Including Solid, Extended Surface, Fluid Contact Reaction Means; E.g., Inert Raschig Rings, Particulate Absorbent, Particulate Or Monolithic Catalyst, Etc. Patents (Class 422/211)
  • Patent number: 7901640
    Abstract: A new reactor design is presented for a counter-current flowing reactor. The reactor has a catalyst flowing down through the reactor, and over baffles. Gas is admitted under the baffles and flows up through the solid catalyst bed. The design includes slotted plates that extend from the bottom of the baffle in the reactor to a position near the catalyst outlet. The gas flows through the slotted plates and is directed up through the catalyst bed, while directing the flowing catalyst to the catalyst outlet ports.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: March 8, 2011
    Assignee: UOP LLC
    Inventors: Christopher Naunheimer, Paul A. Sechrist
  • Publication number: 20110052467
    Abstract: Ceramic nanofibers contain nanosize metal catalyst particles on the surface thereof. The catalyst-ceramic nanofibers when supported as by larger fibers form a medium that effectively catalyze various reactions as in fluid flow processes.
    Type: Application
    Filed: January 12, 2009
    Publication date: March 3, 2011
    Applicant: University of Akron
    Inventors: George G. Chase, G. R. Newkome, Sphurti Bhargava, Soo-Jin Park, Sneha Swaminathan
  • Publication number: 20110054226
    Abstract: Disclosed is a process and apparatus for the catalytic hydrogenation of fluoroolefins to fluorocarbons where the reaction is carried out in a multi-tube shell and tube reactor. Reactions involving hydrogenation of fluoro-olefins are typically exothermic. In commercial processes where a fluoro-olefin C(n)H(2n?x)F(x) to C(n)H(2n?x|2)F(x) is hydrogenated (e.g. hexafluoropropylene to 236ea, 1225ye to 245eb, and the like), inadequate management or control of heat removal may induce excess hydrogenation, decomposition and hot spots resulting in reduced yields and potential safety issues. In the hydrogenation of fluoro-olefins, it is therefore necessary to control the reaction temperature as precisely as practical to overcome challenges associated with heat management and safety.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Inventors: Haluk Kopkalli, Yuon Chiu, Orlando George Rodrigues, Gus Cerri, Hsueh Sung Tung, Stephen A. Cottrell
  • Publication number: 20110049013
    Abstract: A radial bed catalytic conversion unit having an outer cylindrical chamber (1), an inner chamber (2) which is also cylindrical, the annular zone included between the outer chamber and the inner chamber, termed the reaction zone (I), is filled with catalyst under slow gravitational flow, and the feed is introduced via an inlet pipe (E), connected to an intermediate box (F) which is in turn connected to a plurality of distribution tubes (3) disposed inside the reaction zone (I) in the vicinity of the outer chamber (1).
    Type: Application
    Filed: July 28, 2010
    Publication date: March 3, 2011
    Applicant: IFP
    Inventors: Eric Sanchez, Gilles Ferschneider, Frederic Bazer-Bachi
  • Patent number: 7896935
    Abstract: A process of conducting a catalyst reaction or fluid separation in comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 1, 2011
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Patent number: 7897122
    Abstract: A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: March 1, 2011
    Assignees: Media and Process Technology, LG Petrochemical Co., Ltd., University of Southern California
    Inventors: Theodore T. Tsotsis, Muhammad Sahimi, Babak Fayyaz-Najafi, Aadesh Harale, Byoung-Gi Park, Paul K. T. Liu
  • Patent number: 7897121
    Abstract: A fluid reactor for facilitating mixing and/or chemical reaction and including an elongated cylindrical flow chamber having a first for receiving a flow of a first fluid, a second flow inlet through which a relatively low mass flow of a second fluid may be admitted to the chamber; and a cone-pi element disposed downstream of the second flow inlet and having an upstream conical portion with a leading apex generally facing the first flow inlet, an intervening cylindrical portion, and a downstream conical portion with a trailing apex generally facing the flow outlet, the cone-pi element being operable to produce cavitation and/or vortical flow within the flow stream to effectuate mixing and/or chemical interaction of the first fluid and the second fluid, and to deliver a mixed and/or reacted fluid from the flow outlet.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 1, 2011
    Assignee: Fluid Energy Conversion, Inc.
