Composite; I.e., Plural, Adjacent, Spatially Distinct Metal Components (e.g., Layers, Etc.) Patents (Class 428/548)
  • Patent number: 8178463
    Abstract: A multimetallic nanoscale catalyst having a sore portion enveloped by a shell portion and exhibiting high catalytic activity and improved catalytic durability. In various embodiments, the core/shell nanoparticles comprise a gold particle coated with a catalytically active platinum bimetallic material. The shape of the nanoparticles is substantially defined by the particle shape of the core portion. The nanoparticles may be dispersed on a high surface area substrate for use as a catalyst and is characterized by no significant loss in surface area and specific activity following extended potential cycling.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 15, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic, Chao Wang, Hideo Daimon, Shouheng Sun
  • Publication number: 20120088115
    Abstract: Red rust staining of Al/Zn coated steel strip in “acid rain” or “polluted” environments can be minimised by forming the coating as an Al—Zn—Si—Mg alloy coating with an OT:SDAS ratio greater than a value of 0.5:1, where OT is the overlay thickness on a surface of the strip and SDAS is the measure of the secondary dendrite arm spacing for the Al-rich alpha phase dendrites in the coating. Red rust staining in “acid rain” or “polluted” environments and corrosion at cut edges in marine environments can be minimised in Al—Zn—Si—Mg alloy coatings on steel strip by selection of the composition (principally Mg and Si) and solidification control (principally by cooling rate) and forming Mg2 Si phase particles of a particular morphology in interdendritic channels.
    Type: Application
    Filed: March 12, 2010
    Publication date: April 12, 2012
    Applicant: BLUESCOPE STEEL LIMITED
    Inventors: Ross McDowall Smith, Qiyang Liu, Bryan Andrew Shedden, Aaron Kiffer Neufeld, Joe Williams, David James Nolan, Wayne Renshaw
  • Patent number: 8129034
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 6, 2012
    Assignee: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Patent number: 8114527
    Abstract: A highly corrosion-resistant, rust-prevention coating material comprising: an inorganic binder; and Zn metal particles comprised of Zn and unavoidable impurities and dispersed in the binder at the rate of 30 mass % or greater based on a dry coating film, wherein (i) the Zn metal particles include (i-1) fine-grain Zn metal particles of 0.05 to 5 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with a single peak and a tail on either side of the peak and (i-2) coarse-grain Zn metal particles of 6 to 100 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with another single peak and a tail on either side of the peak, and wherein (ii) the percentage of all Zn metal particles accounted for by Zn metal particles of 0.05 to 5 ?m grain diameter expressed in volume percentage is 5 to 99%.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 14, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Makoto Nagasawa, Minoru Ito, Michio Kaneko, Kenji Katoh, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Patent number: 8105699
    Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: January 31, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Publication number: 20120021239
    Abstract: Disclosed is a bonding method for dissimilar materials made from metals and its resulting structures. The materials to be bonded are formed by layering three or more sheets such that a dissimilar material interface and a same material interface are formed. A first current is conducted between a three-sheet layered plate material wherein an aluminum alloy plate, a zinc plated steel plate and a bare steel plate, for example, are layered in order. A nugget is formed in an interface between the zinc plated steel plate and the bare steel plate, which are the same materials. Then, a second current greater than the first current is conducted, and a nugget is formed in an interface between the aluminum alloy plate and the zinc plated steel plate.
    Type: Application
    Filed: September 29, 2011
    Publication date: January 26, 2012
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kenji Miyamoto, Shigeyuki Nakagawa
  • Publication number: 20120006676
    Abstract: A method for producing a composite metal powder according to one embodiment of the invention may comprise: Providing a supply of molybdenum metal powder; providing a supply of a potassium compound; combining the molybdenum metal powder and the potassium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 12, 2012
    Applicant: Climax Engineered Materials, LLC
    Inventors: David Honecker, Michael Carducci, Carl Cox, Christopher Michaluk
  • Publication number: 20120003493
    Abstract: The invention relates to a composite component (10) having a carrier (12) made of powder metal and a wear-resistant body (14) which is made of cemented carbide and is embedded at least in certain portions in the carrier (12), wherein the cemented carbide body (14) is metalized at least in certain portions. The invention also relates to a method for producing such a composite component.
