Laser Array Patents (Class 372/50.12)
  • Patent number: 9263334
    Abstract: A method of severing a semiconductor device composite includes a carrier having a main surface and a semiconductor layer sequence arranged on the main surface including forming a separating trench in the semiconductor device composite by a first laser cut such that the separating trench only partially severs the semiconductor device composite in a vertical direction running perpendicular to the main surface, and severing the semiconductor device composite completely along the separating trench with a severing cut with a laser.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: February 16, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Guido Weiss, Albert Perchtaler
  • Patent number: 9202872
    Abstract: The present invention provides a method of growing an ingot of group III nitride. Group III nitride crystals such as GaN are grown by the ammonothermal method on both sides of a seed to form an ingot and the ingot is sliced into wafers. The wafer including the first-generation seed is sliced thicker than the other wafers so that the wafer including the first-generation seed does not break. The wafer including the first-generation seed crystal can be used as a seed for the next ammonothermal growth.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 1, 2015
    Assignees: SixPoint Materials, Inc., Seoul Semiconductor Co., Ltd.
    Inventors: Tadao Hashimoto, Edward Letts, Sierra Hoff
  • Patent number: 9184568
    Abstract: A wavelength variable light source according to the present invention includes: an MMI that includes an input side and an output side, the input side connecting to one end of each of a plurality of MMI input waveguides, and the output side connecting to a plurality of MMI output waveguides, the MMI multiplexing light input from each of the MMI input waveguides and outputting the multiplexed light to each of the MMI output waveguides; a plurality of DFB-LDs connected to the other end of each of the MMI input waveguides, each of the MMI output waveguides performing a single mode oscillation at a different wavelength; and two SOAs respectively connected to two MMI output waveguides of the MMI output waveguides, and having different gains from each other.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: November 10, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Mitsunobu Gotoda, Masakazu Takabayashi, Eitaro Ishimura
  • Patent number: 9130350
    Abstract: A laser device includes: an optical amplifier; a first reflector configured to reflect light output from the first optical end face of the optical amplifier; a ring resonator; an input optical waveguide optically coupled to the ring resonator; a reflector optical waveguide optically coupled to the ring resonator; a second reflector configured to reflect light that propagates in the reflector optical waveguide; an output optical waveguide; and a delay interferometer that includes first and second optical couplers and a pair of optical waveguides formed between the first optical coupler and the second optical coupler. The second optical end face of the optical amplifier and one port of the first optical coupler are optically coupled. A first port of the second optical coupler and the input optical waveguide are optically coupled. A second port of the second optical coupler and the output optical waveguide are optically coupled.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: September 8, 2015
    Assignee: FUJITSU LIMITED
    Inventor: Seokhwan Jeong
  • Patent number: 9121586
    Abstract: A lighting effect device is provided, which is used for equipment with an operation surface that has a reflective characteristic. The lighting effect device includes at least a light supply unit for forming a light layer above the operation surface. The light layer is not crossed with the operation surface, where at least part of light of the light layer forms a visible lighting effect around an operator after reflected by the operator entering the light layer. The device requires less light sources and no position detection, so that the device is inexpensive and reliable. At the same time, a dodging layer and/or a reflective layer improve lighting effect and provide user a better experience.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 1, 2015
    Assignees: BEIJING LENOVO SOFTWARE LTD., LENOVO (BEIJING) CO., LTD.
