Fluidized Bed Patents (Class 422/139)
  • Patent number: 8956584
    Abstract: Production of polycrystalline silicon in substantially closed-loop processes and systems is disclosed. The processes and systems generally involve disproportionation of trichlorosilane to produce silane or dichlorosilane and thermal decomposition of silane or dichlorosilane to produce polycrystalline silicon.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: February 17, 2015
    Assignee: SunEdison, Inc.
    Inventors: Puneet Gupta, Yue Huang, Satish Bhusarapu
  • Patent number: 8940255
    Abstract: Disclosed are process and apparatus for vertical splitting of the oxygen supply to a post-oxidation reactor. Further disclosed are process and apparatus for supplying reaction medium to a post-oxidation reactor at a mid-level inlet. Such apparatus and process can assist in reducing oxygen pinch throughout the post-oxidation reactor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 27, 2015
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Ashfaq Shaikh, Alan George Wonders
  • Patent number: 8936761
    Abstract: Embodiments of apparatuses and risers for reacting a feedstock in the presence of a catalyst and methods for fabricating such risers are provided. In one example, a riser comprises a sidewall that defines a cylindrical housing surrounding an interior. The sidewall has a groove formed therein disposed about the interior. A plurality of baffle sections is disposed in the groove. The baffle sections are configured to be packed together in the groove to define a packed condition and to be moved in the groove so as to spread out the baffle sections from the packed condition to define an expanded condition and form a baffle ring. The baffle ring extends inwardly in the interior.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Michael S. Sandacz, Robert L. Mehlberg
  • Patent number: 8936756
    Abstract: The apparatus herein provide a catalyst cooler with a vent that communicates fluidizing gas to a lower chamber of a regenerator. Air that is used as fluidizing gas can then be consumed in the regenerator without promoting after burn in the upper chamber.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Daniel N. Myers
  • Patent number: 8936757
    Abstract: Apparatuses and processes are provided for stripping gaseous hydrocarbons from particulate material. One process comprises the step of contacting particles containing hydrocarbons with a stripping vapor in countercurrent flow to remove at least a portion of the hydrocarbons with the stripping vapor to form stripped particles. Contacting the particles includes advancing the particles down a sloping element of a structured packing toward a reinforcing rod that is disposed along a lower channel portion of the sloping element. The particles are advanced over the reinforcing rod. The particles are contacted with the stripping vapor that is rising up adjacent to the lower channel portion.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Erick D. Gamas-Castellanos, Mitchell John Kowalczyk
  • Patent number: 8936767
    Abstract: Disclosed are process and apparatus for vertical splitting of the oxygen supply to a post-oxidation reactor. Further disclosed are process and apparatus for supplying reaction medium to a post-oxidation reactor at a mid-level inlet. Such apparatus and process can assist in reducing oxygen pinch throughout the post-oxidation reactor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 20, 2015
    Assignee: Grupo Petrotemex. S.A. DE C.V.
    Inventors: Ashfaq Shaikh, Alan George Wonders, David Lange
  • Patent number: 8936831
    Abstract: The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: January 20, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Jie Li, Yung Y. Liu
  • Publication number: 20150017085
    Abstract: Methods and apparatus for precipitating dissolved materials from a solution involve reduction of fines. In an embodiment, the method comprises: introducing a solution into a reactor, causing the dissolved materials in the solution to precipitate into crystals under a first reaction condition, adjusting the reaction condition from the first reaction condition to a second reaction condition, maintaining the reaction condition in the second reaction condition to cause a sub-population of the crystals to dissolve, and adjusting the reaction condition from the second reaction condition to the first reaction condition. In an embodiment, the apparatus comprises a reaction tank, a recycling path and at least an acid injector which is configured for dosing an acid into solution flow in the recycling path.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Ahren Thomas Britton, Donald R. Clark, Ram Prasad Melahalli Sathyanarayana
  • Publication number: 20150017081
    Abstract: The present invention relates to a method for capturing carbon dioxide CO2 by carbonation in a circulating fluidized bed (CFB) carbonation reactor wherein temperature profile is adjusted by recirculation of solid fractions of metal oxide MeO and metal carbonate MeCO3 to the CFB carbonation reactor. Also a system recirculating the metal oxide MeO and metal carbonate MeCO3 is provided by the invention.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Michael Charles BALFE, Olaf Stallmann, Gerhard Heinz
  • Patent number: 8932373
    Abstract: The invention relates to a device for using oxygen for the thermochemical gasification of biomass in at least one fluidized-bed reactor, a heating system being located in the fluidized bed of said reactor and the fluidized-bed reactor being heated by the at least partial oxidation of a combustible gas using oxygen.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: January 13, 2015