    Inventors: Nathaniel Hughes, Leon Shaw
  • Patent number: 7896934
    Abstract: A gas-generating apparatus (10) includes a reaction chamber (18) containing a solid fuel component (24) and a liquid fuel component (22) that is introduced into the reaction chamber by a fluid path, such as a tube, nozzle, or valve. The flow of the liquid fuel to the solid fuel is self-regulated. Other embodiments of the gas-generating apparatus are also disclosed.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: March 1, 2011
    Assignee: Societe Bic
    Inventors: Andrew J. Curello, Floyd Fairbanks, Constance R. Stepan, Anthony Sgroi, Jr., Michael Curello
  • Patent number: 7897119
    Abstract: A compact catalytic reactor defines a multiplicity of first and second flow channels arranged alternately, the first flow channels being no more than 10 mm deep and providing flow paths for combustible reactants, and containing a catalyst structure (20) to catalyze combustion of the reactants, and having at least one inlet for at least one of the reactants. The first flow channel also includes an insert (40 or 60) adjacent to each inlet, this insert not being catalytic to the combustion reaction; the insert may define gaps which are narrower than the maximum gap size for preventing flame propagation.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: March 1, 2011
    Inventors: David James West, Michael Joseph Bowe, Robert Frew Gillespie, Steven Brabon, Robert Peat
  • Publication number: 20110046245
    Abstract: A catalytic reaction module (10) for performing an endothermic reaction such as steam methane reforming, includes separate reactor blocks (12), each reactor block defining a multiplicity of first and second flow channels (15, 16) arranged alternately within the block to ensure thermal contact between the first and second flow channels. The reactor blocks (12a, 12b) may be arranged and connected for series flow of a combustible gas mixture in the first flow channels (15) and also of a gas mixture to undergo the endothermic reaction in the second flow channels (16). This enables the combustion process to be carried out in stages, with the option of cooling the combustion gases between stages, and introducing additional fuel and additional air.
    Type: Application
    Filed: February 10, 2009
    Publication date: February 24, 2011
    Applicant: CompactGTL plc
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell, Robert Peat
  • Publication number: 20110038763
    Abstract: A process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated in a reactor which is manufactured from a composite material which consists, on its side in contact with the reaction chamber, of a steel B with specific elemental composition which, on its side facing away from the reaction chamber, either directly or via an intermediate layer of copper, or of nickel, or of copper and nickel, is plated onto a steel A with specific elemental composition, and also partial oxidations of the dehydrogenated hydrocarbon and the reactor itself.
    Type: Application
    Filed: October 26, 2010
    Publication date: February 17, 2011
    Applicant: BASF SE
    Inventors: Claus Hechler, Wilhelm Ruppel, Götz-Peter Schindler, Catharina Klanner, Hans-Jürgen Bassler, Martin Dieterle, Karl-Heinrich Klappert, Klaus Joachim Müller-Engel
  • Patent number: 7883672
    Abstract: A reformer having a combustion unit including a combustion part to burn air and fuel, a combustion gas distributor to distribute the burned combustion gas, and first and second combustion gas passages to guide the distributed combustion gas into an outlet. A fuel-converting catalytic reaction unit includes two reforming reaction parts preparing a reforming reaction reformate, each having a reforming catalyst to reform feed and water supplied from a feed/water inlet, and a water gas shift reaction part preparing a water gas shift reformate, between the two reforming reaction parts to decrease a concentration of carbon monoxide in the reforming reacting reformate. The two units are structured as six cylindrical pipes to realize optimal heat exchange efficiency, and preferential oxidation reactor is provided between first air fuel preheating passages in the combustion part to decrease the concentration of carbon monoxide in the water gas shift reformate to a predetermined level or lower.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: February 8, 2011
    Assignee: SK Energy Co., Ltd.
