By Decomposing Metallic Compound (e.g., Pack Process, Etc.) Patents (Class 427/252)
  • Patent number: 7867900
    Abstract: Embodiments herein provide methods for forming an aluminum contact on a cobalt silicide junction. In one embodiment, a method for forming materials on a substrate is provided which includes forming a cobalt silicide layer on a silicon-containing surface of the substrate during a silicidation process, forming a fluorinated sublimation film on the cobalt silicide layer during a plasma process, heating the substrate to a sublimation temperature to remove the fluorinated sublimation film, depositing a titanium-containing nucleation layer over the cobalt silicide layer, and depositing an aluminum-containing material over the titanium-containing nucleation layer.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 11, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Wei Ti Lee, Mohd Fadzli Anwar Hassan, Ted Guo, Sang-Ho Yu
  • Patent number: 7854962
    Abstract: Disclosed herein is a processing system that can supply a material gas produced inside a material reservoir tank into a processing apparatus while generating almost no pressure loss. The processing system has a processing apparatus including a gas injection injector for injecting a specific material gas into a processing vessel in order to provide specific processing to an object to be processed W, the material gas being produced from a metallic compound material M with low vapor pressure; and a gas supply system for supplying the specific material gas to the gas injector, the gas injector is a shower head portion and the gas supply system provides: a gas passage extending upwardly from the showerhead portion; a material reservoir tank attached to the upper-end portion of the gas passage for containing the metallic compound material therein; and an open/close valve for opening/closing the gas passage.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: December 21, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Shigeru Kasai, Sum Tanaka, Tetsuya Saito, Norihiko Yamamoto, Kenichi Yanagitani
  • Publication number: 20100316799
    Abstract: Disclosed is a film forming method including the steps of: producing a monovalent carboxylic acid metal salt gas by reacting a bivalent carboxylic acid metal salt with a carboxylic acid; supplying the monovalent carboxylic acid metal salt gas on a substrate to accumulate a monovalent carboxylic acid metal salt film; and decomposing the monovalent carboxylic acid metal salt film by supplying energy to the substrate formed with the monovalent carboxylic acid metal salt film so as to form a metallic film.
    Type: Application
    Filed: December 25, 2008
    Publication date: December 16, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Isao Gunji, Hidenori Miyoshi, Hitoshi Itoh
  • Patent number: 7846261
    Abstract: Methods for cleaning surface deposits, such as sulfidation deposits or dust particles, from a surface bounding an internal passage in a turbine engine component. The surface deposits are cleaned by placing a halogen-containing organic compound, such as a fluorine-containing organic compound, into the internal passage and heating the component and organic compound to chemically react the halogen-containing species in the liquefied and boiling organic compound with the deposits. The temperature is further elevated to vaporize the chemically-modified deposits, which are moved by mass transport through the internal passage and out of the turbine engine component. An optional protective coating, such as a chromium or aluminum coating, may be applied to the cleaned surface of the internal passage.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: December 7, 2010
    Assignee: Aeromet Technologies, Inc.
