Ionized Gas Utilized (e.g., Electrically Powered Source, Corona Discharge, Plasma, Glow Discharge, Etc.) Patents (Class 427/533)
  • Patent number: 6506451
    Abstract: A composite structure having a substantially monocrystalline growth substrate and at least one monocrystalline or polycrystalline layer of diamond or diamond-like material arranged on a surface of the growth substrate, the surface of the growth substrate being provided with crystal growth nuclei having crystal axes which exhibit an inclination of not more than 10%, preferably not more than 7%, with respect to corresponding axes of the crystal lattice of the growth substrate, and a process for producing such a composite structure in which the growth substrate is pretreated and growth nuclei are deposited from a nucleating gas phase of known composition for depositing layers of diamond or diamond-like material, in which during the nucleation the growth substrate is raised to a negative electrical potential relative to the nucleating gas phase.
    Type: Grant
    Filed: May 9, 1996
    Date of Patent: January 14, 2003
    Assignee: DaimlerChrysler AG
    Inventors: Frank Stubhan, Hans-Juergen Fuesser, Mona Ferguson
  • Publication number: 20030008224
    Abstract: A method of producing an organic LED display panel, which includes: a step of preparing a donor film by forming a transfer film on a base film comprising at least a foundation film and a light-to-heat conversion layer and a step of combining the donor film with a substrate and irradiating the donor film with one of a light beam and a heat radiation beam to pattern-transfer the transfer film from the donor film onto the substrate, wherein surfaces of the base film and the substrate which are to be brought into contact with the transfer film are hydrophilic or hydrophobic, and have water contact angles &thgr;1 and &thgr;2, respectively, which satisfy the following expression (I):
    Type: Application
    Filed: May 16, 2002
    Publication date: January 9, 2003
    Inventors: Yoshimasa Fujita, Kimitaka Ohhata
  • Patent number: 6503989
    Abstract: A monolayer polyolefin-based printable article includes 0.1 to 5% by weight of at least one polyaminoalkylene, and is characterized in that it has been treated by means of an oxidative surface treatment, such as a corona treatment. A process for the manufacture of a polyolefin-based printable article, according to which at least one surface region of the article, including at least one polyolefin and from 0.1 to 5% by weight of at least one polyaminoalkylene, involves subjecting the region to an oxidative surface treatment. A printing process, according to which a polyolefin-based article, including from 0.1 to 5% by weight of at least one polyaminoalkylene and treated by means of an oxidative surface treatment, utilizes an electrophotography technique to print on the article.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: January 7, 2003
    Assignee: Solvay (Societe Anonyme)
    Inventor: Zdenek Hruska
  • Patent number: 6500497
    Abstract: A method of producing a patterned magnetic nanostructure is disclosed. The method includes providing a substrate having a non-magnetic single layer or multi layer film that can be converted into a magnetic state by annealing and/or mixing. The method further includes positioning a mask having a desired pattern and resolution associated with the patterned magnetic nanostructure on or over the film. The method additionally includes subjecting the mask-covered substrate to a beam of radiation (focussed or unfocussed) having sufficient energy to locally anneal and/or mix the non-magnetic or weak-magnetic single-layer or multi layer film. Because of the mask effect, only the desired portions of the non-magnetic film are exposed to the beam of radiation. As such, the desired portions of the non-magnetic film are changed from a non-magnetic to a magnetic state to produce an array of magnetic elements in a non-magnetic matrix. The size of each magnetic element is dependent on the resolution of mask.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: December 31, 2002
    Assignee: Data Storage Institute
    Inventors: Jian-Ping Wang, Tie Jun Zhou, Tow Chong Chong
  • Patent number: 6495457