    Type: Application
    Filed: March 22, 2011
    Publication date: January 5, 2012
    Applicant: Kennametal Inc.
    Inventors: Klaus Schon, Jacques Pirlet, Robert Koenig, Dirk Heesen, Bernhard Schuetter, Leon Simmen, Beat Hofer
  • Patent number: 8088495
    Abstract: The present invention provides a wiring material for forming wiring on a substrate by causing coalescence of conductive particles through heating, and including a binder layer and a wiring layer. The binder layer contains metal particles and having a binder function to be adhered to the substrate; and the wiring layer contains metal particles and laminated on the binder layer. The metal particles of the binder layer and the metal particles of the wiring layer are in contact with each other. With this arrangement, it is possible to provide a wiring material allowing use of a larger variety of materials, while also ensuring low resistance of wiring and improvement of adhesion between the wiring and the substrate.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 3, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Akiyoshi Fujii, Toshio Tahira, Nobukazu Nagae
  • Publication number: 20110294594
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: August 4, 2011
    Publication date: December 1, 2011
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, Dave Limoges, Uwe Erb
  • Publication number: 20110287276
    Abstract: To provide an aluminium alloy brazing sheet which can improve erosion resistance while maintaining post-braze strength, brazability, formability, corrosion resistance and other properties even when Mg is added to the core material. The aluminium alloy brazing sheet comprises an Al—Si-based or Al—Si—Zn-based filler material cladded on at least one side of a core material. The core material comprises Si: 0.3 to 1.0% by mass, Mn: 0.6 to 2.0% by mass, Cu: 0.3 to 1.0% by mass, Mg: 0.15 to 0.5% by mass, Ti: 0.05 to 0.25% by mass, with the remainder being Al and inevitable impurities, and has the density of an Mg—Si-based, Al—Mg—Cu-based, Al—Cu—Mg—Si-based intermetallic compound with a particle size smaller than 0.5 ?m of 10000/mm2 or higher, or has the density of the Mg—Si-based, Al—Mg—Cu-based and Al—Cu—Mg—Si-based intermetallic compounds with a particle size of 1.0 ?m or larger lower than 5000/mm2.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 24, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takahiro Izumi, Toshiki Ueda, Shimpei Kimura
  • Publication number: 20110284262
    Abstract: An anisotropic conductive adhesive (ACA) arrangement is disclosed, including a thermosetting resin disposed between a connector of a first structure and a connector of a second structure, and a plurality of ferromagnetic conductive particles dispersed through the thermosetting resin, wherein the plurality of ferromagnetic conductive particles form columns between the connector of the first structure and the connector of the second structure, and wherein a density of the ferromagnetic particles in the columns is substantially higher than a density of the plurality of ferromagnetic particles away from the columns.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 24, 2011
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: William J. Chappell, Sungwook Moon, Nestor A. Rojas, Maria Bellorin
  • Publication number: 20110281132
    Abstract: The present invention relates to a method for coating primary particles with secondary particles using dual asymmetric centrifugal forces wherein, the primary particles comprise (a) at least one metal, or (b) at least one ceramic; the secondary particles comprise at least one metal or salt thereof; and wherein the secondary particles are more malleable than the primary particles.
    Type: Application
    Filed: November 20, 2009
    Publication date: November 17, 2011
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Hugh Gavin Charles Hamilton, Debra Sarah Jones
  • Publication number: 20110262762
    Abstract: A filling material includes a support base member and a metal layer, the metal layer including a first metal layer and a second metal layer and being disposed on one side of the support base member, the first metal layer being an aggregate of nano metal particles and having a film thickness enabling melting at a temperature lower than a melting point, the second metal layer being an aggregate of metal particles having a lower melting point than the first metal layer.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 27, 2011
    Applicant: NAPRA CO., LTD.