    Inventors: Baobao Ma, Xiaoli Fan, Lei Ma
  • Patent number: 9118160
    Abstract: Provided is a vertical-cavity surface-emitting laser (VCSEL). The VCSEL includes a silicon substrate, a lower reflective layer disposed on the silicon substrate, a light generation laser disposed on the lower reflective layer, and an upper reflective layer disposed on the light generation layer. The lower reflective layer, the light generation layer, and the upper reflective layer may include a III-V semiconductor light source-active layer monolithically integrated on a first impurity layer by wafer bonding.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: August 25, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyundai Park, Gyungock Kim
  • Patent number: 9089075
    Abstract: Various embodiments of an apparatus that simultaneously cools and thermally decouples adjacent electrically-driven devices in close proximity are provided. In one aspect, an apparatus comprises a first non-silicon heat sink and a first silicon-based heat sink disposed on the first non-silicon heat sink. The first silicon-based heat sink is configured to receive a first electrically-driven device on a first portion of the first silicon-based heat sink and to receive a second electrically-driven device on a second portion of the first silicon-based heat sink. The first silicon-based heat sink includes a first groove or a first opening between the first portion and the second portion such that a heat conduction path between the first electrically-driven device and the first non-silicon heat sink through the first silicon-based heat sink is shorter than a heat conduction path between the first electrically-driven device and the second electrically-driven device through the first silicon-based heat sink.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 21, 2015
    Inventors: Gerald Ho Kim, Jay Eunjae Kim
  • Patent number: 9042423
    Abstract: Improved brightness and feedback multi-emitter laser diode modules and methods are provided. A plurality of laser diode emitters emit broad-area light beams in a beam direction. In cross-section, each beam is broad in its slow axis and narrow in its fast axis. Groups of downstream optical components collimate, shape, stack and direct the beams along a light path towards a beam spot (which may be fiber-coupled). After collimating, stacking and directing, the beams are Fourier transformed in the fast-axis through a lens feature having a fast-axis focal length less than about 3 millimeters. In some embodiments, the fast-axis focal length is between about 0.1 and 2.0 millimeters. Astigmatism may be introduced between the fast axis and the slow axis in the beams upstream of the lens feature and in accordance with the fast axis focal length of the lens feature. The emitters may receive feedback including wavelength locking feedback.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: May 26, 2015
    Assignee: JDS Uniphase Corporation
    Inventor: Martin H. Muendel
  • Patent number: 9042424
    Abstract: A silicon-based thermal energy transfer apparatus that aids dissipation of thermal energy from a heat-generating device, such as an edge-emitting laser diode, is provided. In one aspect, the apparatus comprises a silicon-based base portion having a first primary surface and a silicon-based support structure. The silicon-based support structure includes a mounting end and a distal end opposite the mounting end with the mounting end received by the base portion such that the support structure extends from the first primary surface of the base portion. The support structure includes a recess defined therein to receive the edge-emitting laser diode. The support structure further includes a slit connecting the distal end and the recess to expose at least a portion of a light-emitting edge of the edge-emitting laser diode when the edge-emitting laser diode is received in the support structure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Inventors: Gerald Ho Kim, Jay Eunjae Kim
  • Patent number: 9036674
    Abstract: A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: May 19, 2015
    Assignees: Massachusetts Institute of Technology, LongWave Photonics LLC
    Inventors: Qing Hu, Alan Wei Min Lee, Tsung-Yu Kao
  • Patent number: 9031104
    Abstract: The laser mount arrangement can have a laser bar and a driver positioned adjacent to one another and secured against a connection face of a heat sink base. The heat sink base is connected to and forms a first electrical connection between the laser bar and the driver. A second electrical connection is also provided between the laser bar and the driver opposite the heat sink base, which can be in the form of a flexible metal sheet with a narrow upward fold. This arrangement can provide a low inductance path for the current.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 12, 2015
    Inventors: Jacques Godin, Martin Grenier, Louis Demers
  • Patent number: 9031105
    Abstract: A conduction cooled high power semiconductor laser and a method for fabricating the same are provided. The conduction cooled high power semiconductor laser comprises a heat sink (2) and one or more semiconductor laser units (1). The semiconductor laser unit consists of a laser chip (3), a substrate (4) bonded to the laser chip for heat dissipation and electrical connection, and an insulation plate (5) soldered to the substrate for insulation and heat dissipation. The semiconductor laser unit is soldered on the heat sink with the insulation plate therebetween. The semiconductor laser unit may be tested, aged, and screened in advance, and thereby the yield of the lasers can be improved and the manufacturing costs can be reduced. The laser has desirable heat dissipation performance, high reliability, and is applicable to high temperature and other complex and volatile environments.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: May 12, 2015
    Assignee: Xi'an Focuslight Technologies, Co., Ltd.