    Inventor: Karl-Heinz Tetzlaff
  • Publication number: 20150011811
    Abstract: Disclosed is a system and method for cooling and relieving pressure of the bottom product produced by the fluidized-bed gasification of biomass, brown coal, or hard coal having a high ash content. With such a method and system, an economic solution for cooling and pressure expansion of the bottom product produced is to be ensured, which is achieved by the bottom product leaving the fluidized bed at a maximum of 1500° C. and a pressure of up 40 bar, being fed to an intermediate store, then being fed from the intermediate store to a pressure tank having a cooling system, and then being fed to a pressure release system.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 8, 2015
    Applicant: ThyssenKrupp Industrial Solutions AG
    Inventors: Domenico Pavone, Ralf Abraham, Dobrin Toporov
  • Patent number: 8926907
    Abstract: Systems for loading catalyst and/or additives into a fluidized catalytic cracking unit are disclosed. Methods of making and using the systems are also disclosed.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: January 6, 2015
    Assignee: W. R. Grace & Co.-Conn
    Inventor: Lenny Lee Albin
  • Patent number: 8926918
    Abstract: The present invention provides isothermal multitube reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors utilize a feed mixture inlet temperature at least 20° C. different from a desired reaction temperature.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: January 6, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Max Markus Tirtowidjojo, Hua Bai, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt Frederick Hirsekorn, Manfred Kokott, William J. Kruper, Jr., Thomas Ulrich Luebbe, Avani Maulik Patel, Shirley Shaw Sexton, Peter Wenzel, Marcus Wobser
  • Publication number: 20150004067
    Abstract: The present application generally relates to a fluidized catalytic cracking apparatus having one or more ports for injecting a renewable fuel oil for co-processing the renewable fuel oil and a petroleum fraction.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Barry A. Freel, Robert G. Graham
  • Patent number: 8920736
    Abstract: A loop seal for a fluidized bed reactor comprising a vertical downcomer segment connected to a dipleg for receiving solids particles from the dipleg, a horizontal segment downstream of the downcomer, a riser segment downstream of the horizontal segment, and a downwardly inclined segment downstream of the riser, whereby the solids are entrained to the fluidized bed reactor. An eductor is added to the angled leg to induce the underflow gas from the cyclone; one of the preferred motive fluids to the eductor is the fines from fuel preparation and the carrying gas for the fines. Also provided are a fluidized bed reactor comprising the loop seal, and a method for producing syngas from coal and steam using the same.
    Type: Grant
    Filed: June 5, 2010
    Date of Patent: December 30, 2014
    Assignee: Synthesis Energy Systems, Inc.
    Inventor: Guohai Liu
  • Patent number: 8920632
    Abstract: The present invention describes a process for the production of gasoline and for the co-production of propylene employing a catalytic cracking unit having at least one principal reactor operating in riser mode or in downer mode, processing a conventional heavy feed, and in which the principal reactor further processes a feed primarily constituted by olefinic C4, C5 and C6 cuts introduced upstream or as a mixture with said heavy feed, said olefinic feed deriving from the inter-stage of the wet gas compressor, i.e. upstream of the separation section of the catalytic cracking unit.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: December 30, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Frederic Feugnet, Romain Roux
  • Publication number: 20140374661
    Abstract: A method for producing synthesis gas by gasifying a biomass in a fluidized bed is disclosed wherein the biomass is fed to a fluidized bed gasifier. In order to eliminate vapor-forming alkalis produced during the gasification, the method brings the synthesis gas into contact with getter ceramics.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 25, 2014
    Applicant: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventors: Max Heinritz-Adrian, Ralf Abraham, Domenico Pavone
  • Publication number: 20140377158
    Abstract: A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Herbert E. Andrus, JR., Glen D. Jukkola, Paul R. Thibeault, Gregory N. Liljedahl
  • Patent number: 8915980
    Abstract: A process for the discharge of slag and ash from a gasification reactor is disclosed. These solids are directed from the gasification reactor into a water bath housed with the gasification reactor in a pressure vessel. There are at least two lock hoppers underneath the water bath which are fed with a stream of water/solids via a pipe and a flow divider element, it being possible to supply the lock hoppers individually and in a controlled manner with a stream of water/solids via shut-off devices. The filling is performed in a manner that encourages the sett-ling process by withdrawing a stream of liquid from the lock hopper being filled, the filling time being controlled so as to prevent the solids settling above the valves and lock hoppers. Also disclosed is an apparatus with at least two lock hoppers underneath the water bath of a gasification reactor, there being, in an advantageous embodiment, a flow divider element and shut-off devices between the water bath and the lock hoppers.