    Inventors: Tae Woo Woo, Young Seek Yoon, Seong Ho Lee, Il Su Kim, Keun Seob Choi
  • Patent number: 7883670
    Abstract: New designs, methods and processes are described that in which laminated devices and configured in a style named the “ortho” style. To form a device in the ortho style, plates or sheets are machined to have apertures and then stacked together such that the apertures connect and fluid can flow through the device in a direction that is substantially parallel to the direction of sheet thickness. Various laminated devices and processes using them are also described. For example, devices in which non-rectangular microchannels conform around reaction chambers or other bodies that need to be heated or cooled, are described. Features that separate or trip boundary layer and enhance heat transfer are also described.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: February 8, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W Neagle, Dongming Qiu, Matthew Schmidt
  • Patent number: 7883674
    Abstract: A coke removal system removes coke deposits from the walls of a high temperature passage in which hydrocarbon fuel is present. The system includes a carbon-steam gasification catalyst and a water source. The carbon-steam gasification catalyst is applied to the walls of the high temperature passage. The water reacts with the coke deposits on the walls of the high temperature passage to remove the coke deposits from the walls of the high temperature passage by carbon-steam gasification in the presence of the carbon-steam gasification catalyst.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 8, 2011
    Assignee: United Technologies Corporation
    Inventor: He Huang
  • Patent number: 7883675
    Abstract: The present invention provides a fuel treatment device which can realize easy separation and collection of a catalyst contained in the device. In a fuel treatment device (21) of the present invention a fuel gas is supplied to a catalyst, which fills a catalyst filling space (24) surrounded by a cylindrical inner circumferential wall and a cylindrical outer circumferential wall, to produce a reformed gas. The fuel treatment device (21) has a removal section indicator indicating a catalyst removal section (29) on the outer circumferential surface of the outer circumferential wall of the cylindrical catalyst filling space (24) and an opening formation assister assisting the formation of a catalyst removal opening for removing the catalyst.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: February 8, 2011
    Assignee: Panasonic Corporation
    Inventors: Masatoshi Nakamura, Takashi Nakagawa, Yuji Tsutsui, Masatoshi Teranishi
  • Publication number: 20110024350
    Abstract: A mold for use in forming form a porous molded product via an injection molding process is provided. The method comprises injecting a material into the mold comprising multiple layers of shaping elements extending through a cavity, each layer of shaping elements including multiple shaping elements; and removing the molded product from the mold, the molded product having a porous structure formed by at least some of the shaping elements of the layers of shaping elements. The porous structure includes a multiplicity of ordered structural members defining the porous structure, the multiplicity of structural members intersecting to form structural member intersections, and a multiplicity of the pores defined by the multiplicity of structural members.
    Type: Application
    Filed: October 7, 2010
    Publication date: February 3, 2011
    Inventors: Majid Entezarian, Richard Smasal, Justin C. Peskar
  • Publication number: 20110027140
    Abstract: Methods and systems for the production of phthalic acid diesters are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of a phthalic acid derivative with alcohol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts.
    Type: Application
    Filed: October 11, 2010
    Publication date: February 3, 2011
    Applicant: H R D CORPORATION
    Inventors: Abbas HASSAN, Ebrahim BAGHERZADEH, Rayford G. ANTHONY, Gregory BORSINGER, Aziz HASSAN
  • Publication number: 20110027142
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Publication number: 20110027146
    Abstract: A sterilizer is connectable to an external chamber. A sterilization gas generator is configured to generate sterilization gas. A gas supply system including a first gas supply system which is configured to supply the sterilization gas from the sterilization gas generator to a sterilization chamber; and a second gas supply system which is different from the first gas supply system and configured to supply the sterilization gas from the sterilization gas generator to the external chamber.
    Type: Application
    Filed: March 29, 2010
    Publication date: February 3, 2011
    Inventors: Yasuhiko YOKOI, Hiroshi Yamamoto, Atsushi Nakao, Jiro Ohnishi, Shinji Fukui, Akifumi Iwama, Masaki Harada, Yoshiaki Sugimura, Katsuya Hirai
  • Publication number: 20110027153
    Abstract: The present invention provides a method and apparatus for removing mercury from gases such as those discharged from roasters and other heat producing systems. In embodiments the method comprises reacting the mercury with dissolved molecular chlorine, and may also comprise reacting the mercury with mercuric chloride to yield mercurous chloride. The mercurous chloride may be removed by precipitation. There are also disclosed apparatuses for implementing the method.
