Carbonate Or Bicarbonate Patents (Class 423/419.1)
  • Patent number: 8211397
    Abstract: Disclosed herein are a manganese carbonate useful as a material for spinel-type LiMn2O4, having a spherical morphology, and a method of preparing the same. The spheric manganese carbonate has a high packing density and shows superior lifetime characteristics, leading to spinel-type LiMn2O4 resistant to structural changes and having superior lifetime characteristics.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: July 3, 2012
    Assignee: SK Innovation Co., Ltd
    Inventors: Yang Kook Sun, Doo Kyun Lee, Sang Ho Park
  • Publication number: 20120145640
    Abstract: The present invention relates to a method for removing heavy metals from aqueous solutions by contacting heavy metal-contaminated water with a sorption media, or in particular with carbonate minerals. The present invention also relates to methods of using modified sorption media, such as aggregates of carbonate minerals and modified carbonate minerals, for the removal of heavy metals.
    Type: Application
    Filed: October 14, 2011
    Publication date: June 14, 2012
    Inventors: Arden D. DAVIS, Cathleen J. Webb, Jenifer Sorensen, Terrence E. Williamson, David J. Dixon
  • Publication number: 20120125861
    Abstract: A method for removing hydrocarbons and scale forming compounds from tap water, contaminated aqueous solutions, seawater, and saline brines, such as produce water, comprising the addition of carbonate ions by CO2 sparging, or divalent cations, so as precipitate calcium and magnesium carbonates by adjusting pH to about 10.2, thus permanently sequestering CO2 from the atmosphere, and then removing such precipitates sequentially for either sale of disposal.
    Type: Application
    Filed: April 12, 2010
    Publication date: May 24, 2012
    Applicant: Sylvan Source, Inc.
    Inventor: Eugene Thiers
  • Publication number: 20120128571
    Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
    Type: Application
    Filed: January 30, 2012
    Publication date: May 24, 2012
    Applicants: UT-BATTELLE, LLC, Virginia Museum of Natural History Foundation, University of Tennessee Research Foundation
    Inventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
  • Publication number: 20120114548
    Abstract: Disclosed herein is a method of producing carbonate, comprising the steps of: providing a water-containing solution including cations that are precipitated in the form of a salt after undergoing a precipitation reaction with carbonate ions; and generating carbon dioxide microbubbles having a diameter of 50 ?m or less in the water-containing solution to induce the precipitation reaction between the cations and the carbonate ions. The method is advantageous in that the carbonate produced using the microbubble system disclosed in the method can be practically used as high-priced building materials, filler for paper manufacturing, etc. and can also be used in foods, medicines and the like depending on the purity thereof, so that it can be recovered in a high yield. Further, the method is advantageous in that carbon dioxide is consumed, and cations can be effectively removed from waste water, so that it is environmentally useful.