    Type: Grant
    Filed: July 11, 2009
    Date of Patent: December 23, 2014
    Assignee: UHDE GmbH
    Inventor: Christoph Hanrott
  • Publication number: 20140369921
    Abstract: Catalyst support means for producing a fluid catalyst; a reduction basin that pretreats an active metal of the obtained fluid catalyst in a reducing atmosphere; a fluid bed reactor which is supplied with a reduction-treated fluid catalyst having undergone the reduction, for producing a nanocarbon material; and a moisture application basin for supplying a slight amount of moisture to a source gas to be supplied to the aforementioned fluid bed reactor are provided.
    Type: Application
    Filed: February 26, 2013
    Publication date: December 18, 2014
    Inventors: Tomoaki Sugiyama, Kiyoshi Tatsuhara, Ikumasa Koshiro, Atsushi Tanaka, Yasushi Mori, Takashi Kurisaki
  • Patent number: 8911673
    Abstract: A process and apparatus described is for distributing hydrocarbon feed to catalyst in a riser. Hydrocarbon feed is delivered to a plenum in the riser. Nozzles from the plenum inject feed into the riser to contact the catalyst. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around an insert in a lower section of a riser. The plenum may be located in the riser.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Roger L. Throndson, Paolo Palmas, Lev Davydov, Mohammad-Reza Mostofi-Ashtiani
  • Patent number: 8906313
    Abstract: Gas distribution units of fluidized bed reactors are configured to direct thermally decomposable compounds to the center portion of the reactor and away from the reactor wall to prevent deposition of material on the reactor wall and process for producing polycrystalline silicon product in a reactor that reduce the amount of silicon which deposits on the reactor wall.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 9, 2014
    Assignee: SunEdison, Inc.
    Inventors: Milind S. Kulkarni, Puneet Gupta, Balaji Devulapalli, Jameel Ibrahim, Vithal Revankar, Kwasi Foli
  • Publication number: 20140356264
    Abstract: The invention relates to a method for cleaning exhaust gases, in which an exhaust gas and a sorbent are combined in a fluidized bed reactor. In a subsequent filter system, solid matter is segregated, and thereafter, up to 99 per cent of the sorbent is re-channeled into the fluidized bed reactor, wherein the gas is subjected to a rotation around the flow axis in the fluidized bed reactor.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 4, 2014
    Applicant: Lujiang Environment Technology Co., Ltd
    Inventor: Harald Sauer
  • Patent number: 8894939
    Abstract: A reactor for carrying out a chemical reaction in a three phase slurry system providing a horizontal reaction vessel with a cross sectional area which is dependent on the vessel length, vessel diameter, and axial position. The vessel has a gas inlet at or near the bottom of the reaction vessel and a gas distributor. The gas product exits the vessel by conduit means at or near the top of the reaction vessel. The vessel includes a plurality of horizontal cooling coils to provide a cooling medium to the slurry. In the reaction vessel, the synthesis gas has an average linear velocity which is a function of the vessel cross sectional area.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 25, 2014
    Assignee: Emerging Fuels Technology, Inc.
