Semiconductor Patents (Class 372/43.01)
  • Patent number: 9042418
    Abstract: Novel methods and systems for miniaturized lasers are described. A photonic crystal is bonded to a silicon-on-insulator wafer. The photonic crystal includes air-holes and can include a waveguide which couples the laser output to a silicon waveguide.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: May 26, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Seheon Kim, William Dos Santos Fegadolli, Axel Scherer
  • Patent number: 9036672
    Abstract: Tensile strained germanium is provided that can be sufficiently strained to provide a nearly direct band gap material or a direct band gap material. Compressively stressed or tensile stressed stressor materials in contact with germanium regions induce uniaxial or biaxial tensile strain in the germanium regions. Stressor materials may include silicon nitride or silicon germanium. The resulting strained germanium structure can be used to emit or detect photons including, for example, generating photons within a resonant cavity to provide a laser.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: May 19, 2015
    Assignee: Acorn Technologies, Inc.
    Inventors: Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Patent number: 9031106
    Abstract: Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: May 12, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Yannick C. Morel, Igor I. Smolyaninov
  • Patent number: 9025631
    Abstract: Provided is a high-output light-emitting device capable of emitting a light beam in a single mode. The light-emitting device includes a laminate structure body configured by laminating, in order, a first compound semiconductor layer, an active layer, and a second compound semiconductor layer on a base substrate, a second electrode, and a first electrode. The first compound semiconductor layer has a laminate structure including a first cladding layer and a first light guide layer in order from the base substrate, and the laminate structure body has a ridge stripe structure configured of the second compound semiconductor layer, the active layer, and a portion in a thickness direction of the first light guide layer. Provided that a thickness of the first light guide layer is t1, and a thickness of the portion configuring the ridge stripe structure of the first light guide layer is t1?, 6×10?7 m<t1 and 0(m)<t1??0.5·t1 are satisfied.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: May 5, 2015
    Assignee: Sony Corporation
    Inventors: Masaru Kuramoto, Rintaro Koda, Hideki Watanabe
  • Patent number: 9025630
    Abstract: A tuneable laser source includes a first confinement layer forming a Bragg reflector for a pump wave; an active layer made of non-linear semiconducting material, the refraction index of the active layer being greater than the refraction index of the first confinement layer; a second confinement layer, the refraction index of the second confinement layer being less than the refraction index of the active layer; a base with a first width; and a ribbon with a second width less than the first width. The second width is less than 10 ?m; the active layer includes at least one plane of quantum boxes capable of emitting a pump wave and the ribbon includes at least the part of the active layer including the quantum boxes plane and the second confinement layer.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: May 5, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Jean-Michel Gerard, Giuseppe Leo, Alessio Andronico, Sara Ducci
  • Patent number: 9020005
    Abstract: A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: April 28, 2015
    Assignee: Sandia Corporation
    Inventors: Jeremy B. Wright, Igal Brener, Ganapathi S. Subramania, George T. Wang, Qiming Li
  • Patent number: 9020004
    Abstract: A ring resonator is connected to an optical amplifier. The ring resonator and optical amplifier are contained within the optical path of an optical resonator formed by a first and second reflector. The optical coupler branches part of the light conducting from the optical amplifier to the ring resonator within the optical resonator off to an output optical waveguide.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: April 28, 2015
    Assignee: Fujitsu Limited
    Inventor: Seokhwan Jeong
  • Publication number: 20150110137
    Abstract: In one aspect, semiconductor lasers are provided. A semiconductor laser described herein comprises substrate and a cavity formed on the substrate, the cavity comprising an asymmetric Mach-Zehnder (AMZ) interferometer structure positioned between two straight waveguide segments, the straight waveguide segments and first and second arms of the AMZ interferometer structure comprising epitaxial semiconductor layers, wherein the second arm of the AMZ interferometer structure has a temperature control architecture independent of the first arm.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: Princeton University
    Inventors: Mei Chai Zheng, Qiang Liu, Claire F. Gmachl
  • Patent number: 9014229
    Abstract: A laser dazzler device and method. More specifically, embodiments of the present invention provide laser dazzling devices power by one or more green laser diodes characterized by a wavelength of about 500 nm to 540 nm. In various embodiments, laser dazzling devices according to the present invention include non-polar and/or semi-polar green laser diodes. In a specific embodiment, a single laser dazzling device includes a plurality of green laser diodes. There are other embodiments as well.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: April 21, 2015
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy
  • Patent number: 9014231
    Abstract: A vertical cavity surface emitting laser (VCSEL) nanoscope is provided. The VCSEL nanoscope combines a VCSEL with a nano-scale aperture using a support member to separate the aperture from the VCSEL emission face. The resulting device is a useful near-field probe with a wide variety of applications.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 21, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sonny Vo, James S. Harris, Jr.