    Inventors: Richard Patrick Chesnes, David C Fairbourn
  • Publication number: 20100304065
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared J. Victor, Uwe Erb
  • Patent number: 7833909
    Abstract: Aimed at suppressing roughening in a circumferential portion of a layer to be etched in the process of removing a hard mask formed thereon, an etching apparatus of the present invention has a process chamber, an electrode, a stage, and a shadow ring, wherein the process chamber allows an etching gas to be introduced therein; the electrode is disposed in the process chamber, and is used for generating plasma by ionizing the etching gas; the stage is disposed in the process chamber, onto which a substrate is disposed; the shadow ring has an irregular pattern on the inner circumferential edge thereof, and is disposed in the process chamber and placed above the stage 30, so as to cover a circumferential portion and an inner region adjacent thereto of the substrate in a non-contact manner.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: November 16, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Masahiro Komuro
  • Patent number: 7794787
    Abstract: The invention includes methods of utilizing supercritical fluids to introduce precursors into reaction chambers. In some aspects, a supercritical fluid is utilized to introduce at least one precursor into a chamber during ALD, and in particular aspects the supercritical fluid is utilized to introduce multiple precursors into the reaction chamber during ALD. The invention can be utilized to form any of various materials, including metal-containing materials, such as, for example, metal oxides, metal nitrides, and materials consisting of metal. Metal oxides can be formed by utilizing a supercritical fluid can be utilized to introduce a metal-containing precursor into reaction chamber, with the precursor then forming a metal-containing layer over a surface of a substrate. Subsequently, the metal-containing layer can be reacted with oxygen to convert at least some of the metal within the layer to metal oxide.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: September 14, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri
  • Patent number: 7781016
    Abstract: Methods are disclosed of determining a fill level of a precursor in a bubbler. The bubbler is fluidicly coupled with a substrate processing chamber through a vapor-delivery system. The bubbler and vapor-delivery system are backfilled with a known dose of a backfill gas. A pressure and temperature of the backfill gas are determined, permitting a total volume for the backfill gas in the bubbler and vapor-delivery system to be determined by application of a gas law. The fill level of the precursor in the bubbler is determined as a difference between (1) a total volume of the bubbler and vapor-delivery system and (2) the determined total volume for the backfill gas.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ronald Stevens, Brendan McDougall, Jacob W. Smith, Garry Kwong, Sandeep Nijhawan, Lori D. Washington
  • Publication number: 20100150204
    Abstract: A process for manufacturing a platinum resistance thermometer that is stable with reduced resistance value variation over service temperature range through clarification of a quantitative mechanism of resistance value variation with respect to the oxidation/reduction of platinum resistance wire. The process including the steps of (S1) enclosing a purge gas containing an inert gas and oxygen in a protection tube provided with a thermosensitive part of platinum resistance wire; (S2) raising the internal temperature of the protection tube to a temperature region in which the platinum is in reduced form at a partial pressure of oxygen in the purge gas as determined from platinum oxide formation free energy; (S3) replacing the purge gas with an inert gas wherein oxygen is 1 kPa or below; and (S4) sealing the protection tube under the replaced condition.
    Type: Application
    Filed: May 19, 2008
    Publication date: June 17, 2010
    Applicant: YAMATAKE CORPORATION
    Inventors: Toru Yamaguchi, Hideo Kimura, Kazuya Yoneshita
  • Patent number: 7736704
    Abstract: To protect a base metal layer (1) against high-temperature corrosion and high-temperature erosion, an adhesive layer (3) based on MCrAlY is applied to the base metal layer (1). The adhesive layer (3) is coated with an Al diffusion layer (4) by alitizing. The diffusion layer (4) is subjected to an abrasive treatment, so that the outer built-up layer (4.2) on the diffusion layer (4) prepared by alitizing is removed by the abrasive treatment. A ceramic heat insulation layer (2) consisting of zirconium oxide, which is partially stabilized by yttrium oxide, is applied to the diffusion layer (4) thus treated.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: June 15, 2010
    Assignee: Man Turbo AG
    Inventors: Sharad Chandra, Norbert Czech
  • Publication number: 20100119866
    Abstract: Methods for the low-temperature synthesis of an integrated, corrosion-resistant coating structure for metal substrates by means of multi-component pack cementation are provided. The synthesis of the integrated coating structures at low temperatures can avoid or minimize degradation of the mechanical properties of the substrates. The integrated coating structures can increase the lifetime of high temperature steels under severe steam environments and, therefore, provide a technological enabler for the high-temperature operation of steam power generation plants.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: John Harry Perepezko, Ridwan Sakidja
  • Publication number: 20100075035
    Abstract: A film formation method is disclosed for depositing a metal film on a target substrate by supplying a metal carbonyl source in gas phase to a surface of the target substrate and decomposing the source near the surface of the target substrate. The method includes a step of preferentially decomposing the metal carbonyl source in an area near the outer peripheral portion of the target substrate when the metal film is being deposited on the surface of the target substrate. As a result, a CO concentration in the atmosphere is increased locally near the outer peripheral portion of the target substrate and the depositing of the metal film on the outer peripheral portion is better controlled.