    Inventors: Rafael Espinoza, Kenneth L. Agee
  • Patent number: 8888899
    Abstract: Systems and methods for gasifying a feedstock are provided. A gasifier can include a transfer line having a first leg and a second leg. A first end of the first leg can be adapted to be coupled to a cyclone and a second end of the first leg can be coupled to a first end of the second leg. The second end of the second leg can be adapted to be coupled to a standpipe. A centerline through the first leg can be oriented at an angle with a centerline through the second leg of from about 40° to about 140°.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: November 18, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Iwan H. Chan, Yongchao Li
  • Patent number: 8889077
    Abstract: The aim of the invention is to devise a flue gas purification system which allows the use of only one absorber even for large systems. The flue gas purification system according to the invention comprises a fluidized-bed reactor having a flue gas inlet unit and a flue gas outlet unit, a nozzle unit being mounted downstream of the flue gas inlet unit. Said nozzle unit is provided with nozzles, said nozzles having different cross-sections.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: November 18, 2014
    Assignee: Hamon Enviroserv GmbH
    Inventors: Markus Feldkamp, Rüdiger Baege, Markus Dickamp, Theo Risse, Christian Moser
  • Patent number: 8883082
    Abstract: A distributor for a circulating dry scrubber reactor includes a venturi section with a venturi section wall extending from a venturi section inlet to a venturi section outlet along a longitudinal axis, with the venturi section inlet connected to an inlet plenum and the venturi section outlet connected to a circulating dry scrubber reactor. A hub is mounted within the venturi section wall with an annular converging-diverging flow path defined between the venturi section wall and the hub for distribution of gas flow from the venturi section outlet into a circulating dry scrubber reactor space and for maintaining stable bed fluidization in a CDS system at a comparatively low system pressure loss.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 11, 2014
    Assignee: Babcock Power Development LLC
    Inventors: Matthew Quitadamo, Kimbal Hall, Martin J. Kozlak, Angelos Kokkinos
  • Publication number: 20140328724
    Abstract: A system and method thereof are provided for multi-stage processing of one or more precursor compounds into a battery material. The system includes a mist generator, a drying chamber, one or more gas-solid separators, and one or more in-line reaction modules comprised of one or more gas-solid feeders, one or more gas-solid separators, and one or more reactors. Various gas-solid mixtures are formed within the internal plenums of the drying chamber, the gas-solid feeders, and the reactors. In addition, heated air or gas is served as the energy source within the processing system and as the gas source for forming the gas-solid mixtures to facilitate reaction rate and uniformity of the reactions therein. Precursor compounds are continuously delivered into the processing system and processed in-line through the internal plenums of the drying chamber and the reaction modules into final reaction particles useful as a battery material.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 6, 2014
    Inventor: LIang-Yuh Chen
  • Patent number: 8877138
    Abstract: Injection nozzles for use in a gas distribution device are disclosed. In one aspect, the injection nozzle may include: a tube having a fluid inlet and a fluid outlet; wherein the inlet comprises a plurality of flow restriction orifices. In another aspect, embodiments disclosed herein relate to an injection nozzle for use in a gas distribution device, the injection nozzle including: a tube having a fluid inlet and a fluid outlet; wherein the fluid inlet comprises an annular orifice surrounding a flow restriction device. Injection nozzles according to embodiments disclosed herein may be disposed in a gas distribution manifold used in a vessel, for example, for conducting polymerization reactions, spent catalyst regeneration, and coal gasification, among others.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: November 4, 2014
    Assignee: Lummus Technology Inc.
    Inventors: Leonce Francis Castagnos, Jr., Ting Yee Chan, Norman Paul Kolb, Ronald Eugene Pieper
  • Patent number: 8877147
    Abstract: A system for converting fuel is provided and includes a first reactor comprising a plurality of ceramic composite particles, the ceramic composite particles comprising at least one metal oxide disposed on a support, wherein the first reactor is configured to reduce the at least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide; a second reactor configured to oxidize at least a portion of the reduced metal or reduced metal oxide from the said first reactor to produce a metal oxide intermediate; a source of air; and a third reactor communicating with said source of air and configured to regenerate the at least one metal oxide from the remaining portion of the solids discharged from the said first reactor and the solids discharged from the said second reactor by oxidizing the metal oxide intermediate.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 4, 2014
    Assignee: The Ohio State University
    Inventors: Liang-shih Fan, Fanxing Li
  • Patent number: 8877132
    Abstract: Fluid catalytic cracking units having risers with improved hydrodynamics through the use of baffles are described. The baffles break up the high concentration of catalyst in the slower moving outer annulus and redistribute it into the faster moving, more dilute center of the riser flow.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Daniel R. Johnson, Lev Davydov
  • Publication number: 20140314629
    Abstract: The present invention provides a hybrid gasification system which simultaneously has the advantages of an entrained-flow gasifier using pulverized fuel and a fluidized-bed gasifier utilized for gasifying fuel with relatively various properties. The present intention provides a hybrid gasification system employing a structure in which a second reaction chamber operated at a temperature of 700 to 900 is surrounded by a first reaction chamber operated at temperature, thereby obtaining an insulation effect, performing additional heat exchange, and minimizing a heat loss. Furthermore, the present invention provides a hybrid gasification system having a structure in which unreacted substances and tar within synthetic gas generated from a first reaction chamber reacts within a second reaction chamber, thereby increasing the entire gasification efficiency.