    Inventors: Jingwei Wang, Xingsheng Liu
  • Patent number: 9031107
    Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: May 12, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
  • Patent number: 9025635
    Abstract: A method and device for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, is provided. In various embodiments, the laser device includes plural laser emitters emitting green or blue laser light, integrated a substrate.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 5, 2015
    Assignee: Soraa Laser Diode, Inc.
    Inventors: Eric Goutain, James W. Raring, Paul Rudy, Hua Huang
  • Patent number: 9020005
    Abstract: A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: April 28, 2015
    Assignee: Sandia Corporation
    Inventors: Jeremy B. Wright, Igal Brener, Ganapathi S. Subramania, George T. Wang, Qiming Li
  • Patent number: 9020006
    Abstract: Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: April 28, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, David A. Fattal, Wayne V. Sorin, Sagi Varghese Mathai
  • Patent number: 9008147
    Abstract: A silicon-based thermal energy transfer apparatus that aids dissipation of thermal energy from a heat-generating device, such as an edge-emitting laser diode, is provided. In one aspect, the apparatus comprises a base portion and a support portion. The base portion is made of silicon and includes a first primary surface. The first primary surface includes at least first and second V-notch grooves thereon. The support portion is made of silicon and includes at least first and second edges that are interlockingly received in the first and second V-notch grooves when the support portion is mounted on the base portion.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: April 14, 2015
    Inventors: Gerald Ho Kim, Jay Eunjae Kim
  • Patent number: 8998427
    Abstract: A method of projecting an image is provided. The method includes the step of providing a first light source, the first light source emitting light at a first polarization. A second light source is provided adjacent the first light source, the second light source emitting light at a second polarization. A digital mirror device is provided (DMD), the DMD having a first axis. A mirror is provided optically disposed between the first light source, the second light source and the DMD, the mirror being adjacent the DMD. A first light is emitted from the first light source. The first light is reflected with the mirror onto the DMD. A second light is emitted from the second light source after the first light is emitted. The second light is reflected with the mirror onto the DMD.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventor: Casimer M. DeCusatis
  • Patent number: 9001856
    Abstract: A diode-laser bar package includes a water cooled metal heat-sink. An electrical-insulator-plate is bonded to the heat-sink with a soft solder. A metal sub-mount and a first electrode are bonded, spaced apart, on the electrical-insulator-plate. A solder-bridge fills the space between the first electrode and the sub-mount. A diode-laser bar is bonded to the sub-mount. A second electrode is bonded to the first electrode with an electrically insulating bond. Electrical connection between the second electrode and the diode-laser bar is made by a plurality of wire-bond electrical leads.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: April 7, 2015
    Assignee: Coherent, Inc.
    Inventors: Sergei Govorkov, John H. Jerman
  • Patent number: 8995493
    Abstract: A VCSEL array device formed of a monolithic array of raised VCSELs on an electrical contact and raised inactive regions connected to the electrical contact. The VCSELs can be spaced symmetrically or asymmetrically, in a manner to improve power or speed, or in phase and in parallel. The raised VCSELs and raised inactive regions are positioned between the electrical contact and an electrical waveguide. The VCSELs may be separated into subarrays and each VCSEL may be covered with an integrated or bonded microlens for directing light without external lenses. The microlenses may be offset to collect or collimate light and may be shaped to form various lens profiles.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: March 31, 2015
    Assignee: TriLumina Corp.