    Abstract: A chemical vapor deposition method of providing a layer of material atop a semiconductor wafer using an organic precursor includes, a) positioning a wafer within a chemical vapor deposition reactor; b) injecting an organic precursor to within the reactor having the wafer positioned therein, and maintaining the reactor at a temperature and a pressure which in combination are effective to deposit a first layer of material onto the wafer which incorporates carbon from the organic precursor; and c) after depositing the first layer, ceasing to inject the organic precursor into the reactor and injecting a component gas into the reactor and generating a plasma within the reactor against the first layer, the component gas and plasma generated therefrom having a component which is effective when in an activated state to interact with a component of the deposited first layer to remove carbon from the first layer and produce gaseous products which are expelled from the reactor.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: December 17, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 6475581
    Abstract: A coated substrate and methods of making and using coated substrates, wherein the coated substrate comprises a coating consisting essentially of a layered mineral, a thermoplastic polymeric substrate having pendant groups receptive to said layered mineral, and wherein said pendant groups are coordinated metal groups, or are groups which can be bonded to coordinating cations or anions, or pendant groups directly receptive said layered mineral. The coated substrate is less permeable to gases, such as oxygen and carbon dioxide.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: November 5, 2002
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Steven Raymond Lustig, Eric M. Smith
  • Patent number: 6475571
    Abstract: A method for manufacturing a resin thin film of the present invention includes supplying a liquid resin material and a gas to a two-fluid nozzle by pressure; ejecting the resin material in the form of atomized particles toward a heating member by the two-fluid nozzle, thereby adhering the resin material to the heating member; or mixing a liquid resin material with a gas; ejecting the resin material in form of atomized particles toward a heating member that is provided under reduced pressure, thereby adhering the resin material to the heating member; and evaporating the resin material on the heating member to obtain the evaporated resin material. Thus, the present invention can provide a resin thin film having a uniform thickness stably with simple means at a low cost. The resin thin film obtained by the present invention can be used in a wide range, for example a magnetic recording medium such as a magnetic tape, a wrapping material, and an electronic component.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: November 5, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Noriyasu Echigo, Kazuyoshi Honda, Masaru Odagiri, Nobuki Sunagare, Toru Miyake, Tomonori Sato
  • Patent number: 6475572
    Abstract: A method for applying a fluid coating onto a substrate includes forming a fluid wetting line by introducing a stream of fluid onto a first side of the substrate along a laterally disposed fluid-substrate contact area. An electrical force is created on the fluid from an electrical field (originating from electrical charges which are on the second side of the substrate) that is substantially at and downstream of the fluid wetting line. The electrical field can be generated by charges that have been transferred to the second side of the substrate from a remote charge generator.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: November 5, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: John W. Louks, Nancy J. W. Hiebert, Luther E. Erickson, Peter T. Benson
  • Patent number: 6458431
    Abstract: A method for depositing nanoparticles in a thin film through the dispersion of such nanoparticles in a precursor solution which is deposited on a substrate and converted into a metal or metal oxide film. The resulting metal or metal oxide film will contain embedded nanoparticles. Such films can be used in a variety of applications such as diffusion barriers, electrodes for capacitors, conductors, resistors, inductors, dielectrics, or magnetic materials. The nanoparticle material may be selected by one skilled in the art based on the particular application.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: October 1, 2002
    Assignee: EKC Technology, Inc.
    Inventors: Ross H. Hill, Juan Pablo Bravo-Vasquez
  • Publication number: 20020137195
    Abstract: Chemically-modified surfaces on unoxidized, bromine- or iodine-terminated carbon, silicon, and germanium substrates are disclosed. Visible light mediates the reaction of protected &ohgr;-modified, &agr;-unsaturated aminoalkenes (preferred) with bromine- or iodine-terminated carbon, silicon, or germanium surfaces. Removal of the protecting group yields an aminoalkane-modified silicon surface. These amino groups can be coupled to terminal-modified oligonucleotides using a bifunctional crosslinker, thereby permitting the preparation of modified surfaces and arrays. Methods for controlling the surface density of molecules attached to the substrate are also disclosed.