    Type: Application
    Filed: December 21, 2012
    Publication date: October 23, 2014
    Inventors: Uen Do Lee, Wong Yang, Dong Ho Park, Jeong Woo Lee, Young Doo Kim, Ji Hong Moon, Kwang Soo Kim, Chang Won Yang, Beom Jong Kim
  • Patent number: 8864979
    Abstract: One exemplary embodiment can be a process for fluid catalytic cracking. The process can include sending a first catalyst from a first riser reactor and a second catalyst from a second riser reactor to a regeneration vessel having a first stage and a second stage. The first catalyst may be sent to the first stage and the second catalyst may be sent to the second stage of the regeneration vessel. Generally, the first stage is positioned above the second stage.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventor: Paolo Palmas
  • Patent number: 8864880
    Abstract: Described is an apparatus useful for mechanically delaying formation of or breaking a pocket and a method of delaying formation of or breaking a gas pocket employing the apparatus.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Kishore K. Kar, Madan Somasi, Richard F. Cope, James J. Pressler, David J. Adrian
  • Patent number: 8858890
    Abstract: The aim of the invention is to devise a flue gas purification system which allows the use of only one absorber even for large systems. The flue gas purification system according to the invention comprises a fluidized-bed reactor having a flue gas inlet unit and a flue gas outlet unit, the flue gas outlet unit having at least two flue gas outlets which are arranged at an angle to each other.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 14, 2014
    Assignee: Hamon Enviroserv GmbH
    Inventors: Markus Feldkamp, Rüdiger Baege, Markus Dickamp, Joachim Greimann, Christian Moser
  • Publication number: 20140298953
    Abstract: The present invention relates to a method and gasification system for recycling methane-rich gas from syngas stream emanating from fluidized bed reactor and then returning the methane to the fluidized bed reactor. The method comprises recovering methane-rich gas from the synthesis gas and delivering at least a portion of the recovered methane-rich gas to the fluidized bed reactor. Methods to recover methane-rich gas from syngas at different steps in the gasification system are also provided herein.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 9, 2014
    Inventors: JOHN WINTER, TAKAHIRO OBASE
  • Publication number: 20140291250
    Abstract: The present invention concerns a nano-structured composite material based on compositions of manganese and cerium, composed of aggregated composite nanospheres, ranging in size from 1 to 40 nm, of ultrafine crystalline nanoparticles of one or more compounds of cerium, dispersed in a metastable solid mixture of one or more sub-stoichiometric oxides of manganese, said sub-stoichiometric oxides of manganese comprising MeMnOz manganates, wherein 1?z?4, Me being constituted of one or more elements selected amongst alkali metals, alkaline earth metals, transition metals and rare earths, and in particular being constituted of one or more elements selected amongst Ce, V, Ti, Cr, Fe, Cu, Zn, Sn, Ga, Gd, Y, Zr, Al, Si, La, K, Li, Pb, Cs, or mixtures thereof; which can be used in the industry as redox catalyst and/or adsorbing filter of heavy metals, cyanides, sulfur compounds, pigments, dyes, polymers (PEG), phenols, alcohols, aldehydes and ketones, ethers, esters and carboxylic acids which are present both in contamin
    Type: Application
    Filed: June 8, 2012
    Publication date: October 2, 2014
    Inventors: Francesco Arena, Lorenzo Spadaro
  • Patent number: 8840846
    Abstract: An apparatus for catalytic cracking of feedstock includes a first channel in which a feedstock is treated with an adsorbent to obtain a treated intermediate. The apparatus further comprises a separator-reactor vessel. The separator-reactor vessel includes an adsorbent separating region to remove the adsorbent from the treated intermediate. The separator-reactor vessel further includes a second channel connected to the adsorbent separating region. The treated intermediate is contacted with a catalyst in the second channel to produce a cracking yield. The second channel terminates in a catalyst separating region of the separator-reactor vessel. The catalyst is removed from the cracking yield in the catalyst separating region. The separator-reactor vessel further includes a physical partition disposed between the adsorbent separating region and the catalyst separating region to separate the two regions.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 23, 2014
    Assignee: Indian Oil Corporation Ltd.