    Type: Application
    Filed: February 19, 2008
    Publication date: March 25, 2010
    Applicant: TOKYO ELECTRON LIMITED,
    Inventors: Atsushi Gomi, Yasushi Mizusawa, Tatsuo Hatano, Masamichi Hara, Osamu Yokoyama, Satoshi Taga
  • Publication number: 20100034695
    Abstract: Methods and compositions for depositing a film on one or more substrates include providing a reactor and at least one substrate disposed in the reactor. At least one lanthanide precursor is provided in vapor form and a lanthanide metal thin film layer is deposited onto the substrate.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 11, 2010
    Inventor: Shingo Okubo
  • Patent number: 7651729
    Abstract: There are provided methods of fabricating a metal silicate layer on a semiconductor substrate using an atomic layer deposition technique. The methods include performing a metal silicate layer formation cycle at least one time in order to form a metal silicate layer having a desired thickness. The metal silicate layer formation cycle includes an operation of repeatedly performing a metal oxide layer formation cycle K times and an operation of repeatedly performing a silicon oxide layer formation cycle Q times. K and Q are integers ranging from 1 to 10 respectively. The metal oxide layer formation cycle includes the steps of supplying a metal source gas to a reactor containing the substrate, exhausting the metal source gas remaining in a reactor to clean the inside of the reactor, and then supplying an oxide gas into the reactor.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Seok Kim, Jong-Pyo Kim, Ha-Jin Lim, Jae-Eun Park, Hyung-Suk Jung, Jong-Ho Lee, Jong-Ho Yang
  • Patent number: 7645485
    Abstract: There is provided a method for applying an improved chromium diffusion coating on an industrial item such as a turbine blade of a gas turbine engine. Chromium and other active metals are combined to form an alloy coating. Active elements include silicon, hafnium, zirconium, yttrium, tantalum, and rhenium. For producing the modified coatings through pack cementation chromium and a master alloy are mixed into a packing along with inert material and a halide activator. The packing surrounds a target in a diffusion box. The metals are then deposited by diffusion onto a target surface by pack cementation methods. The diffusion of the desired metals takes place during a coating thermal cycle. Alternatively, the diffusion can take place using an out-of-pack arrangement. Such modified coatings are utilized as improved performance coatings for environmental resistance applications over the current chromium diffusion coatings.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: January 12, 2010
    Assignee: Honeywell International Inc.
    Inventor: Murali Madhava
  • Publication number: 20090324822
    Abstract: A method for depositing a hard metallic chrome coating or similar metal by chemical vapor deposition on a metallic substrate, includes: a) preparing a solution containing, in an oxygen atom depleted solvent, i) a molecular compound of the bis(arene) family that's a precursor of the deposited metal with a decomposition temperature 300° C.-550° C., and ii) a chlorinated additive; b) introducing the solution as aerosol into a heated evaporator at a temperature between the solvent boiling temperature and the precursor decomposition temperature (PDT); and c) driving the vaporized aerosol from the evaporator towards a CVD reactor including a susceptor carrying the substrate, heated above the PDT, up to 550° C., the evaporator and CVD reactor being subjected to atmospheric pressure. This DLI-CVD method performed at low temperature and atmospheric pressure enables continuous industrial treatment of large metallic plates, producing hard, monolayer or nanostructured multilayer metallic coatings.
    Type: Application
    Filed: July 19, 2007
    Publication date: December 31, 2009
    Inventors: Francis Maury, Aurelia Douard
  • Patent number: 7638112
    Abstract: A method for making zinc aluminate nano-material, the method comprises the following steps. Firstly, providing a growing substrate and a growing device, and the growing device comprising a heating apparatus and a reacting room. Secondly, placing the growing substrate and a quantity of reacting materials into the reaction room, and the reacting materials comprising zinc and aluminum. Thirdly, introducing an oxygen-containing gas into the reaction room. Lastly, heating the reaction room to a temperature of 660˜1100° C.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: December 29, 2009
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hai-Lin Sun, Kai-Li Jiang, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20090317658
    Abstract: In an alloy coating film having a diffusion barrier layer and an aluminum reservoir layer on a substrate, the diffusion barrier layer is composed of a single phase that is a Re—Cr—Ni—Al system ? phase containing Al by less than 1 atomic %, or composed of a first phase which is the Re—Cr—Ni—Al system ? phase and one or more second phases selected from a ? phase, ?? phase and ? phase.