    Type: Application
    Filed: January 26, 2001
    Publication date: September 26, 2002
    Inventors: Robert J. Hamers, Wei Cai, Lloyd M. Smith, Todd C. Strother
  • Patent number: 6444254
    Abstract: Functionalized polymer surfaces having reactive moieties thereon are contacted with stamps having ligands adsorbed thereto, the ligands also comprising reactive moieties. The reactive moieties of the functionalized surfaces and the ligands form covalent bonds, thus providing a method of microstamping polymer surfaces directly with ligands such as biological ligands. Using this method, devices such as tissue culture plates with polymer surfaces that are microstamped directly with ligands can be made.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: September 3, 2002
    Assignee: Duke University
    Inventors: Ashutosh Chilkoti, Zhongping Yang
  • Patent number: 6440230
    Abstract: Nitride layer formation includes a method where a material is electrodeposited on a substrate and converted, at least in part, to a layer comprising nitrogen and the electrodeposited material. The electrodepositing may occur substantially selective on a conductive portion of the substrate. Also, the converting may comprise exposing the electrodeposited material to a nitrogen-comprising plasma. Chromium nitride and chromium oxynitride are examples of nitrogen-comprising materials. Copper or gold wiring of an integrated circuit are examples of a substrate. The chromium may be converted to a chromium-nitride-comprising diffusion barrier using a nitrogen-comprising plasma.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: August 27, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Rita J. Klein
  • Patent number: 6436483
    Abstract: A method for producing a tamper evident security holographic label and overlaminate using UV casting techniques, and a security device so produced, comprising a clear protective layer; a thin layer of clear UV cured resin cast partly onto the protective layer following a designed pattern; another layer of UV cured resin bearing a cast holographic image, wherein the bond of the holographic image layer is stronger toward the surface of the protective layer than it is toward the surface of the pattern layer; a reflective layer strongly attached to the adjacent holographic layer; and an adhesive layer bonded to the reflective layer. Such a composite product when adhered to a base substrate via the adhesive layer will show no visible security feature to the unaided eye due to the thin nature of the clear security pattern.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: August 20, 2002
    Assignee: American Bank Note Holographics, Inc.
    Inventors: Miklos Palmasi, Anh Nguyen, Kang Lee, Lily O'Boyle
  • Patent number: 6428863
    Abstract: Process for selected adjustment of dropwise condensation on a surface comprising implanting nitrogen ions with a theoretically predicted minimum dose concentration of 1015 cm−2, the wetting characteristics of the surface being adjusted without cleaning or other preparation steps in such a way that stable dropwise condensation is formed on the surface and the intensity of condensation and thus heat transfer performance can be selected using the level of the dose concentration.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: August 6, 2002
    Assignee: ESYTEC Energie- und Systemtechnik GmbH
    Inventors: Alfred Leipertz, Kyong-Hee Choi
  • Publication number: 20020102415
    Abstract: The present invention provides an optically clear, hydrophilic coating upon the surface of a silicone medical device by sequentially subjecting the surface of the lens to plasma polymerization in a hydrocarbon-containing atmosphere and then covalently attaching a preformed hydrophilic polymer to the surface of the carbon coating. The invention is especially useful for forming a biocompatible coating on a silicone contact lens.
    Type: Application
    Filed: May 20, 1999
    Publication date: August 1, 2002
    Inventors: PAUL L. VALINT, DANIEL M. AMMON, JOSEPH A. MCGEE, GEORGE L. GROBE, RICHARD M. OZARK
  • Patent number: 6416820
    Abstract: A method for enabling the formation of a carbonaceous hard film having a high hardness, strong adherence to the substrate, a wide range of substrate compatibility, and structural stability, which can be formed at room temperature and may cover a large area. The method includes vapor depositing a hard film of a carbonaceous material onto a substrate under vacuum by depositing a vaporized, hydrogen free carbonaceous material, which may be ionized or non-ionized, onto the substrate surface while irradiating the carbonaceous material with gas cluster ions, generated by ionizing gas clusters to form the film.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: July 9, 2002
    Assignee: Epion Corporation
    Inventors: Isao Yamada, Jiro Matsuo, Teruyuki Kitagawa, Allen Kirkpatrick
  • Patent number: 6413333
    Abstract: Readily castable high density polyethylene (HDPE) films, preferably containing broad molecular weight distribution HDPE resin having treated upper skin layers and untreated lower skin layers, preferably coextruded, on each side, wherein a particulate cross-linked hydrocarbyl-substituted polysiloxane is present in the untreated lower skin layer to reduce coefficient of friction and enhance machinability. The treated upper skin layer is derived from a polymer, e.g., ethylene-propylene-butene-1 terpolymer, and the lower skin layer is derived from a polymer such as ethylene-propylene-butene-1 terpolymer and LDPE compounded with silicone oil.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 2, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Michael John Bader, Jeffrey James O'Brien
  • Patent number: 6395147
    Abstract: The present invention relates to the improvement of metal bonding strength in polypropylene films through the addition of ethylene in a mini-random ethylene-propylene copolymer in an amount of no more than about 1 weight percent, more preferably no more than about 0.7 weight percent, and most preferably between about 0.3 weight percent and about 0.5 weight percent, or even amounts between about 0.05 weight percent and about 0.2 weight percent. The invention allows the improvement of metal bond strength in metallizable films. The invention encompasses both the resulting films with enhanced metal bond strength and the process for producing such films.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: May 28, 2002
    Assignee: Fina Technology, Inc.