    Type: Application
    Filed: April 27, 2011
    Publication date: May 10, 2012
    Applicant: Korea Institute of Geosciences and Mineral Resources
    Inventors: Jun Hwan Bang, Young Nam Jang
  • Patent number: 8153093
    Abstract: To provide a process for producing carbonate particles, capable of efficient, easy formation of carbonate particles which have high crystallinity, less prone to agglomeration and offer orientation birefringence, particularly carbonate particles that are needle- or rod-shaped, and of controlling the particle size. In the process a metal ion source and a carbonate ion source are heated together in a liquid of 55° C. or higher for reaction to produce carbonate particles with an aspect ratio of greater than 1, wherein the metal ion source contains at least one metal ion selected from the group consisting of Sr2+, Ca2+, Ba2+, Zn2+ and Pb2+. The carbonate particles are preferably needle- or rod-shaped, pH of the liquid after heating reaction is preferably 8.20 or more, and in its X-ray diffraction spectrum the full-width at half maximum of the diffraction peak corresponding to (111) plane is preferably less than 0.8°.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 10, 2012
    Assignee: FUJIFILM Corporation
    Inventor: Tetsuo Kawano
  • Patent number: 8119091
    Abstract: A method of carbon dioxide capture is disclosed. In a step (a) anhydrous sodium carbonate is separated from a first aqueous solution formed by reacting carbon dioxide and an aqueous solution of sodium hydroxide. In step (b) the anhydrous sodium carbonate is treated by causticization to generate carbon dioxide and sodium hydroxide. The first aqueous solution of step (a) is formed by scrubbing a gas containing carbon dioxide with an aqueous solution of sodium hydroxide.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 21, 2012
    Assignee: Carbon Engineering Limited Partnership
    Inventors: David Keith, Maryam Mahmoudkhani
  • Patent number: 8114370
    Abstract: The present invention relates to a method for preparing cerium carbonate that can improve yield and productivity of cerium carbonate, cerium carbonate powder, and a method for preparing cerium oxide using the same. The method for preparing cerium carbonate comprises the steps of mixing a cerium precursor and urea; and, elevating the temperature of the mixture to 50˜250° C. under solvent free condition to react the cerium precursor and urea.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: February 14, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Sang-Soon Choi, Sang-Yun Jung, Jeong-Kyu Kim, Yeong-Dae Kim
  • Patent number: 8114374
    Abstract: In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: February 14, 2012
    Assignees: U.T. Battelle, LLC., University of Tennessee Research Foundation, Virginia Museum of Natrual History Foundation
    Inventors: James G. Blencoe, Donald A. Palmer, Lawrence M. Anovitz, James S. Beard
  • Publication number: 20120034144
    Abstract: The present invention relates to an energy efficient carbon dioxide sequestration processes whereby Group 2 silicate minerals and CO2 are converted into limestone and sand using a two-salt thermolytic process that allows for the cycling of heat and chemicals from one step to another.
    Type: Application
    Filed: July 8, 2011
    Publication date: February 9, 2012
    Inventors: Joe David Jones, Al Yablonsky
  • Patent number: 8092771
    Abstract: The present invention provides a process for producing a nitrogen-containing carbon material, comprising a first step of subjecting azulmic acid to a first heat treatment in an oxygen-containing gas atmosphere, thereby preparing a heat-treated product, and a second step of subjecting the heat-treated product to a second heat treatment in an inert gas atmosphere.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 10, 2012
    Assignee: Asahi Kasei Chemicals Corporation
    Inventor: Hidenori Hinago
  • Publication number: 20110311428
    Abstract: Nickel compositions for use in manufacturing nickel metal compositions, and specifically to methods of making basic nickel carbonates used to produce nickel metal compositions are disclosed. By varying the molar ratios of carbonates and bicarbonates to nickel salts, the methods provide basic nickel carbonates that produce superior nickel-containing solids that react more effectively with phosphorous-containing ligands. The phosphorous containing ligands can be both monodentate and bidentate phosphorous-containing ligands.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 22, 2011
    Applicant: INVISTA NORTH AMERICA S.A R.L.
    Inventor: John J. Ostermaier
  • Patent number: 8066885
    Abstract: A process for the beneficiation of carbonate mineral substrates by magnetic separation is defined herein wherein a phosphorus or nitrogen containing organic compound or reagent and a plurality of magnetic particles are intermixed with a carbonate containing mineral substrate, a magnetic field is applied to the mixture and a value mineral is thereby separated from a non-value mineral.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: November 29, 2011
    Assignee: Cytec Technology Corp.