    Type: Application
    Filed: December 17, 2007
    Publication date: December 24, 2009
    Inventor: Toshio Narita
  • Publication number: 20090291208
    Abstract: Metal films are deposited with uniform thickness and excellent step coverage. Copper metal films were deposited on heated substrates by the reaction of alternating doses of copper(I) NN?-diispropylacetamidinate vapor and hydrogen gas. Cobalt metal films were deposited on heated substrates b the reaction of alternating doses of cobalt(II) bis(N,N?-diispropylacetamidinate) vapor and hydrogen gas. Nitrides and oxides of these metals can be formed by replacing the hydrogen with ammonia or water vapor, respectively. The films have very uniform thickness and excellent step coverage in narrow holes. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices.
    Type: Application
    Filed: August 4, 2009
    Publication date: November 26, 2009
    Inventors: Roy G. Gordon, Booyong S. Lim
  • Patent number: 7608301
    Abstract: This relates to an improvement to the process of aluminization or activated cementation in which a donor cement containing the aluminium is attacked at high temperature and in a neutral or reducing atmosphere by a gaseous ammonium halide to form a gaseous aluminium halide which decomposes on contact with a nickel-based substrate depositing aluminium metal thereon. According to the invention the aluminium halide is at least partly replaced by a zirconium halide leading to the inclusion of zirconium in the deposit. Improvement in the protection of the hot parts of aircraft engines made of nickel-based superalloy. No figure is to be published.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: October 27, 2009
    Assignees: ONERA (Office National d'Etudes et de Recherches Aerospatiales), SNECMA Moteurs
    Inventors: Marie-Pierre Bacos, Pierre Josso, Serge Naveos
  • Patent number: 7604840
    Abstract: The present invention relates to a novel atomic layer deposition process for the formation of copper films on substrates or in or on porous solids in an atomic layer deposition process.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: October 20, 2009
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Jeffery Scott Thompson
  • Patent number: 7597934
    Abstract: A method for making a gas turbine engine turbine blade comprising an airfoil section a platform section, an under platform section, and a dovetail section, the exterior surface of the dovetail section comprising a shank exterior surface and a serrated exterior surface. The blade further includes a silicon-modified diffusion aluminide layer a surface of a turbine blade section selected from the group consisting of the exterior surface of the under platform section, the exterior surface of the dovetail section, and combinations thereof, the aluminide layer having a concentration of silicon at a surface of the aluminide layer in the range of about 1 weight percent to about 10 weight percent and a concentration of aluminum at the surface of the aluminide layer in the range of about 5 weight percent to about 25 weight percent.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 6, 2009
    Assignee: General Electric Company
    Inventors: Bangalore A. Nagaraj, Mark D. Gorman
  • Patent number: 7598204
    Abstract: A reagent suitable for use as a catalyst comprises a first metal species substrate having a second reduced metal species coated thereon, the second reduced metal species being less electropositive than the first metal. Methods of manufacture are also provided.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: October 6, 2009
    Assignee: General Motors Corporation
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui
  • Publication number: 20090226612
    Abstract: Methods and compositions for depositing a film on one or more substrates include providing a reactor with at least one substrate disposed in the reactor. A liquid precursor solution is provided, where the liquid precursor solution comprises a solid precursor and an aromatic solvent. The solid precursor has the general formula: M(RmCp)2Ln; wherein M is an alkaline earth metal, and each R is independently either H or a C1-C4 linear, branched, or cyclic alkyl group. L is a Lewis base; m is 2, 3, 4, or 5; and n is 0, 1, or 2. The aromatic solvent comprises at least one aromatic ring, and has a greater boiling point than the melting point of the solid precursor. The liquid precursor solution is vaporized to form a precursor solution vapor, and the vapor is introduced into the reactor. At least part of the vapor is deposited onto the substrate to form an alkaline earth metal containing film.