    Inventors: Shigenobu Sekine, Yurina Sekine, Yoshiharu Kuwana
  • Patent number: 8043716
    Abstract: Disclosed herein is a gradient thin film, formed on a substrate by simultaneously depositing different materials on the substrate using a plurality of thin film deposition apparatuses provided in a vacuum chamber, wherein the gradient thin film is formed such that the composition thereof is continuously changed depending on the thickness thereof by deposition control plates provided in the path through which the different materials move to the substrate. The gradient thin film is advantageous in that the thin film is formed by simultaneously depositing different materials using various deposition apparatuses, so that the composition thereof is continuously changed depending on the thickness thereof, with the result that the physical properties of a thin film are easily controlled and the number of deposition processes is decreased, and thus processing time and manufacturing costs are decreased, thereby improving economic efficiency.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: October 25, 2011
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Ho Sup Kim, Sang Soo Oh, Tae Hyung Kim, Dong Woo Ha, Kyu Jung Song, Hong Soo Ha, Rock Kil Ko, Nam Jin Lee
  • Patent number: 8025979
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: September 27, 2011
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, Dave Limoges, Uwe Erb
  • Publication number: 20110216470
    Abstract: An electrode foil includes a substrate made of metal and a rough layer disposed on a surface of the substrate and including plural fine metallic particles. The rough layer includes a lower layer, an intermediate layer which is disposed on the lower layer and is more distanced from the substrate than the lower layer is, and an upper layer which is disposed on the intermediate layer and is more distanced from the substrate than the intermediate layer is. The mode of diameters of fine particles in the intermediate layer is greater than the mode of diameters of the fine particles in the upper and lower layers. This electrode foil provides a capacitor having a small leakage current.
    Type: Application
    Filed: October 5, 2010
    Publication date: September 8, 2011
    Inventors: Hiroki Kamiguchi, Akiyoshi Oshima
  • Patent number: 8007922
    Abstract: An article includes a working portion including cemented carbide, and a heat sink portion in thermal communication with the working portion. The heat sink portion includes a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. Also disclosed are methods of making an article including a working portion comprising cemented carbide, and a heat sink portion in thermal communication with the working portion and including a heat sink material having a thermal conductivity that is greater than a thermal conductivity of the cemented carbide. The heat sink portion conducts heat from the working portion.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 30, 2011
    Assignee: TDY Industries, Inc
    Inventors: Prakash K. Mirchandani, Alfred J. Mosco, Eric W. Olsen, Steven G. Caldwell
  • Publication number: 20110200838
    Abstract: A metal matrix composites is used to laser clad a surface, such as a base metal machine element, and provide high wear and corrosion resistance, particularly useful for protecting surfaces in a salt water environment. The composites may comprise up to 25 wt % Mo and up to 20 wt % WC particles in a Nickel Alloy matrix; a nickel Alloy containing 5-30% Chromium, 0-20% Molybdenum, and 0-10% Tungsten or Niobium, with the balance being Nickel.
    Type: Application
    Filed: December 9, 2010
    Publication date: August 18, 2011
    Inventors: Ronald A. Thomas, Matthew T. Calcutt, Jennifer L. Seefelt-Momont, Michael M. Priebe
  • Publication number: 20110198983
    Abstract: A method is provided for producing a wire or tape, especially for use as an electrode or electrode tip in spark plugs. The method includes the following steps: (a) producing an intermetallic compound having a melting point above 1700° C.; (b) grinding the intermetallic compound; (c) mixing the intermetallic compound with metal powder; (d) introducing the mixture obtained in step (c) in a tube produced from ductile material; and (e) shaping the tube filled in step (d) to give a wire or tape. Also provided are a wrapped wire or wrapped tape, especially a semifinished product for producing electrodes or electrode tips of spark plugs.
    Type: Application
    Filed: March 29, 2007
    Publication date: August 18, 2011
    Applicant: W.C. HERAEUS GMBH
    Inventors: Harald Manhardt, David Francis Lupton, Tanja Eckardt, Holger Zingg
  • Patent number: 7998581
    Abstract: A solid particle erosion resistant surface treated coating has a solid particle erosion resistance that is largely enhanced and a rotating member having the coating gains oxidation resistance without deteriorating a fatigue strength. Also, a rotating machine can have this coating applied thereto. The solid particle erosion resistant surface treated coating has a nitrided hard layer formed on a surface of a base material and a PVD (physical vapor deposition) hard layer of at least one layer formed on the nitrided hard layer by a PVD method. Deformation of the base material by collisions by solid particles is prevented and cracking of the coating is prevented. Thereby, the solid particle erosion resistance is secured, life of the solid particle erosion resistant surface treated coating can be increased and oxidation resistance and fatigue strength are enhanced.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: August 16, 2011
    Assignee: Mitsubishi Heavy Industires, Ltd.