    Inventors: Santhanjheri A. Ravishankar, Josanlet C. Villegas, Bing Wang
  • Patent number: 8062792
    Abstract: Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: November 22, 2011
    Assignee: UChicago Argonne LLC
    Inventors: Sun-Ho Kang, Khalil Amine
  • Publication number: 20110280778
    Abstract: The present invention relates to a method of precipitation of metal ions. Mineral(s), oxide(s), hydroxide(s) of magnesium and/or calcium are adopted as raw materials, and the raw material(s) is processed through at least one step of calcination, slaking, or carbonization to produce aqueous solution(s) of magnesium bicarbonate and/or calcium bicarbonate, and then the solution(s) is used as precipitant(s) to deposit rare earth, such as nickel, cobalt, iron, aluminum, gallium, indium, manganese, cadmium, zirconium, hafnium, strontium, barium, copper and zinc ions. And at least one of metal carbonates, hydroxides or basic carbonates is obtained, or furthermore the obtained products are calcined to produce metal oxides. The invention takes the cheap calcium and/or magnesium minerals or their oxides, hydroxides with low purity as raw materials to instead common precipitants such as ammonium bicarbonate and sodium carbonate etc.
    Type: Application
    Filed: February 9, 2010
    Publication date: November 17, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Hongwei Li, Dali Cui, Xinlin Peng, Guilin Yang, Yongke Hou, Chunmei Wang, Shunli Zhang
  • Publication number: 20110280788
    Abstract: The present invention relates generally to a method for processing carbon dioxide gas (“CO2”). The method includes introducing a solution which includes a cation and a hydroxide and/or oxide to the CO2 to form a cation-containing carbonate salt; reacting the cation-containing carbonate salt with an acidic solution including a rare earth element to form a substantially solid, ionic rare earth element-containing carbonate salt material, the rare earth, cation-containing carbonate being substantially stable in the acidic solution such as to resist substantial formation of compounds selected from the group consisting of oxide, hydroxide and mixtures thereof; separating the rare earth element-containing carbonate salt material from the acidic solution; and reducing the rare earth element-containing carbonate salt material to a carbon-containing compound selected from the group consisting of carbon monoxide gas, elemental carbon and mixtures thereof.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Inventor: Anthony J. Perrotta
  • Publication number: 20110214535
    Abstract: Systems and methods of capturing and sequestering carbon dioxide, comprising mixing a substantially non-aqueous solvent and an alkali such that the solvent and alkali form a solvent suspension, mixing water and a flue gas containing carbon dioxide with the solvent suspension such that a reaction occurs, the reaction resulting in the formation of a carbonate, water and heat. Methods and processes of environmental remediation and recovering metals from waste streams are also provided.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Applicant: Expansion Energy, LLC.
    Inventor: David Vandor
  • Patent number: 8006446
    Abstract: CO2-sequestering formed building materials are provided. The building materials of the invention include a composition comprising a carbonate/bicarbonate component. Additional aspects of the invention include methods of making and using the CO2-sequestering formed building material.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 30, 2011
    Assignee: Calera Corporation
    Inventors: Brent R. Constantz, Andrew Youngs, Terence C. Holland
  • Publication number: 20110203939
    Abstract: The present invention relates to carbon dioxide sequestration, including processes in which group-2 silicates are used to remove carbon dioxide from waste streams to form corresponding group-2 carbonates and silica.
    Type: Application
    Filed: December 17, 2010
    Publication date: August 25, 2011
    Inventor: Joe David Jones
  • Publication number: 20110200848
    Abstract: Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
    Type: Application
    Filed: December 16, 2010
    Publication date: August 18, 2011
    Applicants: Massachusetts Institute of Technology, 24-M Technologies, Inc.