  • Patent number: 9014225
    Abstract: A vertical cavity surface emitting laser (VCSEL) device includes a bottom distributed Bragg reflector (DBR); a top DBR; an optical cavity with an active layer stack formed between the bottom DBR and the top DBR, arranged for generating light with a predetermined emission wavelength; a top electrode layer with a first window formed above the top DBR; and a first heat dissipation layer sandwiched between the top DBR and the top electrode layer. The VCSEL device utilizes thicker, heavily doped semiconductor contact window for efficient heat dissipation from active region. Besides heat dissipation on the top side of VCSEL device, it also increases the bandwidth of VCSEL through top DBR reflectivity changes that reduce the photon lifetime via a surface relief structure etching on the top side of VCSEL device. Further, the invented VCSEL contains adjusted Aluminum molefractions in multiple sections of top and bottom DBRs to effectively dissipate heat from active region of VCSEL.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 21, 2015
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventor: Babu Dayal Padullaparthi
  • Patent number: 9008140
    Abstract: A semiconductor laser includes: a p-type semiconductor substrate; a ridge having an active layer and cladding layers on the semiconductor substrate; a current blocking layer embedding side surfaces of the ridge; and an n-type contact layer on the ridge and the current blocking layer. The current blocking layer includes a first p-type layer, an n-type layer or a hole-trapping insulating semiconductor layer, a second p-type layer, a diffusion inhibiting layer, and a third p-type layer stacked, in order, from the semiconductor substrate. The n-type contact layer includes a p-type inverted region located in a portion of the n-type contact layer, in contact with the third p-type layer. Dopants in the third p-type layer diffuse into the p-type inverted region. The diffusion inhibiting layer is an undoped semiconductor material or a semi-insulating semiconductor material and inhibits dopants in the third p-type layer from being diffused into the active layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 14, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Naoki Nakamura
  • Patent number: 9008138
    Abstract: A laser diode device is specified, comprising a housing having a mounting part and a laser diode chip based on a nitride compound semiconductor material in the housing on the mounting part, wherein the laser diode chip is mounted directly on the mounting part using a solder layer, and the solder layer has a thickness of greater than or equal to 3 ?m.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: April 14, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Uwe Strauss, Soenke Tautz, Alfred Lell, Clemens Vierheilig
  • Publication number: 20150092806
    Abstract: Described herein are multi-segmented nanowires, nanosheets and nanobelts, and devices and methods using them for the generation of multicolor and white light.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 2, 2015
    Inventors: Cun-Zheng Ning, Zhicheng Liu, Leijun Yin, Fan Fan, Hao Ning, Sunay Turdogan, Patricia L. Nichols
  • Patent number: 8995489
    Abstract: A semiconductor stack includes a semiconductor DBR (Distributed Bragg Reflector) formed on a substrate, and a resonator formed on the semiconductor DBR laminating wide-band semiconductor layers and active layers alternately. Each of the active layers includes MQWs (Multiple Quantum Wells) and two spacer layers formed one on each surface of the MQWs. The MQWs are formed by laminating barrier layers and quantum well layers alternately. There are n layers of the wide-band semiconductor layer formed, and a band gap Egm of an m-th wide-band semiconductor layer counting from the substrate and a band gap Egm-1 of an m?1-th wide-band semiconductor layer counting from the substrate satisfy Egm-1<Egm where n and m are integers greater than or equal to 2, and 1<m?n.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 31, 2015
    Assignee: Ricoh Company, Ltd.