    Type: Application
    Filed: July 22, 2010
    Publication date: February 3, 2011
    Inventor: Graham Dickson
  • Patent number: 7879294
    Abstract: A fine solids recycle apparatus for a fluidized bed reactor comprises an eductor connected to a dipleg extending from a cyclone connected to the reactor, wherein the fine solids particles are removed from the dipleg, mixed with an eductor gas to form an eductor gas-fine solids particles mixture, which allows the return of the fine solids particles to the fluidized bed region, whereby the fine solids is further reacted in the fluidized region to improve reaction efficiency.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: February 1, 2011
    Assignee: Synthesis Energy Systems, Inc.
    Inventor: Gouhai Liu
  • Publication number: 20110021861
    Abstract: The present invention provides a hazardous substance-removing material comprised of a support on which is supported an antibody, the support comprising a layer comprised of polyolefin fiber and a layer comprised of at least one other fiber, and the antibody being supported on the other fiber, which affords a high capture rate and permits long-term use, in which the antibody is efficiently utilized.
    Type: Application
    Filed: March 23, 2009
    Publication date: January 27, 2011
    Inventor: Takuji Kosugi
  • Publication number: 20110020192
    Abstract: The invention relates to a composite membrane for selective gas separation, comprising a layer system having a through-and-through porous, mechanically stable carrier layer, which has an average pore size in the ?m range, further having at least one through-and-through porous intermediate layer, which is disposed on the carrier layer and has an average pore size in the range between 2 and 200 nm, and further having a gas-tight functional layer, which is disposed on the intermediate layer and is made of mixed-conductive material having a maximum layer thickness of 1 ?m. The carrier layer comprises structural ceramics, a metal or a cermet and has a layer thickness of no more than 1 mm. The intermediate layer is present in a total layer thickness of no more than 100 ?m and has an average pore size in the range of 10 and 100 nm. The functional layer comprises a perovskite, a fluorite, or a material having a K2NiF4structure, such as La1-xSrxCo1-yFeyO3-?(LSCF).
    Type: Application
    Filed: February 21, 2009
    Publication date: January 27, 2011
    Applicant: FORSCHUNGSZENTRUM JÜLICH GMBH
    Inventors: Stefan Baumann, Jose Manuel Serra Alfaro, Wilhelm Albert Meulenberg, Hans-Peter Buchkremer, Detlev Stoever
  • Patent number: 7874432
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: January 25, 2011
    Assignee: Velocys
    Inventors: Barry L. Yang, Francis P. Daly, Junko M. Watson, Terry Manzanec, Sean P. Fitzgerald, Bradley R. Johnson, Xiaohong Li, Chunshe Cao, Ya-Huei Chin, Anna Lee Tonkovich, Ravi Arora, David J. Hesse, Dongming Qiu, Rachid Taha, Jeffrey J. Ramler, Yong Wang, Richard Long
  • Patent number: 7875254
    Abstract: The invention relates to improvements in internal loop reactors. The reactor of the invention is characterized by a plurality of cooling tubes which form the annulus between the riser and the downcomer path of said internal loop reactor. The reactor also provides improvements in hydroformylation reactions using the improved reactor.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ronald Dean Garton, Matthew Findlay, Krishnan Sankaranarayanan, Arie Van Vliet
  • Publication number: 20110014109
    Abstract: Flow deflector that is capable of changing the flow direction of a fluid during passage through a duct. The duct is formed by an inner and outer duct, which creates an annular region in the duct. The flow deflector forces the fluid passing through the annular region of the duct to flow inside the inner duct, while the fluid passing through the inner duct is forced to flow through the annular region. Reactor tubes for catalytic reactors are formed by assembling tubes comprising said flow deflector and having a catalyst arranged in the inner tube.
    Type: Application
    Filed: March 5, 2009
    Publication date: January 20, 2011
    Inventors: Jesper Norsk, Esben Lauge Sørensen, Niklas Jakobsson
  • Patent number: 7871593
    Abstract: Process for the continuous catalytic complete or partial oxidation of a starting gas containing from 0.1 to 66% by volume of sulphur dioxide plus oxygen, in which the catalyst is kept active by means of pseudoisothermal process conditions with introduction or removal of energy; apparatus for the continuous catalytic complete or partial oxidation of a starting gas containing sulphur dioxide and oxygen having at least one tube contact apparatus in the form of an upright heat exchanger composed of at least one double-walled tube whose catalyst-filled inner tube forms a reaction tube, with heat being transferred in cocurrent around the reaction tube and an absorber for separating off SO3 downstream of the tube contact apparatus; the reactivity of the catalyst being preset by mixing with inert material.