    Inventors: John R. Joseph, Richard F. Carson, Mial E. Warren, Kevin L. Lear
  • Patent number: 8985785
    Abstract: A projection system is provided. The system includes a first light source emitting light at a first polarization. A second light source is provided adjacent the first light source, the second light source emitting light at a second polarization. A digital mirror device (DMD) is provided having a first axis. A mirror optically is disposed adjacent the DMD between the first light source, the second light source and the DMD. The first light source and second light source emit light that is reflected onto the DMD.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventor: Casimer M. DeCusatis
  • Patent number: 8971372
    Abstract: A surface emitting laser device includes a substrate, a lower reflector, an active layer, an upper reflector, and surface emitting lasers configured to emit light. A second phase adjustment layer, a contact layer, a first phase adjustment layer, and a wavelength adjustment layer are successively layered from the active layer side. The total optical thickness from the active layer side of the second phase adjustment layer to the midsection of the wavelength adjustment layer is approximately (2N+1)×?/4, where ? represents a wavelength of light, and N represents a positive integer. The optical thickness from the active layer side of the second phase adjustment layer to the midsection of the contact layer is approximately N?/2. At least two of the surface emitting lasers have the wavelength adjustment layer arranged at different thicknesses and are configured to emit light with different wavelengths.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Ryoichiro Suzuki, Shunichi Sato
  • Patent number: 8971376
    Abstract: Multiple broad area lasers are coupled to a planar lightwave circuit, where the waveguides come together to form a single wide emitting aperture. A tapered lens is used at the output of the planar lightwave circuit to transform the highly asymmetric mode into a conventional round mode. This configuration allows much higher “brightness”, allowing 10 or more 100 um wide broad area lasers to be coupled into a single 100 um core multimode fiber. This is considerably more efficient than the standard method of combining a single 100 um wide broad area laser to a 100 um core multimode fiber.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 3, 2015
    Assignee: Kaiam Corp.
    Inventors: Bardia Pezeshki, John Heanue
  • Patent number: 8964805
    Abstract: An apparatus comprising a plurality of laser dice and a heat sink positioned between the laser dice and thermally coupled to the laser dice. Also included is an apparatus comprising a chip comprising a laser core, a stopper at least partially defining a groove, wherein the stopper and the groove are positioned adjacent to the chip, and a heater located between the laser core and the groove.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: February 24, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xiao A. Shen, Yu Sheng Bai
  • Patent number: 8958449
    Abstract: A surface-emitting laser device configured to emit laser light in a direction perpendicular to a substrate includes a p-side electrode surrounding an emitting area on an emitting surface to emit the laser light; and a transparent dielectric film formed on an outside area outside a center part of the emitting area and within the emitting area to lower a reflectance to be less than that of the center part. The outside area within the emitting area has shape anisotropy in two mutually perpendicular directions.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 17, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Kazuhiro Harasaka, Shunichi Sato, Naoto Jikutani
  • Patent number: 8948227
    Abstract: A light-emitting device, multi-channel light-emitting device, and method(s) of making the same are disclosed. The light-emitting device can include a substrate; a lower contact layer on or over the substrate comprising a first lower contact in a first region and a plurality of second lower contacts in a second region; a plurality of light-emitting thin film devices on or over the first lower contact in the first region; a plurality of light-modulating thin film devices on or over the plurality of second lower contacts in the second region; a plurality of first upper contacts on or over the plurality of light-emitting thin film devices; a plurality of second upper contacts on or over the plurality of light-modulating thin film devices; and an isolation region between the first and second regions, electrically separating the plurality of first upper contacts and the plurality of second upper contacts.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: February 3, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Near Margalit, Mark Heimbuch, Xingang Zhang
  • Patent number: 8926100
    Abstract: An illumination device includes a light source including plural light emitting devices arranged in a pattern and that generate and guide light, the light emitting devices having tilted gain regions wherein guiding directions of the light are tilted with respect to a perpendicular of output surfaces of the light source, an optical axis conversion device that bends optical axes of the light output from the light source, and a light distribution control device that controls a light distribution angle of the light output from the optical axis conversion device, wherein the light emitting devices are super luminescent diodes, and the light output from the light distribution control device diverge.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 6, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Yoshitaka Itoh, Hiroyasu Kaseya, Fumika Sumiyama, Junichi Okamoto
  • Publication number: 20150003484
