on one surface of the sub-mount is connected an electrode 3 of the semiconductor laser element array through a solder 4, and that solder 4 is formed to cover a supporting portion and an electrode neighboring thereto, and further on the electrode 3 is formed a g
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 23, 2013
    Assignee: Oclaro Japan, Inc.
    Inventors: Yoshihiko Iga, Hiroshi Moriya, Yutaka Inoue, Hideki Hara, Keiichi Miyauchi
  • Patent number: 8493654
    Abstract: An interband cascade gain medium is provided. The gain medium can include at least one thick separate confinement layer comprising Ga(InAlAs)Sb between the active gain region and the cladding and can further include an electron injector region having a reduced thickness, a hole injector region comprising two hole quantum wells having a total thickness greater than about 100 ?, an active gain quantum well region separated from the adjacent hole injector region by an electron barrier having a thickness sufficient to lower a square of a wavefunction overlap between a zone-center active electron quantum well and injector hole states, and a thick AlSb barrier separating the electron and hole injectors of at least one stage of the active region.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: July 23, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Igor Vurgaftman, Jerry R. Meyer, Chadwick Lawrence Canedy, William W. Bewley, James R. Lindle, Chul-soo Kim, Mijin Kim
  • Patent number: 8488645
    Abstract: A semiconductor device is provided that has a VCSEL and a protection diode integrated therein and that has an additional intrinsic layer. The inclusion of the additional intrinsic layer increases the width of the depletion region of the protection diode, which reduces the amount of capacitance that is introduced by the protection diode. Reducing the amount of capacitance that is introduced by the protection diode allows the VCSEL to operate at higher speeds.
    Type: Grant
    Filed: July 31, 2011
    Date of Patent: July 16, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Ramana M. V. Murty
  • Patent number: 8488641
    Abstract: Light sources are disclosed. A disclosed light source includes a III-V based pump light source (170) that includes nitrogen and emits light at a first wavelength. The light source further includes a vertical cavity surface emitting laser (VCSEL) that converts at least a portion of the first wavelength light (174) emitted by the pump light source (170) to at least a partially coherent light at a second wavelength (176). The VCSEL includes first and second mirrors (120, 160) that form an optical cavity for light at the second wavelength. The first mirror (120) is substantially reflective at the second wavelength and includes a first multilayer stack. The second mirror (160) is substantially transmissive at the first wavelength and partially reflective and partially transmissive and the second wavelength. The second mirror includes a second multilayer stack.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: July 16, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Haase, Thomas J. Miller, Xiaoguang Sun
  • Patent number: 8483254
    Abstract: A surface-emitting laser device configured to emit laser light in a direction perpendicular to a substrate includes a p-side electrode surrounding an emitting area on an emitting surface to emit the laser light; and a transparent dielectric film formed on an outside area outside a center part of the emitting area and within the emitting area to lower a reflectance to be less than that of the center part. The outside area within the emitting area has shape anisotropy in two mutually perpendicular directions.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: July 9, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Kazuhiro Harasaka, Shunichi Sato, Naoto Jikutani
  • Patent number: 8483251
    Abstract: Provided is a Group III nitride semiconductor laser diode with a cladding layer capable of providing high optical confinement and carrier confinement. An n-type Al0.08Ga0.92N cladding layer is grown so as to be lattice-relaxed on a (20-21)-plane GaN substrate. A GaN optical guiding layer is grown so as to be lattice-relaxed on the n-type cladding layer. An active layer, a GaN optical guiding layer, an Al0.12Ga0.88N electron blocking layer, and a GaN optical guiding layer are grown so as not to be lattice-relaxed on the optical guiding layer. A p-type Al0.08Ga0.92N cladding layer is grown so as to be lattice-relaxed on the optical guiding layer. A p-type GaN contact layer is grown so as not to be lattice-relaxed on the p-type cladding layer, to produce a semiconductor laser. Dislocation densities at junctions are larger than those at the other junctions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 9, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yohei Enya, Yusuke Yoshizumi, Takashi Kyono, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 8477814
    Abstract: A semiconductor laser module is disclosed, comprising a module carrier (20) having a mounting area (21), a pump device (1) arranged on the mounting area (21), a surface emitting semiconductor laser (40) arranged on the mounting area (21), and a frequency conversion device (6) arranged on the mounting area (21), wherein the mounting area (21) of the module carrier (20) has an area content of at most 100 mm2.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: July 2, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schwarz, Michael Kuehnelt, Roland Schulz, Juergen Dachs, Ulrich Steegmueller, Heiko Unold