    Inventors: Debasis Bhattacharyya, Gadari Saidulu, Arumugam Velayutham Karthikeyani, Pankaj Kasliwal, Bandaru Venkata Hari Prasad Gupta, Ram Mohan Thakur, Jagdev Kumar Dixit, Sudipta Roy, Ganga Shanker Mishra, Satyen Kumar Das, Santanam Rajagopal
  • Publication number: 20140269157
    Abstract: The present invention relates to apparatuses for fluidized bed using multiple jets to introduce gas into a fluidized bed region and methods of fluidizing. The apparatus for introducing fluidizing medium to a fluidized bed reactor comprises a vessel defining a fluidized bed region and in which solid feed stock is fed, a gas distribution grid housed in the lower portion of the vessel through which a first fluidizing medium is introduced to fluidize the solid feed stock, a plurality of jets positioned through the gas distribution grid through which a second fluidizing medium is introduced into the fluidized bed region for fluidization of the solid feed stock.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventor: John D. Winter
  • Publication number: 20140260973
    Abstract: A method, apparatus and system for recycling ash fines emanating from fluidized bed reactor to ash classifier thereof. The fluidized bed reactor comprises a reaction vessel, a conical gas distribution grid positioned therein which defines the bottom surface of the fluidized bed, a first venturi connected to the bottom of the gas distribution grid, and a classifier connected to the bottom of the first venture. The method comprises separating the fine ash particles from the exit gas stream, and using a transport gas stream to deliver the fine ash particles collected into the classifier wherein the transport gas is used as all or part of classifier gas.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventor: John Winter
  • Patent number: 8835576
    Abstract: Provided are processes and systems for recovering hydrocarbons in a vent stream from a polymerization process. The methods and systems may include the recovery of an olefin monomer from a polymerization vent gas using ethylene refrigeration to condense and recover the olefin monomers from the vent gas. In some embodiments, the methods and systems may also include compression and condensation of polymerization vent gas, recompression of ethylene refrigerant, and use of an expander compressor turbine device for ethylene refrigeration.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 16, 2014
    Inventors: Randall L. Force, Donald A. Fischer
  • Patent number: 8828324
    Abstract: Fluidized bed reactor systems and distributors are disclosed as well as processes for producing polycrystalline silicon from a thermally decomposable silicon compound such as trichlorosilane. The processes generally involve reduction of silicon deposits on reactor walls during polycrystalline silicon production by use of a silicon tetrahalide.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: September 9, 2014
    Assignee: SunEdison, Inc.
    Inventor: Henry F. Erk
  • Patent number: 8828106
    Abstract: Inexpensive heating fuel is used to generate heat required for completion of reformation of raw material to be reformed such as hydrocarbon gas, heavy oil or oil refining pitch so that the raw material may be reformed economically and stably. A reformer has a raw material feeder that feeds a predetermined amount of raw material to be reformed to a fluidized-bed reforming furnace; a fuel feeder feeds heating fuel to a fluidized-bed combustion furnace; and a controller regulates the fuel to be fed to the combustion furnace so as to impart heat to the circulating particles in the combustion furnace such that the raw material fed to the reforming furnace can be completely reformed in the reforming furnace.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 9, 2014
    Assignee: IHI Corporation
    Inventors: Toshiyuki Suda, Tetsuya Hirata, Toshiro Fujimori, Hideto Ikeda
  • Patent number: 8821827
    Abstract: An apparatus for preparing granular polysilicon comprises a reactor tube, a reactor shell, an internal heater, and components for controlling pressure, supplying a fluidizing gas and a reaction gas, discharging gas, and discharging particles. The reactor tube is associated with an inner space comprising an inner zone that contains a bed of silicon particles and is the site at which silicon deposition occurs. The inner zone comprises a heating zone and a reaction zone. The fluidizing gas supplying component supplies a fluidizing gas for fluidizing the bed of silicon particles to a bottom of the heating zone. The apparatus can minimize the problems occurring during the heating of silicon particles at high temperature for silicon deposition on the surface of the silicon particles.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: September 2, 2014
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hee Young Kim, Kyung Koo Yoon, Yong Ki Park, Won Choon Choi
  • Patent number: 8815165