    Abstract: Improved brightness and feedback multi-emitter laser diode modules and methods are provided. A plurality of laser diode emitters emit broad-area light beams in a beam direction. In cross-section, each beam is broad in its slow axis and narrow in its fast axis. Groups of downstream optical components collimate, shape, stack and direct the beams along a light path towards a beam spot (which may be fiber-coupled). After collimating, stacking and directing, the beams are Fourier transformed in the fast-axis through a lens feature having a fast-axis focal length less than about 3 millimeters. In some embodiments, the fast-axis focal length is between about 0.1 and 2.0 millimeters. Astigmatism may be introduced between the fast axis and the slow axis in the beams upstream of the lens feature and in accordance with the fast axis focal length of the lens feature. The emitters may receive feedback including wavelength locking feedback.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Applicant: JDS Uniphase Corporation
    Inventor: Martin H. Muendel
  • Patent number: 8917750
    Abstract: Provided is a III-nitride semiconductor laser diode which is capable of lasing at a low threshold. A support base has a semipolar or nonpolar primary surface. The c-axis Cx of a III-nitride is inclined relative to the primary surface. An n-type cladding region and a p-type cladding region are provided above the primary surface of the support base. A core semiconductor region is provided between the n-type cladding region and the p-type cladding region. The core semiconductor region includes a first optical guide layer, an active layer, and a second optical guide layer. The active layer is provided between the first optical guide layer and the second optical guide layer. The thickness of the core semiconductor region is not less than 0.5 ?m. This structure allows the confinement of light into the core semiconductor region without leakage of light into the support base, and therefore enables reduction in threshold current.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: December 23, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masahiro Adachi, Shinji Tokuyama, Yohei Enya, Takashi Kyono, Yusuke Yoshizumi, Katsushi Akita, Masaki Ueno, Koji Katayama, Takatoshi Ikegami, Takao Nakamura
  • Patent number: 8891579
    Abstract: A laser diode apparatus including a mounting block, a plurality of diode lasers mounted to the mounting block and each capable of emitting a respective diode laser beam, and a plurality of cylindrical mirrors each having a reflective back surface for providing slow axis collimation of an incident diode laser beam via reflection off the back surface, each one of the plurality of cylindrical mirrors optically coupled to a respective diode laser of the plurality of diode lasers and optically oriented therewith so as to be capable of providing the diode laser beams in a stacked arrangement.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 18, 2014
    Assignee: nLIGHT Photonics Corporation
    Inventors: Kirk Price, Scott Lerner
  • Patent number: 8891569
    Abstract: The present invention relates to a VCSEL array comprising several VCSELs arranged side by side on a common substrate (1). Each VCSEL is formed of at least a top mirror (5, 14), an active region (4), a current injection layer (3) and an undoped bottom semiconductor mirror (2). The current injection layer (3) is arranged between the active region (4) and the bottom semiconductor mirror (2). At least an upper layer of the substrate (1) is electrically conducting. Trenches (8) and/or holes are formed between the bottom semiconductor mirrors (2) of said VCSELs to said upper layer of said substrate (1). A metallization (9) electrically connects the upper layer of the substrate (1) with the current injection layer (3) through said trenches (8) and/or holes. The proposed VCSEL array allows a homogeneous current injection an has a high efficiency and power density.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 18, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Philipp Henning Gerlach
  • Patent number: 8879600
    Abstract: A surface emitting laser array element is disclosed that includes a lower distributed bragg reflector (DBR) that is formed on a substrate, an active layer that is formed on the lower DBR, and an upper DBR that is formed on the active layer. A mesa and a dummy mesa that is arranged at a periphery of the mesa are created by removing a portion of the upper DBR. The mesa forms a surface emitting laser, and a wiring is connected to an electrode that is formed on an upper face of the mesa. The wiring includes a portion that is arranged over an upper face of the dummy mesa, a side face of the dummy mesa, and a bottom face at a peripheral region of the dummy mesa extending along a longitudinal direction of the wiring.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 4, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Katsunari Hanaoka, Masayuki Numata, Hiroyoshi Shouji
  • Patent number: 8866041
    Abstract: A manufacturing method of laser diode unit of the present invention includes steps: placing a laser diode on top of a solder member formed on a mounting surface of a submount, applying a pressing load to the laser diode and pressing the laser diode against the solder member, next, melting the solder member by heating the solder member at a temperature higher than a melting point of the solder member while the pressing load is being applied, and thereafter, bonding the laser diode to the submount by cooling and solidifying the solder member, thereafter, removing the pressing load, and softening the solidified solder member by heating the solder member at a temperature lower than the melting point of the solder member after the pressing load has been removed, and thereafter cooling and re-solidifying the solder member.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 21, 2014
    Assignees: TDK Corporation, Rohm Co., Ltd, SAE Magnetics (H.K.) Ltd.