    Inventor: Kei Hara
  • Patent number: 8989226
    Abstract: A cooling module for fabricating a liquid-cooled semiconductor laser, a fabricating method, and a semiconductor laser fabricated from the module are provided, wherein the cooling module for a laser makes use of a liquid cooling plate provided with radiating fins to cool the semiconductor chip. After replacement of the traditional micro-channel structure with the radiating fin structure, the cooling module effectively reduces the resistance to flow of the cooling liquid, remarkably lowers the pressure decrease of the cooling liquid, makes it easier to seal the cooling liquid, provides stronger heat dissipating capability, effectively prolongs the lifetime of the semiconductor laser, and enhances the output power and reliability of the semiconductor laser, alongside the advantages of simple fabrication and low production cost.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: March 24, 2015
    Assignee: Xi'an Focuslight Technologies Co., Ltd.
    Inventor: Xingsheng Liu
  • Patent number: 8989231
    Abstract: A disclosed surface emitting laser device includes a light emitting section having a mesa structure where a lower reflection mirror, an oscillation structure, and an upper reflection mirror are laminated on a substrate, the oscillation structure including an active layer, the upper reflection mirror including a current confined structure where an oxide surrounds a current passage region, a first dielectric film that coats the entire surface of an emitting region of the light emitting section, the transparent dielectric including a part where the refractive index is relatively high and a part where the refractive index is relatively low, and a second dielectric film that coats a peripheral part on the upper surface of the mesa structure. Further, the dielectric film includes a lower dielectric film and an upper dielectric film, and the lower dielectric film is coated with the upper dielectric film.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 24, 2015
    Inventors: Hiroyoshi Shouji, Shunichi Sato
  • Patent number: 8982916
    Abstract: A method for producing an externally injected gain switch laser ultrashort pulse, comprising the following steps of ultrashort light pulse signals having multi-longitudinal mode characteristic produced by the gain switch laser are inputted into an optical amplifier and then amplified; a spectral component signal selector selects a narrow spectral component signal outputted by the optical amplifier, the narrow spectral component signal is within an amplified spontaneous emission noise frequency band and its central wavelength is equal to the longitudinal mode of the gain switch laser; a route of the narrow spectral component signal is used as an external seed light and reinjected into the gain switch laser via a spectral component signal feedback loop. Therefore, the oscillation of a selected single longitudinal mode within the cavity of the gain switch laser is enhanced, thereby forming an externally light injected locking.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 17, 2015
    Assignee: Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences
    Inventors: Jianguo Zhang, Wei Zhao, Yuanshan Liu
  • Publication number: 20150071319
    Abstract: In various embodiments, an emission source may be provided. The emission source may also include a gain medium including a halide semiconductor material. The emission source may further include a pump source configured to provide energy to the gain medium.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 12, 2015
    Inventors: Guichuan Xing, Nripan Mathews, Subodh Mhaisalkar, Tze Chien Sum
  • Patent number: 8976825
    Abstract: A heat sink mount for a laser diode comprises three main components, a diode ring, a diode bed and a diode container. The diode ring comprises an inner hole that matches a metal stem part of the laser diode. The diode bed comprises a first part and a second part. The diode ring is fitted into the first part of the diode bed. The inner surface of the first part is tightly contacting the outer surface of the diode ring. The diode container comprises a part a and a part b. The diode bed is fitted into the part a of the diode container, via the gripping contact between the thread on the inner surface of the part a and the thread on the outer surface of the second part of diode bed. This heat sink mount has lower costs and higher heat dissipation efficiency.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: March 10, 2015
    Inventors: Richard Redpath, James Redpath
  • Patent number: 8976833