    Inventors: William R. Wheat, Aiko Hanyu
  • Patent number: 6395333
    Abstract: A method of making a coated article, the method including depositng a diamond-like carbon (DLC) layer or coating on a substrate. In certain example embodiments, the coating has a high contact angle.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: May 28, 2002
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Publication number: 20020058105
    Abstract: A system for applying a fluid coating onto a substrate includes forming a fluid wetting line by introducing a stream of fluid onto a first side of the substrate along a laterally disposed fluid-substrate contact area. An electrical force is created on the fluid from an electrical field (originating from electrical charges which are on the second side of the substrate) that is substantially at and downstream of the fluid wetting line. The electrical field can be generated by charges that have been transferred to the second side of the substrate from a remote charge generator.
    Type: Application
    Filed: April 6, 2000
    Publication date: May 16, 2002
    Inventors: John W Louks, Nancy J W Hiebert, Luther E Erickson, Peter T Benson
  • Publication number: 20020054962
    Abstract: The present invention generally provides improved adhesion and oxidation resistance of carbon-containing layers without the need for an additional deposited layer. In one aspect, the invention treats an exposed surface of carbon-containing material, such as silicon carbide, with an inert gas plasma, such as a helium (He), argon (Ar), or other inert gas plasma, or an oxygen-containing plasma such as a nitrous oxide (N2O) plasma. Other carbon-containing materials can include organic polymeric materials, amorphous carbon, amorphous fluorocarbon, carbon containing oxides, and other carbon-containing materials. The plasma treatment is preferably performed in situ following the deposition of the layer to be treated. Preferably, the processing chamber in which in situ deposition and plasma treatment occurs is configured to deliver the same or similar precursors for the carbon-containing layer(s). However, the layer(s) can be deposited with different precursors.
    Type: Application
    Filed: June 18, 1999
    Publication date: May 9, 2002
    Inventor: JUDY HUANG
  • Patent number: 6368664
    Abstract: A glass substrate is ion beam milled in order to smoothen the same and/or reduce or remove nano-cracks in the substrate surface before a coating system (e.g., diamond-like carbon (DLC) inclusive coating system) is deposited thereon. It has been found that such ion beam milling of the substrate prior to deposition of the coating system improves adherence of the coating system to the underlying milled substrate. Moreover, it has surprisingly been found that such ion beam milling of the substrate results in a more scratch resistant coated article when a DLC inclusive coating system is thereafter ion beam deposited on the milled substrate. Amounts sodium (Na) may also be reduced at the surface of the substrate by such milling.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: April 9, 2002
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Rudolph Hugo Petrmichl
  • Patent number: 6368675
    Abstract: A system for applying a fluid coating onto a substrate includes forming a fluid wetting line by introducing a stream of fluid onto a first side of the substrate along a laterally disposed fluid-web contact area. An electrical force is created on the fluid from an effective electrical field originating from a location on the second side of the substrate and at a location substantially at and downstream of the fluid contact area. The electrical field can be generated in a highly effective manner relative to the coating fluid by a sharply defined electrode on the second side of the substrate. Ultrasonics combined with electrostatic fields further enhances coating process conditions and coating uniformity.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: April 9, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: John W. Louks, Sharon Wang, Luther E. Erickson
  • Patent number: 6365012
    Abstract: This invention relates to a magnetic recording medium having a structure in which an undercoating film, a magnetic thin film, a protective film, and an organic film are stacked on a substrate in the order named. Since the protective film contains carbon and silicon and a portion of silicon in at least an interface in contact with the organic film consists of a silicon oxide, the surface of the magnetic recording medium is not degraded even by frequent contact with a magnetic head upon driving or stopping of the magnetic recording medium. This invention also relates to a method of manufacturing the same.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: April 2, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Toshiyuki Sato, Shinya Katayama
  • Patent number: 6361819
    Abstract: Coatings are provided in which biopolymers may be covalently linked to a substrate. Such biopolymers include those that impart thromboresistance and/or biocompatibility to the substrate, which may be a medical device. Coatings disclosed herein include those that permit coating of a medical device in a single layer, including coatings that permit applying the single layer without a primer. Suitable biopolymers include heparin complexes, and linkage may be provided by a silane having isocyanate functionality. Plasma deposition and solvent swelling techniques are described as preferred methods of depositing a derivatized silane or a silane-heparin coating.