    Inventors: Yet-Ming Chiang, W. Craig Carter, Bryan Y. Ho, Mihai Duduta, Pimpa Limthongkul
  • Patent number: 7985503
    Abstract: The invention relates to a method for preparing multiple metal oxides and intermediate compound, i.e. spherical nickelous hydroxide which is lopped. The intermediate compound is prepared by: mixing bivalent nickel salt, cobalt salt, ammonia water and ammonium salt to form solution containing complex; then adding the said solution containing complex with the mixture solution of metal salt(s) and alkali into reaction vessel in parallel flow, stirring to form precipitate of spherical nickelous hydroxide which is dopped, and washing to remove the impurities. The resulting spherical nickelous hydroxide which is dopped, as an intermediate compound, can be used to produce multiple metal oxides. The resulting multiple metal oxides can be used as anode active material. The spherical nickelous hydroxide has advantages of uniform size and narrow size distribution. The multiple metal oxides has high electric conductivity and cycle performance, particularly, is suitable to be used as anode material.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: July 26, 2011
    Assignee: Shenzhen Bak Battery Co., Ltd
    Inventors: Long Li, Can Ren
  • Publication number: 20110168051
    Abstract: The chromium (III) carbonate of the present invention exhibits a light blue color in a solid state. This chromium (III) carbonate has an L* value of 50 to 70, an a* value of ?4 to ?2, and a b* value of ?10 to ?7, which are represented by the L*a*b* color system (JIS Z8729). This chromium (III) carbonate is preferably completely dissolved within 30 minutes when the chromium (III) carbonate is added, in an amount corresponding to a Cr content of 1 g, to 1 liter of an aqueous solution of hydrochloric acid having a pH of 0.2 at a temperature of 25° C. This chromium (III) carbonate is preferably obtained by contacting an aqueous solution of carbonate and an aqueous solution containing trivalent chromium at a pH of 6 to 12 under the condition of a reaction liquid temperature of 0° C. or more and less than 50° C. Also, preferably, after production of the chromium (III) carbonate, filtration is performed, and the chromium (III) carbonate is washed with water until the conductivity of the filtrate is 5 mS/cm or less.
    Type: Application
    Filed: August 27, 2009
    Publication date: July 14, 2011
    Applicant: Nippon Chemical Industrial Co., Ltd
    Inventors: Hiroyuki Kuwano, Tomohiro Banda, Yasuyuki Tanaka
  • Patent number: 7976810
    Abstract: In a method for preparing cerium carbonate powder by mixing a cerium precursor solution with a carbonate precursor solution and carrying out a precipitation reaction, wherein cerium carbonate is controlled to have an orthorhombic crystal structure, a hexagonal crystal structure or an orthorhombic/hexagonal mixed crystal structure, by using at least one type of organic solvent comprising at least two hydroxyl groups (OH) in molecular formula as a solvent for either or both the cerium precursor solution and the carbonate precursor solution, and varying a number of carbons or hydroxyl groups (OH) included in the molecular formula of the organic solvent. The method can easily and inexpensively obtain cerium carbonate powder with a desired crystal structure without the danger by high-temperature high-pressure and the need for an expensive system in hydrothermal synthesis.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: July 12, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Myoung-Hwan Oh, Seung-Beom Cho, Jun-Seok Nho, Jong-Pil Kim, Jang-Yul Kim
  • Patent number: 7960463
    Abstract: Particular embodiments are directed toward a rubber mixture comprising (i) a rubber; and (ii) a filler component, where the filler component includes a filler selected from the group consisting of amorphous aluminum hydroxycarbonate, amorphous aluminum hydroxyoxycarbonate, and amorphous aluminum oxycarbonate, where said amorphous aluminum hydroxycarbonate, amorphous aluminum hydroxyoxycarbonate, and amorphous aluminum oxycarbonate are characterized by a BET specific surface area of less than 40 m2/g.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 14, 2011
    Assignee: Bridgestone Corporation
    Inventors: Xiao-Dong Pan, Pat Sadhukhan
  • Patent number: 7959782
    Abstract: A Ni—Pt alloy and target superior in workability containing 0.1 to 20 wt % Pt and having a Vickers hardness of 40 to 90. A method of manufacturing the Ni—Pt alloy comprises steps of subjecting a raw material Ni having a purity of 3N level to electrochemical dissolution, neutralizing the electrolytically leached solution with ammonia, removing impurities through filtration with activated carbon, blowing carbon dioxide into the resultant solution to form nickel carbonate, exposing the resultant product to a reducing atmosphere to prepare high purity Ni powder, leaching a raw material Pt having a purity of 3N level with acid, subjecting the leached solution to electrolysis to prepare high purity electrodeposited Pt, and dissolving the resultant high purity Ni powder and high purity electrodeposited Pt. The method enables rolling of the Ni—Pt alloy ingot upon reducing the hardness thereof, which results in the stable and efficient manufacture of a rolled target.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: June 14, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yuichiro Shindo
  • Publication number: 20110123427
    Abstract: Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.