    Type: Grant
    Filed: October 13, 2007
    Date of Patent: January 18, 2011
    Assignee: Bayer Technology Services GmbH
    Inventors: Bernd Erkes, Martin Kürten, Verena Haverkamp
  • Patent number: 7871579
    Abstract: A tubular reactor having an insert for improving heat transfer characteristics of the tubular reactor. The insert comprises a catalyst and metal structures consecutively arranged in a lengthwise direction of the tube. The metal structures have radially expandable side walls and orifices for squeezing fluid between the metal structures and the tube wall. The radially expandable side walls form hollows between the radially expandable side walls and the tube wall of the tubular reactor. The radially expandable side walls deform responsive to the fluid pressure difference between the inside of the metal structure and the outer space between the metal structure and the tube wall thereby maintaining the gap between the orifice opening and the tube wall to adjust for tube creep.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: January 18, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Stephen Clyde Tentarelli
  • Patent number: 7867301
    Abstract: A pre-reformer comprises a non-electrically conducting gas tight duct and an electrically conducting wire arranged in the duct. The electrically conducting wire is electrically isolated from the duct. The duct has an inlet for receiving a hydrocarbon fuel at a first end and an outlet for supplying a pre-reformed hydrocarbon fuel at a second end. At least the inner surface of the duct is chemically inert with respect to the hydrocarbon fuel. An electrical power supply is electrically connected to the electrically conducting wire and a control means controls the supply of electrical current through the electrically conducting wire to provide thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 11, 2011
    Assignee: Rolls-Royce plc
    Inventors: Gerard D Agnew, Robert H Cunningham, Gary J Saunders
  • Patent number: 7867298
    Abstract: Disclosed is a micro-reactor module including: a high temperature reactor which causes a reaction of a reactant; and a low temperature reactor which causes a reaction of a reactant at a lower temperature than the high temperature reactor, wherein a material of infrared reflecting film is set so that an infrared reflectance of the high temperature reactor is higher than an infrared reflectance of the low temperature reactor. Consequently, heat radiation of a plurality of reactors set to different temperatures is suppressed and the difference in temperatures between the plurality of reactors is maintained.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: January 11, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventors: Naotomo Miyamoto, Kaoru Saito, Tadao Yamamoto
  • Patent number: 7867299
    Abstract: Methods and apparatus for producing hydrogen with reforming catalysts. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may be an oxidic support having a ceria and zirconia promoter, or may include a neodymium stabilizer. The support material may also include at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones, where upstream catalysts located in the first reforming reaction zone and downstream catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in their respective reforming reaction zone.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: January 11, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael Ian Petch, Jonathan Charles Frost, Suzanne Rose Ellis, Jessica Grace Reinkingh, Mark Robert Feaviour, Jillian Elaine Bailie, David Wails, Paul James Millington
  • Publication number: 20110004009
    Abstract: The present invention relates to a gas-liquid dispersion device which is used in a column wherein a gas-liquid mixed fluid flows upward which comprises a liquid as a continuous phase and a gas as a dispersed phase, characterized in that the gas is dispersed effectively into the liquid, so that a sufficient contact between the gas and the liquid can be attained. The device is characterized in that (A) the plate has at least one hole through which the gas and the liquid pass, (B) one end of the conduit is connected to the hole at a lower surface of the plate so that the conduit extends downward from the plate, (C) at least one passage for the gas is provided through a side surface of the conduit, and (D) at least one passage for the liquid is provided in a lower part of the conduit.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 6, 2011
    Applicant: Sumitomo Chemical Company, Limited
    Inventors: Kenji Itoh, Mayuko Yamashita, Shinjiro Ishihara
  • Publication number: 20110002830
    Abstract: A preferred apparatus arrangement utilizes the enthalpy of the flue gas, which can be supplemented if need be, to convert urea (30) into ammonia for SCR. Urea (30), which decomposes at temperatures above 140 .degree. C., is injected (32) into a flue gas stream split off (28) after a heat exchanger (22), such as a primary superheater or an economizer. Ideally, the side stream would gasify the urea without need for further heating; but, when heat is required it is far less than would be needed to heat either the entire effluent (23) or the urea (30). This side stream, typically less than 3% of the flue gas, provides the required temperature and residence time for complete decomposition of urea (30). A cyclonic separator can be used to remove particulates and completely mix the reagent and flue gas. This stream can then be directed to an injection grid (37) ahead of SCR using a blower (36).