    Type: Application
    Filed: October 29, 2008
    Publication date: September 10, 2009
    Inventors: Satoko Ogawa, Christian Dussarrat
  • Patent number: 7560138
    Abstract: The invention provides oxidation resistant coatings for transition metal substrates and transition metal alloy substrates and method for producing the same. The coatings may be multilayered, multiphase coatings or gradient multiphase coatings. In some embodiments the transition metal alloys may be boron-containing molybdenum silicate-based binary and ternary alloys. The coatings are integrated into the substrates to provide durable coatings that stand up under extreme temperature conditions.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 14, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: John H. Perepezko, Joon S. Park, Ridwan N. Sakidja
  • Patent number: 7553468
    Abstract: Provided is a production method for producing a solid product by a reaction of gaseous raw materials with a plurality of components including a step of conducting the reaction using a reactor disposed in a vertical direction; a step of feeding the gaseous raw materials with a plurality of components from the upper part of the reactor; a step of, in the lower part of the reactor, forming a seal gas layer composed of a gas having a high density and fed continuously from the lower part of the reactor; a step of discharging an exhaust gas containing a by-product gas generated by the reaction and unreacted gaseous raw materials from somewhere in the upper part of the formed seal gas layer; and a step of accommodating a solid product in the seal gas layer of the lower part.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 30, 2009
    Assignee: Chisso Corporation
    Inventors: Shuuichi Honda, Toru Tanaka, Satoshi Hayashida
  • Patent number: 7553517
    Abstract: A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: June 30, 2009
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Paul D. Jablonski, David E. Alman
  • Publication number: 20090162550
    Abstract: Copper (I) amidinate and copper (I) guanidinate precursors for forming copper thin films in the manufacture of microelectronic device articles, e.g., using chemical vapor deposition, atomic layer deposition, and rapid vapor deposition processes, as well as mixed ligand copper complexes suitable for such processes. Also described are solvent/additive compositions for copper precursors for CVD/ALD of copper metal films, which are highly advantageous for liquid delivery of such copper amidinates and copper guanidinates, as well as for other organocopper precursor compounds and complexes, e.g., copper isoureate complexes.
    Type: Application
    Filed: December 29, 2006
    Publication date: June 25, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum, Bryan C. Hendrix, Thomas M. Cameron, Jeffrey F. Roeder, Matthias Stender
  • Patent number: 7547478
    Abstract: A coated article has a metallic substrate with a substrate composition, and a metallic coating overlying and contacting the metallic substrate. The metallic coating has a metallic-coating composition different from the substrate composition. A protective coating overlies and contacts the metallic coating. The protective coating includes an aluminide layer overlying and contacting the metallic coating, and optionally a thermal barrier coating overlying and contacting the aluminide layer. This structure may be used to restore a key dimension of an article that has previously been in service and to protect the article as well.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: June 16, 2009
    Assignee: General Electric Company
    Inventors: Wayne Ray Grady, Thomas Joseph Kelly, Michael James Weimer, Nripendra Nath Das, Mark Alan Rosenzweig
  • Patent number: 7547464
    Abstract: This invention relates to organometallic precursor compounds represented by the formula (L)M(L?)2(NO) wherein M is a Group 6 metal, L is a substituted or unsubstituted anionic ligand and L? is the same or different and is a ? acceptor ligand, a process for producing the organometallic precursor compounds, and a method for producing a film, coating or powder from the organometallic precursor compounds.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: June 16, 2009
    Assignee: Praxair Technology, Inc.
    Inventor: Scott Houston Meiere
  • Patent number: 7544388
    Abstract: The invention includes methods of utilizing supercritical fluids to introduce precursors into reaction chambers. In some aspects, a supercritical fluid is utilized to introduce at least one precursor into a chamber during ALD, and in particular aspects the supercritical fluid is utilized to introduce multiple precursors into the reaction chamber during ALD. The invention can be utilized to form any of various materials, including metal-containing materials, such as, for example, metal oxides, metal nitrides, and materials consisting of metal. Metal oxides can be formed by utilizing a supercritical fluid can be utilized to introduce a metal-containing precursor into reaction chamber, with the precursor then forming a metal-containing layer over a surface of a substrate. Subsequently, the metal-containing layer can be reacted with oxygen to convert at least some of the metal within the layer to metal oxide.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: June 9, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri
  • Publication number: 20090136664
    Abstract: A method for forming an aluminide coating comprising diffusion coating a substrate with the use of an aluminum-based compound and a halide activator, each having a sulfur concentration of less than about 20 parts-per-million by weight.
    Type: Application
    Filed: August 2, 2007
    Publication date: May 28, 2009
    Applicant: United Technologies Corporation
    Inventor: Michael J. Minor
  • Publication number: 20090130466
    Abstract: Organometallic precursor complexes containing a metal and ligands containing electron withdrawing groups are disclosed. The complexes are adapted to undergo exothermic adsorption on a fully passivated diffusion barrier layer and on a metal layer deposited on the diffusion barrier layer and to undergo exothermic reduction on the diffusion barrier layer and the metal layer. The metal is preferably copper. Use of the complexes in atomic layer deposition is also disclosed.