    Inventors: Koji Shimazawa, Osamu Shindo, Yoshihiro Tsuchiya, Yasuhiro Ito, Kenji Sakai
  • Patent number: 8861557
    Abstract: A wavelength-tunable light source includes light sources having differing variable wavelength regions, where light sources having adjacent wavelength regions are distributed to different systems. The light sources are each set such that an end portion of the variable wavelength region of the light source overlaps an end portion of the variable wavelength region of another light source. A control unit selects and drives a first light source of a first system, varies a wavelength of the first light source, selects a second light source that is of a second system among the different systems and that has a wavelength region overlapping the variable wavelength region of the first light source, drives the second light source concurrently with the first light source and subsequently switches to the output light of the second light source, causing wavelength variation and executing continuous wavelength variation over a wide range.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Fujitsu Limited
    Inventors: Goji Nakagawa, Takeshi Hoshida
  • Patent number: 8855155
    Abstract: In at least one embodiment of the semiconductor laser light source, the latter includes a carrier and at least two semiconductor lasers. The semiconductor lasers are mounted on a carrier top. The semiconductor laser light source furthermore includes at least one optical component, which is arranged downstream of at least one of the semiconductor lasers in a direction of emission. The semiconductor lasers and the optical component are housed tightly in a common enclosure by way of a cover. The dimensions of the enclosure, viewed in three orthogonal spatial directions, amount in each case to at most 8 mm×8 mm×7 mm.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: October 7, 2014
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Stephan Lutgen, Stefan Groetsch
  • Patent number: 8848757
    Abstract: A VCSEL array device formed of a monolithic array of raised VCSELs on an electrical contact and raised inactive regions connected to the electrical contact. The VCSELs can be spaced symmetrically or asymmetrically, in a manner to improve power or speed, or in phase and in parallel. The VCSELs include an active region positioned between two mirrors generating a pulsed light operating at a frequency of at least 1 GHz. The VCSELs having an output power of at least 120 mW. The raised VCSELs and raised inactive regions are positioned between the electrical contact and an electrical waveguide.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: September 30, 2014
    Assignee: Trilumina Corp.