    Type: Application
    Filed: July 2, 2010
    Publication date: January 6, 2011
    Applicant: FUEL TECH, INC.
    Inventors: William H. Sun, William E. Cummings, Piers de Havilland, Paul G. Carmignani, John M. Boyle
  • Publication number: 20110002818
    Abstract: This invention relates to an apparatus, comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Application
    Filed: September 14, 2010
    Publication date: January 6, 2011
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Patent number: 7862633
    Abstract: A system and method for creating reformate with decreased carbon deposition. The system is made up of a steam source, a superheater, a fuel injection device, a prereformer, and a reformer with catalyst linings. The system functions to superheat steam while maintaining the fuel at a lower temperature prior to injection and mixing with the steam. After injection and mixing, the steam and fuel mixture is then passed through a prereformer where catalysts treat a portion of the fuel and steam mixture. After these portions are treated with a catalyst, the mixture is passed through to a reformer where further treatment of the material by catalyst takes place.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: January 4, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Greg A. Whyatt, Christopher M. Fischer, James D. Davis
  • Publication number: 20100324308
    Abstract: Herein disclosed is a method, comprising: forming a dispersion under high shear comprising gas bubbles of an oxidant dispersed in a liquid phase, wherein the bubbles have a mean diameter of less than 1.5 micron; and contacting the dispersion with an oxidation catalyst to produce a product stream, wherein the product stream comprises a substance selected from the group consisting of dicarboxylic acid, benzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, and phthalic anhydride. In some cases, forming the dispersion under high shear comprises introducing the oxidant and the liquid phase into a high shear device comprising at least one rotor and at least one complementarily-shaped stator. Herein also disclosed is a system for producing a substance selected from the group consisting of dicarboxylic acid, benzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, and phthalic anhydride.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 23, 2010
    Applicant: H R D CORPORATION
    Inventors: Abbas HASSAN, Aziz HASSAN, Rayford G. Anthony, Gregory G. BORSINGER
  • Publication number: 20100323880
    Abstract: The present invention provides a method of increasing stability of a catalyst used in a dehydrogenation process. The method includes storing fresh catalyst in a reduction zone, passing a gas through the reduction zone, introducing hydrocarbons and hydrogen gas into a reactor positioned downstream from the reduction zone to facilitate a dehydrogenation reaction, and replenishing spent catalyst in the reactor with fresh catalyst from the reduction zone. The gas has a moisture content at or below about 4000 ppmv and a temperature at or below about 290° C. The reactor includes catalyst for increasing the rate of the dehydrogenation reaction. The moisture content of the gas may be reduced to at or below about 4000 ppmv by passing the gas through a drier or by using an inert gas stream. The temperature of the gas may also be reduced.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Inventors: Jeffrey Pieper, Wei Pan, Dean E. Rende, Gary S. Malott
  • Patent number: 7850929
    Abstract: An internal static mixing system such as a disperser of mesh wire or expanded metal co-knit with a multi filament material selected from inert polymers, catalytic polymers, catalytic metals or mixtures in combination with a vertical reactor having a reaction zone and the disperser disposed in said reaction zone, particularly for carrying out paraffin alkylation using acid catalyst is disclosed. The wire mesh provides the structural integrity of the system as well as the open space required in reactors for the movement of vapors and liquids though the system. The disperser may be in sheets, bundles or bales or positioned within a frame.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 14, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, John R. Adams
  • Publication number: 20100308261
    Abstract: A system (100) of the present invention for producing an iodine compound includes: a raw material adjusting unit (1) for supplying hydrogen-containing gas to at least one of liquid iodine in an iodine melting pot (4) and gaseous iodine obtained by evaporating liquid iodine so as to obtain a mixture gas; a hydrogen iodide producing unit (10) including a hydrogen iodide producing tower (12) having a catalyst layer (12a) for converting the introduced mixture gas into crude hydrogen iodide gas; a hydrogen iodide refining unit for removing unreacted iodine from the introduced crude hydrogen iodide gas so as to obtain hydrogen iodide gas; and an iodine compound producing unit (30) for producing a target iodine compound from the obtained hydrogen iodide gas and a reaction material. This allows producing an iodine compound with high purity easily, efficiently, and with low cost.