  • Patent number: 8477817
    Abstract: In one example embodiment, a DFB laser includes a substrate, an active region positioned above the substrate, and a grating layer positioned above the active region. The grating layer includes a portion that serves as a primary etch stop layer. The DFB laser also includes a secondary etch stop layer located either above or below the grating layer, and a spacer layer interposed between the grating layer and the active region.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: July 2, 2013
    Assignee: Finisar Corporation
    Inventors: Ashish K. Verma, Tsurugi Sudo, Sumesh Mani K. Thiyagarajan, David Bruce Young
  • Patent number: 8477818
    Abstract: A gallium nitride-based semiconductor laser device with reduced threshold current. The gallium nitride-based semiconductor laser device is provided with an n-type cladding layer, an n-side light guide layer, an active layer, a p-side light guide layer, and a p-type cladding layer. The n-side light guide layer and the p-side light guide layer both contain indium. Each of indium compositions of the n-side light guide layer and the p-side light guide layer is not less than 2% and not more than 6%. A film thickness of the n-type cladding layer is in the range of not less than 65% and not more than 85% of a total of the film thickness of the n-type cladding layer and a film thickness of the p-type cladding layer.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 2, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sony Corporation
    Inventors: Tetsuya Kumano, Masaki Ueno, Takashi Kyono, Yohei Enya, Katsunori Yanashima, Kunihiko Tasai, Hiroshi Nakajima
  • Patent number: 8471289
    Abstract: A semiconductor laser device includes a Si(100) substrate in which a recess having an opening and a bottom face surrounded by inner wall surfaces is formed, a semiconductor laser element placed on the bottom face, and a translucent sealing glass, mounted on top of the Si(100) substrate, which seals the opening. The laser light emitted from the semiconductor laser element is reflected by a metallic reflective film formed on the inner wall surface and then transmits through the sealing glass so as to be emitted externally.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: June 25, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yoshio Okayama, Yasunori Inoue, Takenori Goto, Kazushi Mori, Yuuki Ota, Naoteru Matsubara
  • Patent number: 8472494
    Abstract: A semiconductor laser includes: a first portion, made from a silicon-containing material, including an optical waveguide, a first diffraction grating including a phase shift, and a second diffraction grating; a second portion including a light-emitting layer made from a material different from that of the first portion; a laser region including the first diffraction grating, and the optical waveguide and the light-emitting layer provided in a position corresponding to the first diffraction grating; and a mirror region including the second diffraction grating, and the optical waveguide and the light-emitting layer provided in a position corresponding to the second diffraction grating.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: June 25, 2013
    Assignee: Fujitsu Limited
    Inventor: Suguru Akiyama
  • Patent number: 8472490
    Abstract: A semiconductor optical element and an integrated semiconductor optical element suppressing leakage current flow through a burying layer. A mesa-stripe-shaped laminate structure includes a p-type cladding layer, an active layer, and an n-type cladding layer. A burying layer on a side of the laminated structure includes, a first p-type semiconductor layer, a first n-type semiconductor layer, an Fe-doped semiconductor layer, a second n-type semiconductor layer, a low carrier concentration semiconductor layer, and a second p-type semiconductor layer. The Fe-doped semiconductor layer is not grown on a (111)B surface of the first p-type semiconductor layer and of the first n-type semiconductor layer. The second n-type semiconductor layer is not grown on a (111)B surface of the first p-type semiconductor layer, of the first n-type semiconductor layer, and of the Fe-doped semiconductor layer.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: June 25, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Go Sakaino
  • Patent number: 8472491
    Abstract: A semiconductor laser device includes a semiconductor-layer lamination (20) having an active layer (26) formed over a substrate (11). The semiconductor-layer lamination (20) includes a front face which emits light, a strip-shaped optical waveguide formed in a direction transverse to the front face, a first region (20A) extending in a direction transverse to the front face, a second region (20B) having a top surface whose height is different from that of the first region (20A), and a planar region (20C) formed between the first region (20A) and the second region (20B), and having periodic surface undulations whose variation is smaller than that of the second region (20B). The optical waveguide is formed in the planar region (20C).