    Type: Grant
    Filed: August 20, 1999
    Date of Patent: March 26, 2002
    Assignee: Medtronic AVE, Inc.
    Inventors: Eugene Tedeschi, Chirag B. Shah, Laurel L. Wolfgang
  • Patent number: 6361837
    Abstract: The invention provides a system and a method for densifying a surface of a porous film. By reducing the porosity of a film, the method yields a densified film that is more impenetrable to subsequent liquid processes. The method comprises the steps of providing a film having an exposed surface. The film can be supported by a semiconductor substrate. When the film is moved to a processing position, a focused source of radiation is created by a beam source. The exposed surface of the film is then irradiated by the beam source at the processing position until a predetermined dielectric constant is achieved. The film or beam source may be rotated, inclined, and/or moved between a variety of positions to ensure that the exposed surface of the film is irradiated evenly.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: March 26, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Suzette K. Pangrle, Richard J. Huang, Shekhar Pramanick
  • Patent number: 6355106
    Abstract: A method and apparatus for improving the adhesion of a copper layer to an underlying layer on a wafer. The layer of copper is formed over a layer of material on a wafer and the copper layer impacted with ions to improve its adhesion to the underlying layer.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: March 12, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Bo Zheng, Ling Chen, Alfred Mak, Mei Chang
  • Publication number: 20020022139
    Abstract: There is provided a plastic base material having a reformed layer 2 formed on a plastic substrate 1 by reforming the surface layer thereof into a component containing fluorine at the ratio of the number of fluorine atoms to the number of carbon atoms, F/C, of 0.85 or more and 1.30 or less, and having highly durable water repellency and ink repellency. The method of manufacturing such a plastic base material comprises a step of reforming the surface of the plastic substrate 1 into a fluorine-containing carbon layer by imparting a specific energy to fluorine-containing plasma by applying an RF bias voltage to the plastic substrate 1 to form a surface having highly durable water repellency and ink repellency. A highly durable ink-jet printer that enables high-quality printing can be provided by the use of a head for an ink-jet printer fabricated by using this plastic base material.
    Type: Application
    Filed: September 18, 2001
    Publication date: February 21, 2002
    Inventors: Koichi Kotera, Hiroyoshi Tanaka, Isamu Inoue, Osamu Watanabe
  • Patent number: 6348239
    Abstract: The invention is directed to a photoresist-free method for depositing films composed of metals, such as copper, or its oxides from metal complexes. More specifically, the method involves applying an amorphous film of a metal complex to a substrate. The metal complexes have the formula MfLgXh, wherein M is selected from the group consisting of Ti, V, Cr, Au, Mn, Fe, Co, Ni, Cu, Zn, Si, Sn, Li, Na, K, Ba, Sr, Mo, Ru, Pd, Pt, Re, Ir, and Os, L is a ligand of the formula (R2NCR2′CO) wherein R and R′ are independently selected from H, CnHm and CnHmAxBy wherein A and B are independently selected from main group elements and f, g, h, n, m, x and y represent integers and wherein X is an anion independently selected from N3, NCO, NO3, NO2, Cl, Br, I, CN, OH, H and CH3. These films, upon, for example, thermal, photochemical or electron beam irradiation may be converted to the metal or its oxides.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: February 19, 2002
    Assignee: Simon Fraser University
    Inventors: Ross H. Hill, Yo Mao Shi
  • Patent number: 6335053
    Abstract: A process for the continuous production of coated metallic bands obtained by physical phase vapor deposition includes the following steps carried out on a band, eventually coated with zinc or its alloys, in motion and maintained in a vacuum environment: heating the band to be coated; activating the band surface; heat stabilizing the band; depositing a zinc layer on the metallic band; secondary heat stabilizing the band; and depositing one or more elements or compounds on the zinc layer, these elements being able to synergistically interact with the zinc layer to obtain high corrosion resistance, weldability, ductility, and adhesion.
    Type: Grant
    Filed: April 20, 1998
    Date of Patent: January 1, 2002
    Assignee: Centro Sviluppo Materiali S.p.A.
    Inventors: Franco Arezzo, Pietro Gimondo, Gianni Speranza
  • Patent number: 6333084
    Abstract: Durable—long lived plastic films carrying sputter-deposited metal layers such as reflective metal layers on both sides are disclosed. The slip side of the plastic film is not preglowed. The nonslip side is preglowed. This combination of glowing and not preglowing leads to the desired long life.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: December 25, 2001
    Assignee: Southwall Technologies, Inc.