    Type: Application
    Filed: January 29, 2009
    Publication date: December 9, 2010
    Applicant: Nippoh Chemicals Co., Ltd
    Inventors: Satoshi Kanbe, Kazumi Hosono, Masahiro Wada
  • Publication number: 20100310429
    Abstract: A method which enhances a disinfection process by using a catalyst which increases in effective surface area during the process. Also disclosed are contact lens disinfecting systems which are designed to maintain a high concentration of hydrogen peroxide solution for a longer period of time before increasing the overall surface area of catalyst exposed to the hydrogen peroxide solution. The devices utilize pressure from expanding oxygen generated within the system through use of a small catalyst, or through exposure of only a small portion of a large catalyst, to control deployment of the large catalyst for completing disproportionation of the hydrogen peroxide.
    Type: Application
    Filed: November 30, 2009
    Publication date: December 9, 2010
    Applicant: ATRION MEDICAL PRODUCTS, INC.
    Inventor: Rowland W. Kanner
  • Publication number: 20100311973
    Abstract: The present invention relates to a process for preparing amines by reacting sugar alcohols with hydrogen and an aminating agent selected from the group of ammonia and primary and secondary amines in the presence of a catalyst at a temperature of from 100° C. to 400° C. and a pressure of from 1 to 40 MPa (from 10 to 400 bar). The catalyst preferably comprises one metal or a plurality of metals or one or more oxygen compounds of the metals of groups 8 and/or 9 and/or 10 and/or 11 of the Periodic Table of the Elements. The sugar alcohol is preferably obtained by hydrogenating the corresponding sugars. The invention further relates to the use of the reaction products as an additive in cement or concrete production and in other fields of use.
    Type: Application
    Filed: August 15, 2008
    Publication date: December 9, 2010
    Applicant: BASF SE
    Inventors: Martin Ernst, Bram Willem, Johann-Peter Melder
  • Patent number: 7846401
    Abstract: The overall efficiency of a regenerative bed reverse flow reactor system is increased where the location of the exothermic reaction used for regeneration is suitably controlled. The present invention provides a method and apparatus for controlling the combustion to improve the thermal efficiency of bed regeneration in a cyclic reaction/regeneration processes. The process for thermal regeneration of a regenerative reactor bed entails (a) supplying the first reactant through a first channel means in a first regenerative bed and supplying at least a second reactant through a second channel means in the first regenerative bed, (b) combining said first and second reactants by a gas mixing means situated at an exit of the first regenerative bed and reacting the combined gas to produce a heated reaction product, (c) passing the heated reaction product through a second regenerative bed thereby transferring heat from the reaction product to the second regenerative bed.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Hershkowitz, Jeffrey W. Frederick
  • Patent number: 7842260
    Abstract: Provided is a reaction vessel for a fuel cell, and more particularly to a reaction vessel exhibiting improved thermal efficiency, and a reaction device for a steam reforming reaction for a fuel cell. The reaction device includes a cylindrical reaction catalyst chamber on which a target reaction catalyst for a predetermined target reaction is disposed; and a tubular oxidation catalyst chamber surrounding the reaction catalyst chamber, comprising an oxidation reaction catalyst therein. The reaction device according features an increased contact area between catalyst and gas, and rapidly heating of the gas in contact with the catalyst to a desired reaction temperature.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 30, 2010
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Sung-chul Lee, Ju-yong Kim, Yong-kul Lee, Man-seok Han, Jun-sic Kim, Chan-ho Lee, Jin-goo Ahn
  • Patent number: 7842255
    Abstract: Method for carbamate condensation of a carbon dioxide/ammonia gaseous phase in a liquid phase in a condensation unit of the so-called submerged type comprising a heat exchange tube bundle having a predetermined number of tubes intended for carbamate condensation, wherein the gaseous phase and the liquid phase are fed contemporaneously and independently to each of the tubes intended for condensation.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 30, 2010
    Assignee: Urea Casale S.A.