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: June 25, 2013
    Assignee: Panasonic Corporation
    Inventor: Masao Kawaguchi
  • Patent number: 8472496
    Abstract: A device representing a reflector, for example, an evanescent reflector or a multilayer interference reflector with at least one reflectivity stopband is disclosed. A medium with means of generating optical gain is introduced into the layer or several layers of the reflector. The optical gain spectrum preferably overlaps with the spectral range of the reflectivity stopband. This device can be attached to air, semiconductor or dielectric material or multilayer structures and provide a tool for preferential amplification of the optical waves propagating at larger angles with respect to the interface with the evanescent or the multilayer interference reflector. Thus angle selective amplification or generation of light is possible. Several evanescent or interference reflectors can be used to serve the goal of preferable amplification the said optical waves.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: June 25, 2013
    Assignee: VI Systems GmbH
    Inventor: Nikolay Ledentsov
  • Patent number: 8467633
    Abstract: A wavelength conversion structure includes a light guide formed of a light-transmissive member having a laser light incident port that allows the laser light to be introduced and a phosphor-containing layer that covers at least part of the surface of the light guide. The light guide has a light diffusing structure having asperities and a light reflecting film. The asperities are formed over the surface of the light guide except a laser light incident surface having the laser light incident port. The light reflecting film is formed over the surface of the light guide along the asperities except the laser light incident port and the portion covered with the phosphor-containing layer.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 18, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Ji-Hao Liang, Teruo Koike
  • Patent number: 8467427
    Abstract: A device includes a semiconductor layer including first and second cladding layers sandwiching an active layer, a groove electrically separates receiving and emitting areas, an active layer part forms a continuous region between first and second end surfaces on a first side of the active layer, the gain region has a reflection surface between the first and second end surfaces reflecting gain region generated light, a first gain region portion extending from the first end surface and a second gain region portion extending from the second end surface are tilted, some light from the first portion is reflected to be emitted from the second end surface, some light from the second portion is reflected to be emitted from the first end surface, and some light transmits through a mirror portion of the reflection surface and is received in the receiving area.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 18, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Masamitsu Mochizuki
  • Patent number: 8457167
    Abstract: Embodiments describe a semiconductor laser device driven at low voltage and which is excellent for cleavage and a method of manufacturing the device. In one embodiment, the semiconductor laser device includes a GaN substrate; a semiconductor layer formed on the GaN substrate; a ridge formed in the semiconductor layer; a recess formed in the bottom surface of the GaN substrate. The recess has a depth less than the thickness of the GaN substrate. The device also has a notch deeper than the recess formed on a side surface of the GaN substrate and separated from the recess. In the semiconductor laser device, the total thickness of the GaN substrate and the semiconductor layer is 100 ?m or more, and the distance between the top surface of the ridge and the bottom surface of the recess is 5 ?m or more and 50 ?m or less.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: June 4, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Maki Sugai, Shinji Saito, Rei Hashimoto, Yasushi Hattori, Jongil Hwang, Masaki Tohyama, Shinya Nunoue
  • Patent number: 8451876
    Abstract: A system and method for providing laser diodes with broad spectrum is described. GaN-based laser diodes with broad or multi-peaked spectral output operating are obtained in various configurations by having a single laser diode device generating multiple-peak spectral outputs, operate in superluminescene mode, or by use of an RF source and/or a feedback signal. In some other embodiments, multi-peak outputs are achieved by having multiple laser devices output different lasers at different wavelengths.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: May 28, 2013
    Assignee: SORAA, Inc.