    Abstract: An embodiment is a semiconductor device comprising an optical device over a first substrate, a vertical waveguide on a top surface of the optical device, the vertical waveguide having a first refractive index, and a capping layer over the vertical waveguide, the capping layer configured to be a lens for the vertical waveguide and the capping layer having a second refractive index.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui Hsieh Lai, Ying-Hao Kuo, Hai-Ching Chen, Tien-I Bao
  • Patent number: 8971367
    Abstract: A method of manufacturing a surface-emitting laser that allows precise alignment of the center position of a surface relief structure and that of a current confinement structure and formation of the relief structure by means of which a sufficient loss difference can be introduced between the fundamental transverse and higher order transverse mode. Removing the dielectric film on the semiconductor layers and the first-etch stop layer along the second pattern, using a second- and third-etch stop layer are conducted in single step after forming the confinement structure. The relief structure is formed by three layers including a lower, middle and upper layer, and total thickness of three layers is equal to the optical thickness of an odd multiple of ¼ wavelength (?: oscillation wavelength, n: refractive index of the semiconductor layer). The layer right under the lower layer is the second-etch stop layer and the first-etch stop layer is laid right on this etch stop layer.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: March 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuro Uchida, Takeshi Uchida
  • Patent number: 8971369
    Abstract: A quantum cascade laser structure having a plurality of cascades each of which comprises a number of alternately arranged quantum wells and barriers of different thicknesses and heights, wherein at least one of the quantum wells and at least one of the barriers is under mechanical strain and the quantum wells and the barriers are coordinated such that the existing mechanical strains are largely compensated within one cascade, wherein each of the barriers comprise one or more barrier layers, wherein each cascade comprises a thinnest quantum well, a lowest barrier, a thickest quantum well, a highest barrier, and the highest barrier is followed by alternately arranged quantum wells and barriers.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: March 3, 2015
    Assignee: Quantiox GmbH
    Inventors: William Ted Masselink, Mykhaylo Petrovych Semtsiv
  • Patent number: 8964796
    Abstract: A semiconductor light emitting device includes a light guiding structure, a light emitting layer disposed within the light guiding structure, and a structure for discharging excess electric charge within the device. The device may be excited by an electron beam, as opposed to an optical beam, to create electron-hole pairs. The light emitting layer is configured for light generation without requiring a p-n junction, and is therefore not embedded within nor part of a p-n junction. Doping with p-type species is obviated, reducing device loss and permitting operation at a short wavelengths, such as below 300 nm. Various structures, such as a top-side cladding layer, are disclosed for discharging beam-induced charge. A single device may be operated with multiple electron beam pumps, either to enable a relatively thick active layer or to drive multiple separate active layers. Cooperatively curved end facets accommodate for possible off-axis resonance within the active region(s).
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: February 24, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Wunderer, John E. Northrup, Mark R. Teepe, Zhihong Yang, Christopher L. Chua, Noble M. Johnson
  • Patent number: 8964808
    Abstract: A laser light source comprises, in particular, a semiconductor layer sequence (10) having an active region (45) and a radiation coupling-out area (12) having a first partial region (121) and a second partial region (122) different than the latter, and a filter structure (5), wherein the active region (45) generates, during operation, coherent first electromagnetic radiation (51) having a first wavelength range and incoherent second electromagnetic radiation (52) having a second wavelength range, the coherent first electromagnetic radiation (51) is emitted by the first partial region (121) along an emission direction (90), the incoherent second electromagnetic radiation (52) is emitted by the first partial region (121) and by the second partial region (122), the second wavelength range comprises the first wavelength range, and the filter structure (5) at least partly attenuates the incoherent second electromagnetic radiation (52) emitted by the active region along the emission direction (90).