    Type: Application
    Filed: November 16, 2007
    Publication date: May 21, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Hansong Cheng, Diwakar Garg, Pablo Ordejon, Manuel Cobian
  • Publication number: 20090117271
    Abstract: A film forming apparatus is used in a semiconductor manufacturing process and a method for producing a barrier film is used for a semiconductor. When a metallic gas and a reactive gas are alternatively flown, a back-flow preventing gas and an auxiliary gas are flown, the reactive gas and the auxiliary gas are moved with the flow of the back-flow preventing gas, and radicals are produced by being in contact with them to a catalytic material. Since the metallic material gas is not in contact with the catalytic material, the catalytic material is not degraded. A shower plate may be disposed between a radical producing chamber and a reaction chamber, so that the radicals are fed into the reaction chamber through holes. Thus, a barrier film having low resistance and excellent coverage is formed.
    Type: Application
    Filed: October 15, 2008
    Publication date: May 7, 2009
    Applicant: ULVAC, INC.
    Inventor: Masamichi HARADA
  • Publication number: 20090110852
    Abstract: An exemplary housing includes a main body, and a plurality of coatings formed on the main body. The coatings include a plating layer, an outer layer, and an adhesive layer. The plating layer is coated on the main body. The adhesive layer is sandwiched between the plating layer and the outer layer. Surface treating methods for making present housing are also provided.
    Type: Application
    Filed: December 28, 2007
    Publication date: April 30, 2009
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHWAN-HWA CHIANG
  • Publication number: 20090104375
    Abstract: Methods and compositions for depositing metal films are described herein. In general, the disclosed methods utilize precursor compounds comprising gold, silver or copper. More specifically, the disclosed precursor compounds utilize neutral ligands derived from ethylene or acetylene.
    Type: Application
    Filed: September 17, 2008
    Publication date: April 23, 2009
    Applicant: L'Air Liquide-Societe Anonyme pour l'Etude et Exploitation des Procedes Georges Claude
    Inventors: Christian Dussarrat, Benjamin Jurcik
  • Publication number: 20090104352
    Abstract: A film formation method includes a first stage including a period of heating a target substrate to a film formation temperature, and supplying a metal compound gas and a nitrogen-containing reducing gas onto the target substrate, thereby directly depositing a metal nitride film by CVD on a target substrate; and a second stage of supplying the metal compound gas and the nitrogen-containing reducing gas, thereby further depositing a metal nitride film by CVD on the metal nitride film initially deposited by the first stage, to obtain a predetermined film thickness. Each of the first stage and the second stage is arranged to repeat one or more times a cycle including a first step of supplying the metal compound gas and the nitrogen-containing reducing gas and a second step of stopping the metal compound gas and supplying the nitrogen-containing reducing gas.
    Type: Application
    Filed: May 18, 2006
    Publication date: April 23, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Toshio Hasegawa
  • Patent number: 7517800
    Abstract: A manufacturing method of a semiconductor device including a TiN film, including a deposition step of forming a TiN film by the CVD method, an anneal step of performing a heat treatment to the formed TiN film in an atmosphere of NH3 gas, an NH3 gas purge step of purging NH3 gas, and a step of further repeating the deposition step, the anneal step, and the NH3 gas purge step for at least one time. The deposition step is performed using titanium halide gas and NH3 gas as material gases and with a deposition temperature of 300° C.-450° C. to form the TiN film by a thickness of 1 nm-5 nm for each deposition step. Thus, a semiconductor device in which generation of irregularly grown objects in the TiN film is suppressed and a manufacturing method thereof can be provided.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: April 14, 2009
    Assignees: Renesas Technology Corp., Tokyo Electron Limited
    Inventors: Tomonori Okudaira, Takeshi Hayashi, Hiroshi Fujiwara, Yasushi Fujita, Kiyoteru Kobayashi
  • Publication number: 20090087634
    Abstract: A golden ornament includes a base material; a Ti coating film which is formed on a surface of the base material in an atmosphere of an inert gas other than nitrogen and whose Ti atom content is constant in the thickness direction; a TiN gradient coating film which is formed on the Ti coating film and whose N atom content has a gradient in the thickness direction; a TiN coating film which is formed on the TiN gradient coating film and whose contents of Ti atoms and N atoms are constant in the thickness direction; an Au—TiN mixture gradient coating film which is formed on the TiN coating film and whose Au atom content has a gradient in the thickness direction; and an Au—TiN mixture coating film which is formed on the Au—TiN mixture gradient coating film and whose contents of Au atoms, Ti atoms, and N atoms are constant in the thickness direction.