    Abstract: A system for distributing particulate material into a particulate vessel includes a particulate material distributor for introducing the particulate material into the particulate vessel. The particulate material distributor includes a declined header that defines a plurality of orifices that are spaced along a length of the declined header for accommodating flow of particulate material from the declined header. The system also includes a vessel level controller for controlling a level of the particulate material in the particulate vessel. The vessel level controller controls flow of the particulate material through one or more of the orifices in the declined header through adjustment of the level of particulate material in the particulate vessel between the plurality of orifices in the declined header. A FCC unit including the system is also provided, along with a method for distributing particulate material into a particulate vessel using the system.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: August 26, 2014
    Assignee: UOP LLC
    Inventor: Patrick D. Walker
  • Publication number: 20140230725
    Abstract: In order to provide a method for the thermal conditioning of an auxiliary material, which, to clean a crude gas stream loaded with an organic pollutant, is configured to be introduced into the crude gas stream and together with the organic pollutant forms a stable system of pollutant and auxiliary material, which can be carried out easily and in a resource-saving manner, it is proposed that the method includes the following steps: feeding the system of pollutant and auxiliary material and a carrier gas stream that has been heated in relation to normal conditions into a thermal conditioning device; chemical conversion of at least a part of the organic pollutant to produce a conditioned auxiliary material; separating the conditioned auxiliary material from the auxiliary material loaded with an organic pollutant by transportation by means of a gas flow; and removing the conditioned auxiliary material from the thermal conditioning device.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicant: Dürr Systems GmbH
    Inventors: Sebastian Holler, Cord Kirschke
  • Patent number: 8808632
    Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, collecting a gaseous and liquid product mixture comprising a mixture of a light fraction and a heavy fraction from the product stream, and using a vacuum tower to separate the light fraction as a substantially bottomless product and the heavy fraction from the product mixture.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: August 19, 2014
    Assignee: Ivanhoe Energy Inc.
    Inventors: Robert Graham, Barry Freel
  • Publication number: 20140227142
    Abstract: The present invention relates to a cylindrical non-melt and partial melt type entrained flow bed gasifier with one or more burners mounted on the top thereof for supplying pulverized raw coal and oxidizer thereto, wherein each of the burners comprises three or four pipes so as to form a central supplying line for injecting the pulverized coal with a carrier gas into the gasifier, a primary oxidizer annular region around the central supplying line having a plurality of primary oxidizer supplying bores for injecting primary oxidizer vertically or at an angle to the injection region of the pulverized coal supplied through the central supplying line so as to direct the pulverized coal to the central region, and an outer cooling annular region around the primary oxidizer annular region for flowing cooling water, which is operated preferably at a temperature range of 1,250˜1,450° C., or of 1,150˜1,500° C. according to the properties of the coal.
    Type: Application
    Filed: April 26, 2013
    Publication date: August 14, 2014
    Applicant: Institute for Advanced Engineering
    Inventors: Seok Woo Chung, Seung Jong Lee, Dae Sung Kim, Yongseung Yun, Jin Wook Lee
  • Patent number: 8790579
    Abstract: Methods and systems for preparing catalyst, such as chromium catalysts, are provided. The valence of at least a portion of the catalyst sent to an activator is changed from Cr(III) to Cr(VI). The catalyst is prepared or activated continuously using a fluidization bed catalyst activator.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 29, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Ted H. Cymbaluk, Charles K. Newsome, Charles R. Nease, H. Kenneth Staffin, Thomas R. Parr
  • Patent number: 8785572
    Abstract: A process for the gas-phase copolymerization of: (a) propylene, (b) at least one C4-C8 ?-olefin, and (c) optionally ethylene, the process being carried out in a reactor having two interconnected polymerization zones, wherein the growing polymer particles flow through the first of said polymerization zones (riser) under fast fluidization conditions, leave said riser and enter the second of said polymerization zones (downcomer) through which they flow downward in a densified form, leave said downcomer and are reintroduced into said riser, thus establishing a circulation of polymer between the riser and the downcomer, the gas mixture present in the riser being at least partially prevented from entering the downcomer by introducing into the upper part of said downcomer a liquid barrier having a composition different from the gaseous mixture present in the riser and comprising at least one C4-C8 ?-olefin in a total amount of from 0.1% to 35% by mol.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 22, 2014
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Enrico Balestra, Tiziana Caputo, Antonio Mazzucco, Riccardo Rinaldi, Silvia Soffritti