    Type: Application
    Filed: December 7, 2010
    Publication date: May 26, 2011
    Inventors: Daniel Alfred BORYTA, Teresita Frianeza KULLBERG, Anthony Michael THURSTON
  • Publication number: 20110104039
    Abstract: A process for manufacturing a catalyst composition includes the steps of (i) combining one or more soluble metal compounds with a solution of an alkaline metal carbonate precipitant to form a precipitate of insoluble metal carbonates, (ii) processing the insoluble metal carbonates into a catalyst or catalyst precursor with the evolution of carbon dioxide, (iii) recovering at least a portion of the evolved carbon dioxide, and (iv) reacting the recovered carbon dioxide with a suitable alkaline metal compound in an absorber column to generate an alkaline metal carbonate, wherein at least a portion of the generated alkaline metal carbonate is used as a precipitant in step (i).
    Type: Application
    Filed: March 26, 2009
    Publication date: May 5, 2011
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Graeme Douglas Campbell, James Beaumond Hunter
  • Patent number: 7928033
    Abstract: The present invention relates to a catalyst for reducing mercury, which comprises a reagent comprising any of the sulfites of potassium, sodium, calcium and magnesium, or any of the phosphates thereof, or a combination of them, as a main reagent of a catalyst component. And the present invention relates to the catalyst for reducing mercury, wherein the catalyst component is mixed with a different salt as an agent for inhibiting crystallization of the catalyst component.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: April 19, 2011
    Assignees: Horiba, Ltd., Nippon Instruments Corporation
    Inventors: Shigeyuki Akiyama, Junji Kato, Fujio Koga, Koji Ishikawa
  • Patent number: 7914685
    Abstract: Compositions comprising synthetic rock, e.g., aggregate, and methods of producing and using them are provided. The rock, e.g., aggregate, contains CO2 and/or other components of an industrial waste stream. The CO2 may be in the form of divalent cation carbonates, e.g., magnesium and calcium carbonates. Aspects of the invention include contacting a CO2 containing gaseous stream with a water to dissolve CO2, and placing the water under precipitation conditions sufficient to produce a carbonate containing precipitate product, e.g., a divalent cation carbonate.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 29, 2011
    Assignee: Calera Corporation
    Inventors: Brent Constantz, Andrew Youngs, James O'Neil, Kasra Farsad, Joshua Patterson, John Stagnaro, Ryan Thatcher, Chris Camire
  • Patent number: 7906028
    Abstract: Hydraulic cement compositions that include a carbonate compound composition, e.g., a salt-water derived carbonate compound composition containing crystalline and/or amorphous carbonate compounds, are provided. Also provided are methods of making and using the hydraulic cements, as well as settable compositions, such as concretes and mortars, prepared therefrom. The cements and compositions produced therefrom find use in a variety of applications, including use in a variety of building materials and building applications.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 15, 2011
    Assignee: Calera Corporation
    Inventors: Brent R Constantz, Cecily Ryan, Laurence Clodic
  • Publication number: 20110038809
    Abstract: The present invention provides methods for treating or preventing diseases and disorders caused by iron-dependent pathogenic microorganisms, such as bacteria, fungi, and parasites, by applying a gallium compound to an affected area. In particular, the present invention provides methods for treating or preventing dental caries, vaginal infections, skin infections, and so forth. Gallium compounds can be formulated as toothpaste, mouthwash, cream, ointment, gel, solution, eye drops, suppository, and the like. Furthermore, the invention provides methods for controlling microbial growth on environmental surfaces, including those of toothbrush, denture, dental retainer, contact lens, catheter, food stuff, and so forth. In addition, the present invention provides animal feeds which contain gallium compounds that promote the animal growth and prevent the animals from infections as well as protect consumers from post processing infections.