    Type: Application
    Filed: March 31, 2006
    Publication date: April 2, 2009
    Applicant: CITIZEN HOLDINGS CO., LTD.
    Inventors: Koichi Naoi, Fumio Tase, Yukio Miya, Osamu Tanaka, Masayoshi Ushikubo
  • Publication number: 20090087561
    Abstract: Metal and metalloid precursors useful for forming metal-containing films on substrates, including amide precursors, tetraalkylguanidinate precursors, ketimate and dianionic guanidinate precursors. The precursors of the invention are readily formed and conveniently used to carry out chemical vapor deposition or atomic layer deposition at low temperature, e.g., at temperature below 400° C.
    Type: Application
    Filed: September 28, 2008
    Publication date: April 2, 2009
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Tianniu CHEN, Chongying Xu, William Hunks, Jeffrey F. Roeder, Thomas H. Baum
  • Patent number: 7494719
    Abstract: A component having a platinum-aluminum substrate surface region which is formed in the area of the substrate surface of the component by diffusion of platinum and aluminum into the substrate surface and which contains platinum and aluminum as well as the constituents of the substrate composition. The integrated aluminum content and/or the integrated platinum content in the substrate area is less than 18 wt %.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: February 24, 2009
    Assignee: MTU Aero Engines GmbH
    Inventors: Ernst Affeldt, Anja Kliewe, Lothar Peichl, Heinrich Walter
  • Publication number: 20090022891
    Abstract: A method of forming a metal film, comprising the steps of: sublimating at least one metal compound selected from the group consisting of a cobalt compound, a ruthenium compound and a tungsten compound from a substrate having the above metal compound film formed thereon; and supplying the sublimated gas to a substrate for forming a metal film to decompose the gas, thereby forming a metal film on the surface of the first substrate. A method of forming a metal film which serves as a seed layer when a metal, especially copper is to be filled into the trenches of a substrate as an insulator by plating and as a barrier layer for preventing the migration of metal atoms to an insulating film when the substrate has no barrier layer and has excellent adhesion to the insulator.
    Type: Application
    Filed: July 27, 2006
    Publication date: January 22, 2009
    Applicant: JSR CORPORATION
    Inventors: Tatsuya Sakai, Yasuo Matsuki, Kazuo Kawaguchi
  • Publication number: 20080305276
    Abstract: A method for applying hot gas anticorrosion layers to high-temperature-resistant alloys, either nickel-based or cobalt-based alloys, in the form of a gradient layer consisting of one or more elements of the platinum group in combination with aluminum. The components are introduced into a directional high-temperature, high-enthalpy, free jet of solid, liquid or gaseous precursors in mixing ratios such that defined concentration gradients can be established in the layer.
    Type: Application
    Filed: May 20, 2005
    Publication date: December 11, 2008
    Applicant: MTU AERO ENGINES GMBH
    Inventors: Erwin Bayer, Joerg Hoeschele, Albin Platz, Stefan Schneiderbanger, Juergen Steinwandel
  • Publication number: 20080299310
    Abstract: A nickel-base superalloy substrate includes a surface region having an integrated aluminum content of from about 18 to about 24 percent by weight and an integrated platinum content of from about 18 to about 45 percent by weight, with the balance components of the substrate. The substrate is preferably a single-crystal advanced superalloy selected for use at high temperatures. The substrate may optionally have a ceramic layer deposited over the platinum-aluminide region, to produce a thermal barrier coating system. The platinum-aluminide region is produced by diffusing platinum into the substrate surface, and thereafter diffusing aluminum into the substrate surface.