    Inventors: Toyoaki Yasui, Yoshikazu Yamada, Shugo Iwasaki, Katsuyasu Hananaka, Kyoichi Ikeno
  • Patent number: 7989084
    Abstract: A powdered metal assembly includes a mechanical part, a powdered metal part and a fastener configured to join the mechanical part and the powdered metal part. In another aspect of the disclosure, a method for manufacturing a powdered metal assembly may include the steps of positioning the mechanical part in a forming apparatus, providing a powdered metal into the forming apparatus, compressing the powdered metal to form and bond a powdered metal part to the mechanical part to form the powdered metal assembly, and removing the powdered metal assembly from the forming apparatus.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: August 2, 2011
    Assignee: Motor Excellence, LLC
    Inventor: Thomas Janecek
  • Publication number: 20110177356
    Abstract: The present invention relates to a method for preparing Pt thin films using electrospray deposition, more specifically a method for preparing platinum thin film using electrospray deposition, including dissolving a platinum (Pt) precursor in ethanol to prepare a precursor solution for spraying (Step 1); applying a DC voltage between a substrate holder and a nozzle of an electrospraying device and then spraying the precursor solution prepared in Step 1 on a substrate which is maintained at about 100° C. to about 180° C. to form a platinum thin film (Step 2); and subjecting the platinum thin film formed in Step 2 to a heat treatment (Step 3).
    Type: Application
    Filed: August 3, 2010
    Publication date: July 21, 2011
    Applicant: Korea Institute of Science and Technology
    Inventors: Oh Shim Joo, Kwang Deog Jung, Jyotiprakash B. Yadav
  • Patent number: 7968488
    Abstract: The present invention is directed to a composite particle that is microscopically two-dimensional with a third nanoscopic dimension, and to methods of making same. The particle may include a support and a metal layer. The metal layer may be catalytically active such that the particle is adapted to act as a catalyst.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 28, 2011
    Assignee: Southwest Research Institute
    Inventors: James H. Arps, Kent Edward Coulter
  • Publication number: 20110143159
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 16, 2011
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20110135952
    Abstract: A method is provided that includes depositing metal powder over a seed crystal having a predetermined primary orientation, scanning an initial pattern into the metal powder to melt or sinter the deposited metal powder, and re-scanning the initial pattern to re-melt the scanned metal powder and form an initial layer having the predetermined primary orientation. The method further includes depositing additional metal powder over the initial layer, scanning an additional pattern into the additional metal powder to melt or sinter at least a portion of the additional metal powder, re-scanning the additional pattern to re-melt a portion of the initial layer and the scanned deposited additional metal powder to form a successive layer having the predetermined primary orientation, and repeating the steps of depositing additional metal powder, scanning the additional pattern, and re-scanning the additional pattern, until a final shape of the component is achieved.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 9, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Mark C. Morris, Tom Strangman, Yiping Hu
  • Publication number: 20110135953
    Abstract: A metallic powder is disclosed. The metallic powder includes a plurality of metallic powder particles. Each powder particle includes a particle core. The particle core includes a core material comprising Mg, Al, Zn or Mn, or a combination thereof, having a melting temperature (TP). Each powder particle also includes a metallic coating layer disposed on the particle core. The metallic coating layer includes a metallic coating material having a melting temperature (TC). The powder particles are configured for solid-state sintering to one another at a predetermined sintering temperature (TS), and TS is less than TP and TC.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Inventors: Zhiyue Xu, Gaurav Agrawal, Bobby Salinas
  • Patent number: 7955411
    Abstract: A bonding material comprising metal particles coated with an organic substance having carbon atoms of 2 to 8, wherein the metal particles comprises first portion of 100 nm or less, and a second portion larger than 100 nm but not larger than 100 ?m, each of the portions having at least peak of a particle distribution, based on a volumetric base. The disclosure is further concerned with a bonding method using the bonding material.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: June 7, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Yusuke Yasuda, Toshiaki Morita, Eiichi Ide, Hiroshi Hozoji, Toshiaki Ishii
  • Patent number: 7935419
    Abstract: Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: May 3, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Jennifer A. Hollingsworth, Yongfen Chen, Victor I. Klimov, Han Htoon, Javier Vela
  • Patent number: 7914901