    Inventor: John Joseph
  • Patent number: 8848755
    Abstract: A system and method for providing laser diodes with broad spectrum is described. GaN-based laser diodes with broad or multi-peaked spectral output operating are obtained in various configurations by having a single laser diode device generating multiple-peak spectral outputs, operate in superluminescene mode, or by use of an RF source and/or a feedback signal. In some other embodiments, multi-peak outputs are achieved by having multiple laser devices output different lasers at different wavelengths.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 30, 2014
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Mathew C. Schmidt, Yu-Chia Chang
  • Patent number: 8829393
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 8817837
    Abstract: An exemplary laser system is disclosed which includes a pump laser diode array and laser gain material, in which the array generates optical radiation having a predetermined total linewidth approximately 20 nm wide constructed from a plurality of individual wavelengths with a linewidth of up to 8 nm, the center wavelength of radiation being for example within the absorption band of laser gain material used at the center point of the operating temperature of the array. The system can include a highly reflecting plane mirror with periodic transmitting patches placed between the laser diode array and the laser gain material, the size of the transmitting patches being such that minimal pump radiation is lost.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 26, 2014
    Assignee: Selex ES Ltd
    Inventors: John Barr, Andrew White, Stephen Moore
  • Patent number: 8811445
    Abstract: A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: August 19, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Robert J. Deri, Diana Chen, Andy Bayramian, Barry Freitas, Jack Kotovsky
  • Patent number: 8804782
    Abstract: A water-cooled heat-sink for a diode-laser bar includes a copper-cooling-unit having an integral mount thereon for the diode-laser bar. The copper-cooling-unit is attached to a steel base-unit. The base-unit and the cooling-unit are cooperatively configured such that at least one cooling-channel is formed in the cooling-unit by the attachment of the base-unit to the cooling-unit. The cooling-channel is positioned to cool the mount when cooling-water flows through the cooling-channel.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: August 12, 2014
    Assignee: Coherent, Inc.
    Inventors: David Schleuning, Athanasios Chryssis
  • Publication number: 20140219683
    Abstract: A surface-emitting laser device includes a transparent dielectric layer provided in an emitting region and configured to cause a reflectance at a peripheral part to be different from a reflectance at a central part in the emitting region. In the surface-emitting laser device, the thickness of a contact layer is different between a region having a relatively high reflectance and a region having a relatively low reflectance in the emitting region. The contact layer is provided on the high refractive index layer of an upper multilayer film reflecting mirror, and the total optical thickness of the high refractive index layer and the contact layer in the region having the relatively low reflectance is deviated from an odd number multiple of a one quarter oscillation wavelength of laser light emitted from the emitting region.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: RICOH COMPANY, LTD.
    Inventors: Kazuhiro Harasaka, Shunichi Sato, Masahiro Hayashi, Akihiro Itoh, Katsunari Hanaoka
  • Patent number: 8792531
    Abstract: A transmitter is disclosed including a laser array comprising a plurality of lasers spatially offset from one another and each having a laser output having a unique wavelength. A first prism is positioned to impart a first angular shift to the laser outputs to produce and a second prism is positioned to impart a second angular shift opposite the first angular shift on the outputs. An index modulating element is coupled to one of the first and second prisms and a controller is electrically coupled to the index modulating element to control an angle of light output form the second prism. An optical spectrum reshaper may be positioned between the second prism and the lens and have at least one transmission edge aligned with the wavelength at least one of the lasers.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: July 29, 2014
    Assignee: Finisar Corporation
    Inventor: Kevin J. McCallion
  • Patent number: 8787420
    Abstract: Integrated are: semiconductor lasers of distributed feedback type that oscillate in single mode at emission wavelengths different from one another; a coupler that has as many input ports as the semiconductor lasers, the input ports to which output light from the semiconductor lasers are input, the coupler guiding and outputting the output light; and an amplifier that amplifies the output light from the coupler, and a predetermined relation holds true, where “N” is the number of the semiconductor lasers, “Ldfb” is a cavity length of each of the semiconductor lasers, “??0” is a spectral linewidth of laser light output therefrom, “Lsoa” is an amplifier length of the amplifier, “A” is an amplification factor of the amplifier, “??” is a spectral linewidth of amplified laser light output therefrom, and “R” is ??/??0.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: July 22, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Tatsuya Kimoto, Go Kobayashi, Toshikazu Mukaihara
  • Patent number: 8774244
    Abstract: A laser source assembly for providing an assembly output beam includes a first emitter, a second emitter, and a third emitter. The first emitter emits a first beam along a first beam axis that is substantially parallel to and spaced apart from an assembly axis. The second emitter emits a second beam along a second beam axis that is substantially parallel to and spaced apart from the assembly axis. The third emitter emits a third beam along a third beam axis that is substantially parallel to and spaced apart from the assembly axis. The first beam axis, the second beam axis and the third beam axis are positioned spaced apart about and substantially equidistant from the assembly axis.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 8, 2014
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, David F. Arnone, Matt Barre, David P. Caffey, Salvatore F. Crivello, Timothy Day, Kyle Thomas
  • Patent number: 8767790
    Abstract: Laser modules using two-dimensional laser diode arrays are combined to provide an intense laser beam. The laser diodes in a two-dimensional array are formed into rows and columns, and an optical assembly images light generated by laser diodes in a column into an optical fiber. The laser light outputs of the laser modules are combined by a spectral combiner into an optical fiber to form an intense laser beam.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: July 1, 2014
    Assignee: Mind Melters, Inc.