    Type: Application
    Filed: October 31, 2006
    Publication date: February 17, 2011
    Inventors: Daniel P. Perl, Sharon Moalem
  • Publication number: 20110030586
    Abstract: Aspects of the invention include methods of contacting carbon dioxide with an aqueous mixture. In practicing methods according to certain embodiments, a subterranean brine may be contacted with carbon dioxide to produce a reaction product, which may or may not be further processed as desired. Also provided are methods in which a brine or minerals are contacted with an aqueous composition. Aspects of the invention further include compositions produced by methods of the invention as well as systems for practicing methods of the invention.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 10, 2011
    Inventors: BRENT CONSTANTZ, Miguel Fernandez, Michael Joseph Weiss, Andrew Youngs
  • Patent number: 7879305
    Abstract: A fluidized bed reactor device for sequestering flue gas CO2 from a flue gas source is provided. The fluidized bed reactor device comprises an operating portion having a first end and a second end. A flue gas inlet is formed at the first end of the operating portion with the flue gas inlet receiving flue gas from the flue gas source. A flue gas outlet formed at the second end of the operating portion. A distributor plate is mounted within the operating portion adjacent the first end of the operating portion. A volume of fly ash is encased within the operating portion between the second end and the distributor plate with the flue gas traveling through the distributor plate and the fly ash creating reacted flue gas wherein the reacted flue gas exits the operating portion through the flue gas outlet.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: February 1, 2011
    Assignee: University of Wyoming
    Inventors: Katta J. Reddy, Morris D. Argyle
  • Patent number: 7879303
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Cal0(P04)6(OH)2) and tricalcium phosphate (TCP,Ca3(P04)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: February 1, 2011
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin Jan Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Fridolin Loher, Alfons Baiker
  • Publication number: 20100310871
    Abstract: A zinc oxide powder is described, which, when used in a dispersion at a concentration of at least 50 wt % of zinc oxide, produces a transparent composition having a total visible transmittance through a path length of 20 microns at 550 nm of at least one of; at least 70%, at least 75%, at least 80% or at least 85%. The powder has a number average zinc oxide aggregate size of at least 0.8 microns, at least 1 micron, at least 2 microns or at least 3 microns. Use of the zinc oxide powder reduces the risk of transdermal penetration.
    Type: Application
    Filed: July 9, 2010
    Publication date: December 9, 2010
    Applicant: ANTARIA LIMITED
    Inventors: Paul McCormick, Geoffrey Trotter
  • Patent number: 7833928
    Abstract: The invention relates to a metal-containing, hydrogen-storing material which contains a catalyst for the purpose of hydration or dehydration, said catalyst being a metal carbonate. The method for producing such a metal-containing, hydrogen-storing material is characterized by subjecting the metal-containing material and/or the catalyst in the form of a metal carbonate to a mechanical milling process.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: November 16, 2010
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Gagik Barkhordarian, Thomas Klassen, Rüdiger Bormann
  • Patent number: 7829053
    Abstract: Non-cementitious CO2 sequestering compositions are provided. The compositions of the invention include a CO2 sequestering additive, e.g., a CO2 sequestering carbonate composition. Additional aspects of the invention include methods of making and using the non-cementitious CO2 sequestering compositions.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: November 9, 2010
    Assignee: Calera Corporation
    Inventors: Brent Constantz, Andrew Youngs, Joshua Patterson
  • Patent number: 7815880
    Abstract: Reduced-carbon footprint concrete compositions, and methods for making and using the same, are provided. Aspects of the reduced-carbon footprint concrete compositions include CO2-sequestering carbonate compounds, which may be present in the hydraulic cement and/or aggregate components of the concrete. The reduced-carbon footprint concrete compositions find use in a variety of applications, including use in a variety of building materials and building applications.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: October 19, 2010
    Assignee: Calera Corporation
    Inventors: Brent R. Constantz, Andrew Youngs, Terence C. Holland
  • Publication number: 20100258035
    Abstract: Methods of characterizing and producing compositions with negative ?13C values are provided. Aspects of the invention include characterizing source materials and process products. Aspects of the invention also include compositions that contain carbon with negative ?13C values.