    Inventors: F. Eugene Woodard, Thomas Pass, Ted L. Larsen
  • Publication number: 20010051231
    Abstract: A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu and then directing a high energy beam onto the substrate to cause an intermixing of the deposited material with the native oxide of the substrate metal or metal alloy. The native oxide layer is changed from electrically insulating to electrically conductive. The step of depositing can be carried out, for example, by ion beam assisted deposition, electron beam deposition, chemical vapor deposition, physical vapor deposition, plasma assisted, low pressure plasma and plasma spray deposition and the like.
    Type: Application
    Filed: May 1, 1997
    Publication date: December 13, 2001
    Inventors: BARRY C. MUFFOLETTO, ASHISH SHAH, DONALD H. STEPHENSON
  • Patent number: 6328865
    Abstract: There is disclosed a method and apparatus for forming a thin film of a composite metal compound. Independent targets formed of at least two different metals are sputtered so as to form on a substrate an ultra-thin film of a composite metal or an incompletely-reacted composite metal. The ultra-thin film is irradiated with the electrically neutral, activated species of a reactive gas so as to convert the composite metal or the incompletely-reacted composite metal to a composite metal compound through the reaction of the ultra-thin film with the activated species of the reactive gas. The formation of the ultra-thin film and the conversion to the composite metal compound are sequentially repeated so as to form on the substrate a thin film of the composite metal compound having a desired thickness.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: December 11, 2001
    Assignee: Shincron Co., Ltd.
    Inventors: Shigeharu Matsumoto, Kazuo Kikuchi, Masafumi Yamasaki, Qi Tang, Shigetaro Ogura
  • Patent number: 6328841
    Abstract: In a method of connecting a first and a second silicon wafer, the first silicon wafer is first provided with a polyimide layer on a main surface thereof. Subsequently, a plasma-induced reaction between the polyimide layer and water is performed. A plasma-induced reaction is also performed between a main surface of the second silicon wafer and chlorine. The main surface of the second silicon wafer is then subjected to a treatment with hydrolyzed triethoxysilylpropanamine. Following this, the surfaces of the two silicon wafers, which have been subjected to the plasma-induced reactions, are joined together so as connect the silicon wafers permanently.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: December 11, 2001
    Assignee: Fraunhofer-Gesellschaft zur Foerderungdder Angewandten Forschung, e.V.
    Inventors: Armin Klumpp, Christof Landesberger
  • Patent number: 6326415
    Abstract: Provided is a support for an ink jet recording material. The support comprises a substrate and a UV cured resinous coating layer on the substrate, with said resinous coating layer being comprised of a tetrafunctional polyester acrylate, a difunctional acrylic ester, a UV photoinitiator and a polyether.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: December 4, 2001
    Assignee: Rexam Graphics Inc.
    Inventors: Alexander J. Miklasiewicz, Son T. Vo, Everett Wyman Bennett
  • Patent number: 6319566
    Abstract: A method for mask-free molecular or atomic patterning of surfaces of reactive solids is disclosed. A molecular-scale pattern of adsorbate molecules is used in place of the conventional macroscopic “mask”. Molecules adsorb at surfaces in patterns, governed by the structure of the surface, the chemical nature of the adsorbate, and the adsorbate coverage at the surface. The surface is patterned and then marked or imprinted with the pattern by inducing localised chemical reaction between adsorbate molecules and the surface of the solid, resulting in an imprint being formed in the vicinity of the adsorbate molecules. In one aspect of the invention, photoinduced or electron-induced reaction of the patterned adsorbate leads to patterned reaction with the surface.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: November 20, 2001
    Inventors: John C. Polanyi, Duncan Rogers
  • Patent number: 6300641
    Abstract: A process for modifying the surfaces of a polymer, ceramic, ITO or glass by irradiating energized ion particles onto the surfaces of the polymer, ceramic, ITO or glass, while blowing a reactive gas directly over the surface of the polymer, ceramic, ITO or glass under a vacuum condition, to decrease the wetting angle of the surface. The process can be widely used in the fields of polymers because it provides effects of increasing the spreading of aqueous dyestuffs, increasing adhesive strength with other materials and inhibition of light scattering by decreasing the wetting angle of the material surface.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: October 9, 2001
    Assignee: Korea Institute of Science and Technology
    Inventors: Seok Keun Koh, Hyung Jin Jung, Won Kook Choi, Kyong Sop Han, Sik Sang Gam
  • Patent number: 6291343