    Inventor: Lorenzo Pennino
  • Patent number: 7842257
    Abstract: The distribution of fluids within a radial-flow reactor is improved using vertically extended cylinders distributed around the circumference of the vessel. Cylinders with a circular cross-section provide substantial vertical strength, and the configuration minimizes low-flow areas which could cause undesirable reactions. The cylinders are isolated from particles in the reactor by a particle-retaining outer conduit. The cylinders may be fabricated in panels for ease of installation and servicing.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: November 30, 2010
    Assignee: UOP LLC
    Inventor: David J. Fecteau
  • Patent number: 7842256
    Abstract: A compact catalytic reactor for Fischer-Tropsch synthesis defines a multiplicity of first and second flow channels arranged alternately in the reactor, for carrying a gas mixture which undergoes Fischer-Tropsch synthesis, and a coolant fluid, respectively. Each first flow channel contains a removable gas-permeable catalyst structure incorporating a metal substrate. A multiplicity of flow paths are defined through the catalyst structure, and the voidage, that is to say the proportion of the cross-sectional area of the first flow channel constituted by the said multiplicity of flow paths, is between 25% and 70%. This provides an optimum balance between productivity and selectivity, so that operation of the reactor can be economic and controllable.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 30, 2010
    Assignee: CompactGTL PLC
    Inventor: Clive Derek Lee-Tuffnell
  • Publication number: 20100296990
    Abstract: A solid air filtration medium includes an impregnate with an organic amine and an inorganic metal salt. The medium has from about 0.1 to about 25% by weight of impregnate. The impregnate contains from about 0.1 to about 5% by weight organic amine, and the organic amine includes aqueous urea, solid urea, melamine or mixtures thereof. The impregnate contains from about 0.1 to about 5% by weight metal salt, and the metal salt includes magnesium oxide, calcium oxide or mixtures thereof. The impregnate optionally further includes a surfactant such as polyacrylic acid. Methods for forming a solid air filtration medium having an impregnate containing an organic amine and an inorganic metal salt and methods for removing contaminants from a fluid stream are also provided.
    Type: Application
    Filed: March 18, 2010
    Publication date: November 25, 2010
    Applicant: Purafil, Inc.
    Inventor: William G. England
  • Patent number: 7837956
    Abstract: In order to provide a gas generation apparatus such as a hydrogen gas generation apparatus for a fuel cell or an oxygen gas generation apparatus used in medical sites and at the time of disasters in which a solid gas generating agent such as metal is brought into contact with a reaction liquid to generate hydrogen gas or oxygen gas, a gas generation apparatus A having a solid gas generating agent and a reaction liquid in which the solid gas generating agent and the reaction liquid are stored respectively in separate storing vessels 21, 31 and in which the reaction liquid is supplied into the gas generating agent-storing vessel to generate gas by capillary-active connection of the respective storing vessels assumes a constitution in which capillary-active connection is shut off when a pressure of the gas is raised.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: November 23, 2010
    Assignee: Mitsubishi Pencil Company, Limited
    Inventor: Toshimi Kamitani
  • Patent number: 7837953
    Abstract: Provided are improved carbon monoxide removal articles and processes for treating hydrogen gas streams to achieve very low threshold levels of carbon monoxide. The articles have a substrate with an inlet end, an outlet end, a length extending between the inlet end to the outlet end, wall elements and a plurality of cells defined by the wall elements. A first layer is deposited on the wall elements from the inlet end and extending at least partially toward the outlet end. The first layer has a preferential carbon monoxide oxidation catalyst. A second layer contains a methanation catalyst, and is deposited on at least part of the first layer from the outlet end. The second layer has a length that is about 10-70% of the substrate length.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: November 23, 2010
    Assignee: BASF Corporation
    Inventor: Lawrence Shore
  • Publication number: 20100288676
    Abstract: Apparatuses and methods for contacting radially flowing fluids with a solid particulate (e.g., catalyst) with reduced tendency to form fluid jets that impinge on the solid particulate, leading to solid attrition and plugging, are described. Representative particle retention devices for use in these apparatuses and methods have flow channels passing therethrough, from a first surface to an opposing second surface that is adjacent to a particle retention zone. Widths of the flow channels at this opposing second surface will exceed their smallest flow channel widths.
    Type: Application
    Filed: May 12, 2009
    Publication date: November 18, 2010
    Inventor: John J. SENETAR