    Type: Application
    Filed: May 24, 2010
    Publication date: October 14, 2010
    Inventors: Brent Constantz, Sidney Omelon
  • Patent number: 7776306
    Abstract: A method of forming basic copper carbonates includes providing an aqueous solution comprising copper (II), ammonia, and carbonic acid; and adding sufficient carbon dioxide to precipitate a basic copper carbonate from the aqueous solution.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: August 17, 2010
    Assignee: Peninsula Copper Industries Incorporated
    Inventors: Jeff Miller, Brian Miller, Nader Mazloom
  • Patent number: 7771684
    Abstract: CO2-sequestering formed building materials are provided. The building materials of the invention include a composition comprising a carbonate/bicarbonate component. Additional aspects of the invention include methods of making and using the CO2-sequestering formed building material.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 10, 2010
    Assignee: Calera Corporation
    Inventors: Brent R. Constantz, Andrew Youngs, Terence C. Holland
  • Publication number: 20100143233
    Abstract: In a method for preparing cerium carbonate powder by mixing a cerium precursor solution with a carbonate precursor solution and carrying out a precipitation reaction, wherein cerium carbonate is controlled to have an orthorhombic crystal structure, a hexagonal crystal structure or an orthorhombic/hexagonal mixed crystal structure, by using at least one type of organic solvent comprising at least two hydroxyl groups (OH) in molecular formula as a solvent for either or both the cerium precursor solution and the carbonate precursor solution, and varying a number of carbons or hydroxyl groups (OH) included in the molecular formula of the organic solvent. The method can easily and inexpensively obtain cerium carbonate powder with a desired crystal structure without the danger by high-temperature high-pressure and the need for an expensive system in hydrothermal synthesis.
    Type: Application
    Filed: March 14, 2008
    Publication date: June 10, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Myoung-Hwan Oh, Seung-Beom Cho, Jun-Seok Nho, Jong-Pil Kim, Jang-Yul Kim
  • Publication number: 20100144521
    Abstract: Compositions comprising synthetic rock, e.g., aggregate, and methods of producing and using them are provided. The rock, e.g., aggregate, contains CO2 and/or other components of an industrial waste stream. The CO2 may be in the form of divalent cation carbonates, e.g., magnesium and calcium carbonates. Aspects of the invention include contacting a CO2 containing gaseous stream with a water to dissolve CO2, and placing the water under precipitation conditions sufficient to produce a carbonate containing precipitate product, e.g., a divalent cation carbonate.
    Type: Application
    Filed: February 1, 2010
    Publication date: June 10, 2010
    Inventors: Brent Constantz, Andrew Youngs, James O'Neil, Kasra Farsad, Joshua Patterson, John Stagnaro, Ryan Thatcher, Chris Camire
  • Publication number: 20100136135
    Abstract: A method of selecting or determining a candidate compound suitable for use as a phosphate binder is disclosed. The candidate compound includes ferric compounds, ferric compound complexes, and their derivatives, salts, analogs, and metabolites. The effectiveness of the candidate compound as a phosphate binder is evaluated by a method, comprising measuring and correlating reduction of phosphate concentration in solution and reduction of phosphate absorption in cells.