    Abstract: A layer of material is formed on a substrate in a partially formed integrated circuit on a wafer. The substrate undergoes a plasma annealing, during which the substrate is bombarded with ions. The plasma annealing may be performed by exposing the substrate to plasma that is generated from a nitrogen containing gas which is infused with energy. After the substrate is plasma annealed, a layer of a refractory metal nitride is deposited on the substrate. The layer of refractory metal nitride is then bombarded with a first set of ions. The bombardment of the refractory metal by the first set of ions may be achieved by performing a plasma annealing. The refractory metal nitride may be further bombarded by a second set of ions.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: September 18, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Tseng, Mei Chang, Ling Chen, David C. Smith, Karl A. Littau, Chyi Chern, Marvin Liao
  • Patent number: 6287642
    Abstract: In the process for coating the elastomeric rubber wiper a vaporous coating material is generated and activated by a plasma and/or laser; a protective coating is formed on a rubber wiper surface by exposing it to the vaporous coating material by CVD and/or PVD methods and process parameters for the coating process are controlled so that the protective coating includes at least three coating layers and has a total thickness of from 200 nm to 2 &mgr;m. The coating layers include at least one thicker softer elastic coating layer with elastomeric properties similar to those of the rubber wiper and other thinner harder coating layers having wear-resistant properties. The other thinner harder coating layers have respective hardness increasing from an inner most one to an outermost one of the other thinner harder coating layers.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: September 11, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Wolfgang Leutsch, Johannes Rauschnabel, Jeanne Forget, Johannes Voigt
  • Publication number: 20010018094
    Abstract: A magnetic hard disk drive comprising a magnetic disk and a magnetic head slider, characterized in that said magnetic head slider is coated with a layer having a contact angle of 50° or more when measured by using a lubricant coated on the magnetic disk, is free from start failure due to stiction caused by adhesion of the lubricant to the slider surface.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 30, 2001
    Inventors: Hiromitsu Tokisue, Sunao Yonekawa, Nobuyuki Ishii, Yasuyuki Horiguchi, Yoshishige Endo, Yasuhiro Yoshimura, Yutaka Ito, Osamu Narisawa, Hiroshi Yuyama, Youichi Inoue, Yukiko Ikeda
  • Patent number: 6270902
    Abstract: A two step method or process for improving the adherence or bonding of a lubricious coating of a crosslinked polyurethane, polyurea or polyurethaneurea/PEO or PVP coating to a substrate surface, said two step method comprising a first step of subjecting said surface to a surface preparation which results in the treated surface being provided with a functional tie layer containing functional groups for reaction with functional groups of a reaction mixture to be applied in a subsequent second step, which upon curing forms a crosslinked polyurethane, polyurea or polyurethaneurea/PEO or PVP coating and a second step of applying to said tie layer said reaction mixture and curing the reaction mixture. A medical device resulting from the above-described two step method.
    Type: Grant
    Filed: April 23, 1997
    Date of Patent: August 7, 2001
    Assignee: C. R. Bard, Inc.
    Inventors: Eugene Tedeschi, Richard Elton, John Hudson
  • Patent number: 6261423
    Abstract: A method for coating substrates having sides of the substrate with unequal adhesion properties includes the steps of non-symmetrically coating the substrate by coating a first side under a first set of coating conditions and coating a second side under a second set of operating conditions wherein the operating conditions used to coat each side are varied so as to compensate for the unequal adhesion properties of the sides.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: July 17, 2001
    Assignee: Honeywell International Inc.
    Inventors: Richard J. Pommer, Glen Roeters, Stephen M. Avery
  • Publication number: 20010006869
    Abstract: Disclosed is a method of fabricating a nano-tube that enables shortly cutting off said nano-tube without deteriorating said same and that when said nano-tube is used as said emitter can provide an improved flat-ability of said surface of said emitter, a method of manufacturing a field-emission type cold cathode that can provide an improved flat-ability of said surface of said emitter and that resultantly can cause an emission of a uniform, stable high-emission electric current, and a method of manufacturing a display device that includes a method of fabricating a nano-tube and/or a method of manufacturing a field-emission type cold cathode. The method of fabricating a nano-tube according to said present invention includes said step of radiating ions 2 onto a nano-tube 1 and said step of oxidizing said nano-tube 1.