    Inventor: Donald L. Sipes, Jr.
  • Patent number: 8761222
    Abstract: A light source, e.g., for optical excitation of a laser device, includes a diode laser having a large number of emitters and a light-guiding device, the light-guiding device including a large number of optical fibers. Each fiber has a first end and a lateral surface, the first ends being arranged relative to the emitters in such a manner that light generated by the emitters is coupled into the first ends of the optical fibers, the optical fibers being arranged in abutting relationship along their lateral surfaces at least in the region of their first ends. The optical fibers are connected in the region of their first ends to a fiber support.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Stoppel, Werner Herden, Hans-Jochen Schwarz, Andreas Letsch
  • Patent number: 8755421
    Abstract: High-power, phased-locked, laser arrays as disclosed herein utilize a system of optical elements that may be external to the laser oscillator array. Such an external optical system may achieve mutually coherent operation of all the emitters in a laser array, and coherent combination of the output of all the lasers in the array into a single beam. Such an “external gain harness” system may include: an optical lens/mirror system that mixes the output of all the emitters in the array; a holographic optical element that combines the output of all the lasers in the array, and an output coupler that selects a single path for the combined output and also selects a common operating frequency for all the coupled gain regions.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: June 17, 2014
    Assignee: PD-LD, Inc.
    Inventor: Boris Leonidovich Volodin
  • Patent number: 8743923
    Abstract: Embodiments of the invention describe an illuminator having a light source to originate an illumination beam, wherein the light source further comprises a set of vertical-cavity surface emitting lasers (VCSELs), including a first VCSEL having a first laser emission wavelength, and a second VCSEL having a second laser emission wavelength different than the first laser emission wavelength. Thus, by varying laser emission wavelengths of VCSELs in a VCSEL array, embodiments of the invention produce low-contrast speckle, and do not limit the imaging capabilities of the host illumination system. In some embodiments of the invention, vertical external cavity surface emitting lasers (VECSELs) are utilized to produce the above described varying laser emission wavelengths.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 3, 2014
    Assignee: FLIR Systems Inc.
    Inventors: Jonathan Geske, Chad Wang, Elliot Burke
  • Patent number: 8737441
    Abstract: This invention relates to semiconductor lasers, and more particularly, to a cooling module for fabricating a liquid-cooled semiconductor laser, a fabricating method, and a semiconductor laser fabricated from the module, wherein the cooling module for a laser makes use of a liquid cooling plate provided with radiating fins to cool the semiconductor chip. After replacement of the traditional micro-channel structure with the radiating fin structure, the present invention effectively reduces the resistance to flow of the cooling liquid, remarkably lowers the pressure decrease of the cooling liquid, makes it easier to seal the cooling liquid, provides stronger heat dissipating capability, effectively elongates the lifetime of the semiconductor laser, and enhances the output power and reliability of the semiconductor laser, alongside the advantages of simple fabrication and low production cost.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: May 27, 2014
    Assignee: Xi'an Focuslight Technologies Co., Ltd.
    Inventor: Xingsheng Liu