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: February 24, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alfred Lell, Christoph Eichler, Wolfgang Schmid, Soenke Tautz, Wolfgang Reill, Dimitri Dini
  • Patent number: 8955987
    Abstract: A light emitting device includes a substrate, a laminated body formed by stacking a first cladding layer, a first active layer, a second cladding layer, a third cladding layer, a second active layer, and a fourth cladding layer on the substrate in this order, a first electrode connected to the first cladding layer, a second electrode connected to the second cladding layer and the third cladding layer, and a third electrode connected to the fourth cladding layer, the first active layer generates first light using the first electrode and the second electrode, the second active layer generates second light using the second electrode and the third electrode, and a side surface of the first active layer is provided with an emitting section for emitting the first light, and a side surface of the second active layer is provided with an emitting section for emitting the second light.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: February 17, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Masamitsu Mochizuki
  • Patent number: 8958450
    Abstract: A quantum cascade laser 1 includes a semiconductor substrate, an active layer 15 that is disposed on the semiconductor substrate and has a cascade structure in which a unit layered structure 16 including a quantum well light emitting layer and an injection layer is stacked in multiples to alternately stack the quantum well light emitting layer and the injection layer, and a diffraction grating layer 20 disposed on the active layer.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: February 17, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tadataka Edamura, Atsushi Sugiyama, Naota Akikusa
  • Patent number: 8958449
    Abstract: A surface-emitting laser device configured to emit laser light in a direction perpendicular to a substrate includes a p-side electrode surrounding an emitting area on an emitting surface to emit the laser light; and a transparent dielectric film formed on an outside area outside a center part of the emitting area and within the emitting area to lower a reflectance to be less than that of the center part. The outside area within the emitting area has shape anisotropy in two mutually perpendicular directions.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 17, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Kazuhiro Harasaka, Shunichi Sato, Naoto Jikutani
  • Publication number: 20150043319
    Abstract: An near-field light device (100) is provided with: a first electrode layer (123) having a protruding portion (123a); a second electrode layer (121); and a light emitting layer (122), the protruding portion protrudes along a predetermined direction (Y axis direction) to be capable of extracting energy which is caused by emission of light at the light emitting layer, the predetermined direction intersects with a laminated direction (X axis direction) of the near-field light device, an edge surface of at least one portion of the projection portion is located at more outward side in the optical device than an edge surface of the second electrode layer is.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Inventors: Takayuki KASUYA, Satoshi SUGIURA
  • Patent number: 8947769
    Abstract: An apparatus for tunable generation of terahertz photons is provided. The apparatus comprises a three level magnon laser, an injection means, a terahertz antenna, and a tuning means. The terahertz antenna further comprises a magnon gain medium that supports generation of nonequilibrium magnons. The magnon gain medium is selected from the group consisting of: a ferromagnetic semiconductor; a dilute magnetic semiconductor (DMS); a half-metallic ferromagnet (HMF); and a ferromagnetic conductor, with a gap in the density of states of the minority electrons around the Fermi energy.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: February 3, 2015
    Assignee: Terahertz Technologies LLC
    Inventors: Yehiel Korenblit, Boris G. Tankhilevich
  • Patent number: 8937981
    Abstract: A laser system can include an electrode to transmit electrical carriers into an active region in response to first electrical stimulation. The laser system can also include another electrode to transmit electrical carriers into the active region in response to second electrical stimulation. The electrical carriers can be combined in the active region to emit photons to generate an optical signal. The system can further include yet another electrode responsive to electrical stimulation to affect a concentration of electrical carriers in a device layer to change a capacitance of an internal capacitance region associated with at least one of first and second waveguide regions and the device layer. The third electrical stimulation can be modulated to modulate the optical signal based on the change to the capacitance of the internal capacitance region.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: January 20, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Di Liang
  • Patent number: 8937980
    Abstract: Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee Kwon, Su Hwan Oh, Young Ahn Leem, O-Kyun Kwon, Young-Tak Han, Yongsoon Baek, Yun C. Chung
  • Patent number: 8934507