    Type: Application
    Filed: January 26, 2007
    Publication date: June 3, 2010
    Inventor: Keith Chan
  • Patent number: 7727374
    Abstract: Apparatuses and methods for removing carbon dioxide and other pollutants from a gas stream are provided. The methods include obtaining hydroxide in an aqueous mixture, and mixing the hydroxide with the gas stream to produce carbonate and/or bicarbonate. Some of the apparatuses of the present invention comprise an electrolysis chamber for providing hydroxide and mixing equipment for mixing the hydroxide with a gas stream including carbon dioxide to form an admixture including carbonate and/or bicarbonate.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: June 1, 2010
    Assignee: Skyonic Corporation
    Inventor: Joe David Jones
  • Publication number: 20100111810
    Abstract: Non-cementitious CO2 sequestering compositions are provided. The compositions of the invention include a CO2 sequestering additive, e.g., a CO2 sequestering carbonate composition. Additional aspects of the invention include methods of making and using the non-cementitious CO2 sequestering compositions.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 6, 2010
    Inventors: Brent Constantz, Andrew Youngs, Joshua Patterson
  • Publication number: 20100080858
    Abstract: An anti-hypothermia composition is provided, in particular an anti-hypothermia composition that prevents hypothermia caused by general anesthesia during surgical operations. The composition prevents hypothermia by preventing the decrease in the biological function of patients and correcting acidosis. Specifically, the anti-hypothermia composition is a preparation containing a bicarbonate ion and provided in the form of an infusion fluid. The infusion fluid preferably contains sodium bicarbonate as a major component that serves as a source of the bicarbonate ion, along with each or a combination of other electrolytes, glucose and amino acids.
    Type: Application
    Filed: October 19, 2009
    Publication date: April 1, 2010
    Applicant: AJINOMOTO CO., INC.
    Inventors: Kazunori SATOU, Takashi Ogawa, Saori Mori
  • Publication number: 20100077922
    Abstract: Methods of characterizing and producing compositions with negative ?13C values are provided. Aspects of the invention include characterizing source materials and process products. Aspects of the invention also include compositions that contain carbon with negative ?13C values.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 1, 2010
    Inventors: BRENT CONSTANTZ, James R. O'Neil, Sidney Omelon
  • Publication number: 20100074828
    Abstract: The invention provides methods and apparatuses for removing carbon dioxide from a gas stream. In particular, the invention provides methods and apparatuses for absorbing carbon dioxide from a coal-fired boiler flue gas stream using an absorbing solution and for regeneration of an alkaline component used in the absorbing solution. In one embodiment, the invention provides a method for removing carbon dioxide from a gas stream by contacting a gas stream containing carbon dioxide with an alkaline liquid stream; absorbing at least a portion of the carbon dioxide into the alkaline liquid stream to produce absorbed carbon dioxide; and catalyzing a reaction of the absorbed carbon dioxide to a form of carbonate.
    Type: Application
    Filed: October 16, 2008
    Publication date: March 25, 2010
    Applicant: FLUEGEN, INC.
    Inventor: Uday Singh
  • Publication number: 20100051859
    Abstract: Processes for capturing carbon dioxide are described. The carbon dioxide may be captured from the atmosphere and/or from the waste stream of a carbon dioxide point source (e.g., power plants, chemical plants, natural gas fields, oil fields, industrial sites, etc.). The processes can involve capturing carbon dioxide using alkaline solutions (e.g., NaOH). In some processes, the carbon dioxide may react with the alkaline solution to form a product (e.g., NaHCO3). The alkaline solution may be made a number of different ways. In some of the processes, products produced during processing may be used to add value beyond carbon dioxide capture.
    Type: Application
    Filed: April 26, 2007
    Publication date: March 4, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Kurt Z. House, Christopher H. House, Michael J. Aziz, Daniel Paul Schrag