    Abstract: Structures and methods for hindering molded part deformation during densification are discussed. Such devices and techniques can help alleviate stresses that tend to result in part deformation during firing, sintering, or other densification processes, and thus reduce the need for secondary straightening operations post-densification. In some instances, a support structure is utilized to orient a molded greenbody in a preferred direction to reduce deformation during firing (e.g., orienting a thin tail section is a plane parallel to the direction of gravity). The support structure can also be part of, or the entirety of, a thermal mass to help alleviate stresses that lead to part deformation. Though such structures and methods can be used for any molded piece, it can be particularly used to create a portion, or an entirety of, a medical device such as a jaw of an surgical instrument.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: March 29, 2011
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Nabeel Mark Jadeed, Charles Frank Benjey, Donald F. Heaney
  • Patent number: 7910224
    Abstract: Fine-gained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Fetch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 22, 2011
    Assignee: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20110031001
    Abstract: A composite metal fine particle material is provided, in which spherical silver nanoparticles synthesized from a silver compound, a solvent, a reducing agent, and a dispersant, and conductive fillers compose of non-spherical metal fine particles, are mixed. For example, the conductive fillers composed of the non-spherical metal fine particles are formed into slender columnar shapes, plate shapes, or ellipsoidal shapes.
    Type: Application
    Filed: February 8, 2010
    Publication date: February 10, 2011
    Applicant: HITACHI CABLE LTD.
    Inventors: Dai ISHIKAWA, Tomiya ABE, Masanobu ITO
  • Publication number: 20110033721
    Abstract: The invention discloses the internal structures and processes to synthesize the structure of self-healing materials, specially metallic materials, metal matrix micro and nanocomposites. Self healing is imparted by incorporation of macro, micro or nanosize hollow reinforcements including nanotubes, filled with low melting healing material or incorporation of healing material in pockets within the metallic matrix; the healing material melts and fills the crack. In another concept, macro, micro and nanosize solid reinforcements including ceramic and metallic particles, and shape memory alloys are incorporated into alloy matrices, specially nanostructured alloy matrices, to impart self healing by applying compressive stresses on the crack or diffusing material into voids to fill them.
    Type: Application
    Filed: August 7, 2009
    Publication date: February 10, 2011
    Inventor: Pradeep K. Rohatgi
  • Publication number: 20110014488
    Abstract: Fine-gained (average grain size 1 mm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Fetch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Patent number: 7854996
    Abstract: A conventional Bi-containing sliding material sometimes underwent seizing in a sliding part operating at a high rotational speed. The present invention provides a sliding material which does not undergo seizing in a sliding part operating at a high rotational speed and a method for its manufacture. A low melting point alloy containing at least 20 mass % of Bi and having a liquidus temperature of at most 200° C. is made to penetrate into a porous portion comprising a Cu—Sn based alloy. A Bi—Sn based alloy or a Bi—In based alloy is suitable as the low melting point alloy. After a low melting point alloy paste is applied to a porous portion, the low melting point alloy is melted and made to penetrate into the porous portion.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: December 21, 2010
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Issaku Sato, Sinzo Nakamura, Naoki Sato, Toshio Hakuto
  • Publication number: 20100316882
    Abstract: Nanomaterial and methods for generating nanomaterial are described wherein a reaction, for example, decomposition, for generating nanomaterial occurs utilizing a hot wall reactor.
    Type: Application
    Filed: February 25, 2009
    Publication date: December 16, 2010
    Inventors: Andrey V. Filippov, Clinton Damon Osterhout, Martin Andrew Sala, Kamal Kishore Soni, Carlton Maurice Truesdale
  • Patent number: 7846554
    Abstract: The present invention discloses a method of making a functionally graded metal matrix composite (MMC) sheet having a central layer of particulate matter. The method includes providing a molten metal containing particulate matter to a pair of advancing casting surfaces. Solidifying the molten metal while advancing the molten metal between the advancing casting surfaces to form a product comprising a first solid outer layer, a second solid outer layer, and a semi-solid central layer having a higher concentration of particulate matter than either of the outer layers. Solidifying the central layer to form a solid metal product comprised of an inner layer sandwiched between the outer layers and withdrawing the metal product from between the casting surfaces. The method yields an MMC having a central layer enriched with particulate matter and sandwiched between metallic outer layers.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: December 7, 2010
    Assignee: Alcoa Inc.