    Abstract: In at least one embodiment, a wavelength-tunable light source includes at least one fiber-based partial section and at least one delay section. For a wavelength ? of at least one portion of a radiation emitted by the light source as a function of time t, the relationship ?(t)=?(t??) holds true. In this case, ? is a specific period of time. Furthermore, the delay section includes one or more oligomode fibers.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: January 13, 2015
    Assignee: Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Robert Alexander Huber, Wolfgang Wieser, Thomas Klein
  • Patent number: 8934514
    Abstract: A vertical cavity surface emitting laser (VCSEL) configured to operate in a gain switching regime includes a cavity that is terminated by reflectors at both ends for enabling a standing wave of optical radiation therebetween. The cavity comprises at least one quantum well, each of the quantum wells located at a position where a value of a standing wave factor for each quantum well is between zero and one, 0<?<1.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: January 13, 2015
    Assignees: Oulun yliopisto, University of York
    Inventors: Juha Kostamovaara, Eugene A. Avrutin, Boris Ryvkin
  • Patent number: 8929418
    Abstract: A semiconductor laser is provided with one or more rear ports and one front port and with a multi-mode interference optical waveguide that has an active layer (light emitting layer) in all regions in plan view. The front port corresponds to an imaging point at which fundamental mode light forms an image in the active layer (light emitting layer) perpendicular to the waveguide direction of the multi-mode interference optical waveguide, and in plan view the front port is disposed along a central line, off center with respect to a central line, along the waveguide direction of the multi-mode interference optical waveguide.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: January 6, 2015
    Assignee: Kyushu University, National University Corporation
    Inventor: Kiichi Hamamoto
  • Patent number: 8929415
    Abstract: Photonic crystal cavities and related devices and methods are described. The described cavities can be used as lasers, photovoltaic sources, and single photon sources. The cavities can be both optically and electrically pumped. A fabrication process of the cavities is also described.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: January 6, 2015
    Assignee: California Institute of Technology
    Inventors: Seheon Kim, Axel Scherer
  • Patent number: 8923354
    Abstract: A nitride semiconductor laser comprises a conductive support base having a primary surface of gallium nitride based semiconductor, an active layer on the primary surface, and a p-type cladding region on the primary surface. The primary surface is tilted to a reference plane perpendicular to a reference axis extending in the c-axis direction of the gallium nitride based semiconductor. The p-type cladding region comprises a first p-type group III nitride semiconductor layer of an AlGaN layer anisotropically-strained, and a second p-type group III nitride semiconductor layer of material different from the AlGaN layer. The first p-type group III nitride semiconductor layer is provided between the second p-type group III nitride semiconductor layer and the active layer. The AlGaN layer has the largest bandgap in the p-type cladding region. The second p-type group III nitride semiconductor layer has a resistivity lower than the first p-type group III nitride semiconductor layer.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: December 30, 2014
    Inventors: Takashi Kyono, Yohei Enya, Takamichi Sumitomo, Yusuke Yoshizumi, Masaki Ueno, Katsunori Yanashima, Kunihiko Tasai, Hiroshi Nakajima
  • Patent number: 8917749
    Abstract: Provided is a laser diode mounting substrate for an automotive lamp module using a laser diode. The substrate includes: a substrate body with a power supply circuit pattern, which electrically connects a connector with a contact point of the laser diode, on the top; a first heat conduction layer disposed at the area except for the power supply circuit pattern, on the top of the substrate body; and a second heat conduction layer disposed on the bottom of the substrate body, in which at least one heat transfer hole is disposed through the first heat conduction layer, the substrate body, and the second heat conduction layer. Therefore, the present invention provides an effect that heat generated by the laser diode can be effectively dissipated.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: December 23, 2014
    Assignee: Hyundai Mobis Co., Ltd.
    Inventor: Tae Won Lee
  • Patent number: 8917751
    Abstract: Provided is an optical device capable of bonding each optical part to a substrate with the same applied load by surface activated bonding even if the planar shape sizes of a plurality of optical parts to be mounted on the substrate are different from one another. The optical device includes a substrate, a plurality of optical parts different in planar shape size, bonded to the substrate by surface activated bonding adjacent to one another, and optically coupled with one another, and a plurality of bonding parts provided on the substrate in correspondence to the plurality of optical parts and including metallic micro bumps for bonding each optical part. The total area of the top surfaces of the micro bumps to be bonded to the corresponding optical part of each of the plurality of bonding parts is substantially the same.