    Inventors: James W. Raring, Mathew C. Schmidt, Yu-Chia Chang
  • Patent number: 8451875
    Abstract: A VCSEL with nearly planar intracavity contact. A bottom DBR mirror is formed on a substrate. A first conduction layer region is formed on the bottom DBR mirror. An active layer, including quantum wells, is on the first conduction layer region. A trench is formed into the active layer region. The trench is formed in a wagon wheel configuration with spokes providing mechanical support for the active layer region. The trench is etched approximately to the first conduction layer region. Proton implants are provided in the wagon wheel and configured to render the spokes of the wagon wheel insulating. A nearly planar electrical contact is formed as an intracavity contact for connecting the bottom of the active region to a power supply. The nearly planar electrical contact is formed in and about the trench.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 28, 2013
    Assignee: Finisar Corporation
    Inventor: Ralph H. Johnson
  • Patent number: 8451874
    Abstract: A very large mode (VLM) slab-coupled optical waveguide laser (SCOWL) is provided that includes an upper waveguide region as part of the waveguide for guiding the laser mode. The upper waveguide region is positioned in the interior regions of the VLM SCOWL. A lower waveguide region also is part of the waveguide that guides the laser mode. The lower waveguide region is positioned in an area underneath the upper waveguide region. An active region is positioned between the upper waveguide region and the lower waveguide region. The active region is arranged so etching into the VLM SCOWL is permitted to define one or more ridge structures leaving the active region unetched. One or more mode control barrier layers are positioned between said upper waveguide region and said lower waveguide region. The one or more mode control barrier layers control the fundamental mode profile and prevent mode collapse of the laser mode. The mode control barrier layers also block carrier leakage from the active region.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: May 28, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Robin K. Huang, Joseph P. Donnelly
  • Patent number: 8451878
    Abstract: A surface profile inspection device producing a sheet of light propagating in a linear region forming a plane from a laser beam emitted from a laser light source and irradiating the sheet of light to an object to be measured, and including an image capturing unit capturing an image of the object to be measured and a configuration data generating unit extracting a light section line defined by an irradiation of the sheet of light from image data of the captured image and generating surface profile data of the object to be measured. The laser light source includes a semiconductor laser emitting a laser beam from a light emitting layer formed in a linear direction along a boarder of a p-n junction. An attitude of the semiconductor laser is set to arrange the linear direction to be unparallel to a spread direction of the sheet of light.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 28, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Masaru Hisanaga, Masataka Toda, Toshihiko Yoshikawa
  • Patent number: 8442085
    Abstract: By forming upper-bank patterns made of Au with a thickness of 1.5 ?m or larger on bank portions, a solder material on a submount and a surface of a conductive layer in an upper part of a ridge portion of a laser chip are separated so as not to be in contact with each other, thereby preventing the stress generated in a bonding portion when bonding the laser chip and the submount from being applied to the ridge portion.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 14, 2013
    Assignee: Oclaro Japan, Inc.
    Inventors: Susumu Sorimachi, Yutaka Inoue, Yasuhisa Semba
  • Patent number: 8442084
    Abstract: A semiconductor laser that has a reflective surface. The reflective surface redirects the light of an edge emitting laser diode to emit from the top or bottom surface of the diode. The laser may include a gain layer and a feedback layer located within a semiconductive die. The gain and feedback layers generate a laser beam that travels parallel to the surface of the die. The reflective surface reflects the laser beam 90 degrees so that the beam emits the die from the top or bottom surface. The reflective surface can be formed by etching a vicinally oriented III-V semiconductive die so that the reflective surface extends along a (111)A crystalline plane of the die.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: May 14, 2013
    Assignee: Laser Operations LLC
    Inventor: Jeffrey E. Ungar