    Inventors: David A. Tomes, Jr., Gavin F. Wyatt-Mair, David W. Timmons, Ali Unal
  • Publication number: 20100304171
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the CLTE of the metallic layer and the one of the substrate is mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 2, 2010
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha
  • Publication number: 20100297462
    Abstract: In one embodiment, the present invention may be a method of forming a porous and/or dense article from metal powder (12), including adding to a mold a first feedstock comprising an agglomerated metal powder (12) and an agglomeration agent, forming said first feedstock into a green state dense article (22); and removing said agglomeration agent. Furthermore, the present invention may include a second feedstock including an agglomerated metal powder (12), a space filling material and an agglomeration agent which may be formed into a green state porous article (21). The present invention also includes a dense and/or porous article (22 and 21) manufactured by various methods, as well as methods for creating the dense and porous feedstocks. Moreover, the present invention may include an article which may be a medical implant.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 25, 2010
    Applicant: HOWMEDICA OSTEONICS CORP.
    Inventors: John Lapszynski, Robert W. Klein, Michael A. DeLuise
  • Publication number: 20100297465
    Abstract: It is an object to provide a surface-treated steel sheet which contains no Cr, which is excellent in wet resin adhesion, and which can be used as an alternative to a conventional tin-free steel sheet and to provide a resin-coated steel sheet produced by coating the surface-treated steel sheet with resin. A surface-treated steel sheet including an adhesive layer which is disposed on at least one surface of the steel sheet and which contains Ti and at least one selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, the ratio of the total amount of Co, Fe, Ni, V, Cu, Mn, and Zn to the amount of Ti contained therein being 0.01 to ten on a mass basis, and a method for producing the surface-treated steel sheet.
    Type: Application
    Filed: October 30, 2008
    Publication date: November 25, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuka Nishihara, Takeshi Suzuki, Noriko Makiishi, Takumi Tanaka, Hiroki Iwasa, Norihiko Nakamura, Kaoru Sato, Takashi Kawano
  • Patent number: 7824774
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: November 2, 2010
    Assignee: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20100266862
    Abstract: A metal particle transfer article and a metal modified substrate are provided as well as methods of making and using the article and substrate.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Inventors: Paul S. Lugg, Timothy D. Fletcher
  • Patent number: 7803313
    Abstract: Method for forming a unitary component from a plurality of powder metallurgy compacts. The method in some embodiments includes fluidizing first and second surfaces, wherein a first powder metallurgy compact defines the first surface and a second powder metallurgy compact defines the second surface. The method also includes joining the fluidizing first and second surfaces to form a bonded structure and thermally treating the bonded structure to fuse the first and second compacts into a unitary component.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 28, 2010
    Assignee: Precision Castparts Corp.
    Inventors: Jedidiah David Rust, Michael Charles Watt, Laxmappa Hosamani, Jason Joseph Schmertman
  • Publication number: 20100239878
    Abstract: High-performance magnets are obtained by: housing metal evaporating materials (v) containing at least one of Dy and Tb and sintered magnets (S) inside a processing box; disposing the processing box inside a vacuum chamber; thereafter, heating the processing box to a predetermined temperature in a vacuum atmosphere to thereby evaporate the metal evaporating materials and cause them to be adhered to the sintered magnets. The metal atoms of the adhered Dy or Tb are diffused into grain boundaries and/or grain boundary phases of the sintered magnets. A method of manufacturing a permanent magnet is provided in which, even if the sintered magnets and the metal evaporating materials are disposed in close proximity to each other, the squareness of demagnetization curve is not impaired and in which high feasibility of mass production can be attained. While the metal evaporating materials are being evaporated, an inert gas is introduced into the processing chamber in which the sintered magnets are disposed.