    Type: Grant
    Filed: August 24, 2013
    Date of Patent: December 23, 2014
    Assignee: Citizen Holdings Co., Ltd.
    Inventor: Kaoru Yoda
  • Patent number: 8913640
    Abstract: A semiconductor laser assembly has at least one semiconductor laser which is designed to emit laser radiation through an exit area and at least one further area, the further area being a part of a surface of the semiconductor laser and/or of the semiconductor laser assembly and the further area is developed to be reflecting to the radiation of at least one specifiable wavelength range. For this purpose, a reflecting metal layer is applied, for example. The semiconductor laser having a laser layer is able to be fastened to a carrier element with the aid of a solder layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Mathias Moenster, Hans-Jochen Schwarz
  • Patent number: 8908734
    Abstract: In an embodiment, a distributed Bragg reflector (DBR) laser includes a gain section and a passive section. The gain section includes an active region, an upper separate confinement heterostructure (SCH), and a lower SCH. The upper SCH is above the active region and has a thickness of at least 60 nanometers (nm). The lower SCH is below the active region and has a thickness of at least 60 nm. The passive section is coupled to the gain section, the passive section having a DBR in optical communication with the active region.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: December 9, 2014
    Assignee: Finisar Corporation
    Inventor: Yasuhiro Matsui
  • Patent number: 8908727
    Abstract: A laser assembly and a method for manufacturing the same are provided according to embodiments of the present disclosure. The laser assembly (900) may comprise a first plate (903) having first projections (918, 928); a printed circuit board assembly (902) including a printed circuit board (912) having first openings (913, 915) and a laser module (100) thereon, and a second plate (901) having second projections (917, 927). The printed circuit board assembly (902) can be retained between the first plate (903) and the second plate (901) by the first projections (918, 928) and the second projections (917, 927). The laser assembly may further comprises a first pad (930) provided between the laser module (100) and the first plate (903) and/or a second pad (920) provided between the laser module (100) and the second plate (901).
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 9, 2014
    Assignee: Emcore Corporation
    Inventors: Yinan Wu, Frank Ding, Vincent Nguyen
  • Patent number: 8908728
    Abstract: A transistor outline package with integrated thermoelectric cooler is disclosed. The thermoelectric cooler is arranged on a heatsink which extends vertically into the housing of the transistor outline package.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: December 9, 2014
    Assignee: Schott AG
    Inventors: George Lin Huikai, Amy Soon Li Ping, Tetsushi Morikawa, Rohit Bhosale, Shaifullah Bin Mohamed Kamari
  • Patent number: 8908731
    Abstract: A laser dazzler device and method. More specifically, embodiments of the present invention provide laser dazzling devices power by one or more green laser diodes characterized by a wavelength of about 500 nm to 540 nm. In various embodiments, laser dazzling devices according to the present invention include non-polar and/or semi-polar green laser diodes. In a specific embodiment, a single laser dazzling device includes a plurality of green laser diodes. There are other embodiments as well.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: December 9, 2014
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy
  • Patent number: 8908732
    Abstract: A group-III nitride semiconductor laser device comprises: a laser structure including a semiconductor region and a support base having a semipolar primary surface of group-III nitride semiconductor; a first reflective layer, provided on a first facet of the region, for a lasing cavity of the laser device; and a second reflective layer, provided on a second facet of the region, for the lasing cavity. The laser structure includes a laser waveguide extending along the semipolar surface. A c+ axis vector indicating a <0001> axial direction of the base tilts toward an m-axis of the group-III nitride semiconductor at an angle of not less than 63 degrees and less than 80 degrees with respect to a vector indicating a direction of an axis normal to the semipolar surface. The first reflective layer has a reflectance of less than 60% in a wavelength range of 525 to 545 nm.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: December 9, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sony Corporation
    Inventors: Masaki Ueno, Koji Katayama, Takatoshi Ikegami, Takao Nakamura, Katsunori Yanashima, Hiroshi Nakajima
  • Patent number: 8902948
    Abstract: A degree of polarization control device includes: a calcium fluoride crystal substrate for transmitting a laser beam; a polarization monitor for measuring the degree of polarization of a laser beam transmitted through the calcium fluoride crystal substrate; and a controller for controlling the rotation angle of the calcium fluoride crystal substrate according to the degree of polarization measured by the polarization monitor; the calcium fluoride crystal substrate being formed by a flat plate having a laser beam entering surface and a laser beam exiting surface running in parallel with the (111) crystal face, the Brewster angle being selected for the incident angle, the rotation angle around the [111] axis operating as a central axis being controlled by the controller.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: December 2, 2014
    Assignee: Gigaphoton Inc.