    Type: Application
    Filed: August 22, 2007
    Publication date: December 4, 2008
    Applicant: General Electric Company
    Inventor: Jon C. Schaeffer
  • Patent number: 7459395
    Abstract: A method of purifying a metal carbonyl precursor in a metal precursor vaporization system where the metal carbonyl precursor comprises a metal particulate impurity. The method includes flowing a CO-containing gas through the metal precursor vaporization system to a precursor collection system in fluid communication with the metal precursor vaporization system to separate the metal carbonyl precursor from the metal particulate impurity and to transfer the metal carbonyl precursor to the precursor collection system, and collecting the transferred metal carbonyl precursor in the precursor collection system, where an amount of the metal particulate impurity is lower in the precursor collection system than in the precursor vaporization system and the precursor collection system is maintained at a lower temperature than the metal precursor vaporization system.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: December 2, 2008
    Assignee: Tokyo Electron Limited
    Inventor: Kenji Suzuki
  • Patent number: 7442417
    Abstract: A method for reaction control coating includes: (a) a step of applying a reaction control material to a surface of an Ni-base superalloy before applying aluminum diffusion coating to the Ni-base superalloy, wherein the reaction control material is Co, Cr or Ru, or an alloy of which main component is selected from the group consisting of Co, Cr, and Ru; and (b) a step of applying the aluminum diffusion coating to the Ni-base superalloy.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: October 28, 2008
    Assignee: IHI Corp.
    Inventors: Yasuhiro Aoki, Akihiro Sato
  • Publication number: 20080260607
    Abstract: A method for improving the performance of catalysts by the addition of small amounts of oxygen to feed stock streams. Examples are shown for the improved operation of gold-ceria catalysts in the water-gas shift (WGS) and PROX reactions. The catalytic material is made by depositing catalytic metals, such as gold or platinum, on substrate materials, such as doped or undoped ceria. The deposited metal, which comprises both crystalline and non-crystalline structures, is treated, for example with aqueous basic NaCN solution, to remove at least some of the crystalline metallic component. The remaining noncystalline metallic component associated with the substrate exhibits catalytic activity that is substantially similar to the catalyst as prepared. The use of the catalyst is contemplated in efficient, cost-effective reactions, such as removal of carbon monoxide from fuel gases, for example by performing the water gas shift reaction and/or the PROX reaction.
    Type: Application
    Filed: November 4, 2005
    Publication date: October 23, 2008
    Inventors: Maria Flytzani-Stephanopoulos, Weiling Deng
  • Patent number: 7439338
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one fluorine-containing organic group as a substituent. In other certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one aliphatic group as a substituent selected to have greater degrees of freedom than the corresponding substituent in the ?-diketiminate ligands of certain metal-containing compounds known in the art. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Timothy A. Quick
  • Patent number: 7429403
    Abstract: A method for introducing an inert carrier gas into a coating container used to provide a metallic coating on articles. The method includes introducing the inert carrier gas into the coating container as a plurality of carrier gas streams proximate the top of the coating container. The carrier gas streams are formed and introduced into the coating container before encountering a source material for the metallic coating, and each carrier gas stream is introduced so that the inert carrier gas at least initially moves within the coating container in a circular swirling fashion above and before encountering the source material and the article.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: September 30, 2008
    Assignee: General Electric Company
    Inventors: Gary E. Wheat, Terri K. Brown, Richard L. Schmidt, Edward J. Cove
  • Publication number: 20080220165
    Abstract: A turbine engine component (10) with a protective aluminide coating (14) that include additions of silicon and a dopant, such as yttrium and/or hafnium, in an amount effective to reduce sulfidation and a deposition process for forming such aluminide coatings (14). A silicon-containing layer (30) may be applied to the superalloy substrate (12) of the component (10) and the aluminide coating (14) formed by exposing component (10) and layer (30) to a vapor phase reactant containing the dopant. The aluminide coating (14), which contains dopant from the layer (30), may operate as a standalone environmental coating or as a bond coating for an optional ceramic thermal barrier layer (24). An optional zirconia layer (26) maybe provided between the aluminide coating (14) and the ceramic thermal barrier layer (24).
    Type: Application
    Filed: April 13, 2005
    Publication date: September 11, 2008
    Applicant: AEROMET TECHNOLOGIES, INC.
    Inventor: David C. Fairbourn