    Type: Application
    Filed: December 22, 2000
    Publication date: July 5, 2001
    Inventors: Akihiko Okamoto, Fuminori Itoh
  • Patent number: 6231930
    Abstract: A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (≈5-20 Å) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: May 15, 2001
    Assignee: EUV LLC
    Inventor: Leonard E. Klebanoff
  • Patent number: 6221493
    Abstract: According to the present invention there is now provided a body of cemented carbide or cermets coated with at least one diamond layer. The diamond layer is smooth on all sides of the body with an Ra<1 &mgr;m. According to the present invention there is also provided a method for reactive ion etching of a diamond layer on a complex shape body where the etching is efficient at all sides of the body exposed to the plasma. The etching is made using a C— or oxygen-containing plasma with the possibility of etching of a diamond layer covered by an outer layer of preferably a Si containing material.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: April 24, 2001
    Assignee: Sandvik AB
    Inventors: Ingrid Reineck, Bengt Edholm, Christian Strondl
  • Patent number: 6217687
    Abstract: A process for treating a surface of a thermoplastic resin film (i) which includes subjecting the surface of the thermoplastic resin film (i) to a first oxidation treatment, coating the oxidized surface with a surface modifier, subsequently stretching the film, subjecting that surface of the thermoplastic resin film (i) which has been coated with the surface modifier to a second oxidation treatment, and then coating the oxidized surface with a surface modifier.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: April 17, 2001
    Assignee: Oji-Yuka Synthetic Paper Co., Ltd.
    Inventors: Ayako Shibata, Nobuhiro Shibuya
  • Patent number: 6214479
    Abstract: This invention provides a covered member which possesses a high bond strength of a base material and a covering film, and has a smooth surface. The covered member comprises a base material and a covering film and the surface of the base material to be covered with the covering film is characterized by an uneven surface having projections with an average height in the range from 10 to 100 nm and an average width of not more than 300 nm. The uneven surface can be formed by ion impacting. A surface of a covering film formed on that is smooth since the unevenness of the surface is extremely fine.
    Type: Grant
    Filed: June 23, 1998
    Date of Patent: April 10, 2001
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroyuki Mori, Hideo Tachikawa
  • Patent number: 6193832
    Abstract: A reactor for corona destruction of volatile organic compounds (VOCs), a multi-surface catalyst for the reactor and a method of making the catalyst for the reactor. The reactor has a catalyst of a high dielectric material with an enhanced surface area. A catalyst layer stack is formed by depositing a high dielectric layer on a substrate and, then depositing a conductive layer on the dielectric layer. The catalyst layer stack is bombarded by low RF energy ions to form an enhanced surface area and to form a protective layer over the conductive layer. Catalyst layer stacks may be joined back to form double-sided catalyst layer stacks. The catalyst layer stack may be diced into small pieces that are used in the reactor or the whole catalyst layer stack may be used.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: February 27, 2001
    Assignee: International Business Machines Corporation
    Inventor: Munir-ud-Din Naeem
  • Patent number: 6171661
    Abstract: A method and apparatus for improving the adhesion of a copper layer to an underlying layer on a wafer. The layer of copper is formed over a layer of material on a wafer and the copper layer impacted with ions to improve its adhesion to the underlying layer.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: January 9, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Bo Zheng, Ling Chen, Alfred Mak, Mei Chang
  • Patent number: 6171659
    Abstract: Process for the depositing, onto a substrate, of a coating essentially constituted of an electronic conductor compound, in which the said coating is formed by producing alternatively, on the one hand, in at least one depositing zone, one or several deposits of a determined thickness of an electronic conductor element on the substrate, and, on the other hand, in at least one reaction zone, one or several reactions of the element thus deposited with ions of a reactive gas which are implanted into the deposit of the above-mentioned element over approximately this entire thickness determined in a way as to form, preferably with the totality of this element, the said compound, the above-mentioned ions being submitted to a kinetic energy below 2000 V, while the aforesaid thickness of the deposit of the element is determined as a function of the kinetic energy applied in such a way as to allow the implantation of these ions over approximately this entire thickness.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: January 9, 2001
    Assignee: Recherche et d{acute over (e)}veloppement du groupe Cockerill Sambre, en abr{acute over (e)}g{acute over (e)}
    Inventors: Pierre Vanden Brande, Alain Weymeersch