    Inventors: Shinji Nagai, Fumika Yoshida, Osamu Wakabayashi, Kouji Kakizaki
  • Patent number: 8897334
    Abstract: A light emitting device includes first and second electrodes, a semiconductor laser element, a bonding wire, a transparent frame section, and a lid section. The first electrode includes a convex section, a bottom surface surrounding the convex section, and a first surface. The second electrode includes a first surface opposed to the bottom surface of the first electrode and a second surface. The second electrode includes an opening section and a step section receding toward the first surface from the second surface. The semiconductor laser element is provided on the convex section and includes a light-emitting layer. The bonding wire is capable of electrically connecting the semiconductor laser element and the step section. The transparent frame section surrounds the convex section and is bonded to the bottom surface and the first surface of the second electrode. The lid section is bonded to the second surface of the second electrode.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 25, 2014
    Assignee: Toshiba Lighting & Technology Corporation
    Inventors: Yuji Takeda, Junichi Kinoshita
  • Patent number: 8897327
    Abstract: A laser diode device including a housing having a mounting area in a cavity of the housing, at least one laser diode chip that emits electromagnetic radiation through a radiation exit area during operation, at least one covering element which is transmissive, at least in places, to the electromagnetic radiation generated by the laser diode chip during operation, and a deflection element, that directs at least part of the electromagnetic radiation generated by the laser diode chip during operation in a direction of the covering element, wherein the radiation exit area of the laser diode chip runs substantially transversely or substantially perpendicularly with respect to the mounting area and/or with respect to the covering element, the covering element connects to the housing, and the covering element tightly closes the housing.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: November 25, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karsten Auen, Uwe Strauss, Thomas Höfer
  • Patent number: 8891573
    Abstract: Use of semiconductor materials having a lattice constant of within +/?1.6% of 6.1 angstroms facilitates improved semiconductor device performance and new semiconductor structures, for example integration of field-effect devices and optoelectronic devices on a single wafer. High-mobility channels are enabled, improving device performance.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: November 18, 2014
    Assignee: Arizona Board of Regents
    Inventor: Yong-Hang Zhang
  • Patent number: 8891568
    Abstract: A laser diode device includes: a semiconductor substrate including a semi-polar surface, the semiconductor substrate being formed of a hexagonal III-nitride semiconductor; an epitaxial layer including a light emitting layer, the epitaxial layer being formed on the semi-polar surface of the semiconductor substrate, and the epitaxial layer including a ridge section; a first electrode formed on a top surface of the ridge section; an insulating layer covering the epitaxial layer in an adjacent region of the ridge section and a side surface of the ridge section, the insulating layer covering part or all of side surfaces of the first electrode continuously from the epitaxial layer; a pad electrode formed to cover a top surface of the first electrode and the insulating layer, the pad electrode being electrically connected to the first electrode; and a second electrode formed on a surface, of the semiconductor substrate, opposite to the semi-polar surface.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: November 18, 2014
    Assignees: Sony Corporation, Sumitomo Electric Industries, Inc.
    Inventors: Noriyuki Futagawa, Hiroshi Nakajima, Katsunori Yanashima, Takashi Kyono, Masahiro Adachi