    Type: Application
    Filed: October 28, 2008
    Publication date: September 23, 2010
    Inventors: Hiroshi Nagata, Yoshinori Shingaki, Kazutoshi Takahashi, Yasuo Nakadai
  • Publication number: 20100233500
    Abstract: A cold-forming steel article which comprises an alloy that comprises carbon, manganese, silicon, chromium, molybdenum, vanadium, tungsten and optionally, niobium in certain concentrations, as well as up to about 0.4 wt. % of accompanying elements, remainder iron and contaminants. The article is formed by atomization of a melt and hot isostatic pressing of the resultant powder. The article exhibits a hardness of at least about 60 HRC and a toughness in terms of impact strength of higher than about 50 J. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 16, 2010
    Applicant: BOEHLER EDELSTAHL GMBH & CO KG
    Inventors: Gerhard JESNER, Devrim CALISKANOGLU
  • Publication number: 20100215977
    Abstract: The invention relates to a method for applying electrical conductor patterns (1) to or into a target component (10) of plastic, it being provided according to the invention that a carrier medium on or in which the conductor patterns (1) are permanently arrange d is placed in a mould part (3, 8) and the mould part (3, 8) is filled with a mouldable polymer material, the target component (9) with the conductor patterns (1) being removed from the mould part (3, 8) after the moulding of the polymer material.
    Type: Application
    Filed: April 10, 2006
    Publication date: August 26, 2010
    Inventors: Markus Pfletschinger, Bernd Schwarz, Jan Krueger, Ingmar Petersen
  • Publication number: 20100209515
    Abstract: The invention features a galvanic particulate including a first conductive material and a second conductive material, wherein both the first conductive material and the second conductive material are exposed on the surface of the particulate, wherein the particle size of the particulate is from about 10 nanometers to about 100 micrometers, wherein the second conductive material comprises from about 0.01 percent to about 10 percent, by weight, of the total weight of the particulate, and wherein the difference of the standard potentials of the first conductive material and the second conductive material is at least about 0.2 V.
    Type: Application
    Filed: September 17, 2008
    Publication date: August 19, 2010
    Inventors: Jeannette Chantalat, James E. Hauschild, Jue-Chen Liu, Xintian Ming, Michael Southall, Ying Sun
  • Publication number: 20100196734
    Abstract: Wear protection sheets containing hard material particles having a metallic shell and solder material particles selected from the group consisting of soft solders, hard solders and high-temperature solders, the use of the wear protection sheets and a process for producing them by tape casting are described.
    Type: Application
    Filed: October 8, 2009
    Publication date: August 5, 2010
    Applicants: H.C. Starck Inc.
    Inventors: Michael Svec, Karl-Hermann Buchner, Hans-Peter Baldus, Aloys Eiling, Jim Ryan
  • Patent number: 7754342
    Abstract: A corrosion resistant coating for gas turbine engine includes a glassy ceramic matrix wherein the glassy matrix is silica-based, and includes corrosion resistant particles selected from refractory particles and non-refractory MCrAlX particles, and combinations thereof. The corrosion resistant particles are substantially uniformly distributed within the matrix, and provide the coating with corrosion resistance. Importantly the coating of the present invention has a coefficient of thermal expansion (CTE) greater than that of alumina at engine operating temperatures. The CTE of the coating is sufficiently close to the substrate material such that the coating does not spall after frequent engine cycling at temperatures above 1200° F.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: July 13, 2010
    Assignee: General Electric Company
    Inventors: Brian T. Hazel, Jane A. Murphy, Andrew J. Skoog, Bryan T. Bojanowski, Michael J. Weimer
  • Patent number: 7752728
    Abstract: A material composite has a part made from steel or a titanium-based material and a part made from a copper-based or aluminum-based material. The parts of the material composite are joined by way of an intermediate piece. The intermediate piece likewise comprises a region made from steel or a titanium-based material and a region made from a copper-based or aluminum-based material, which are connected by explosion welding. The parts of the material composite are connected to the regions of the intermediate piece which are in each case of the same type by means of a fusion or diffusion welding process.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: July 13, 2010
    Assignee: Plansee SE
    Inventors: Bertram Schedler, Thomas Huber, Thomas Friedrich, Karlheinz Scheiber, Dietmar Schedle, Anton Zabernig, Hans-Dieter Friedle, Sandra Mair, Nadine Wörle