Composite; I.e., Plural, Adjacent, Spatially Distinct Metal Components (e.g., Layers, Etc.) Patents (Class 428/548)
  • Patent number: 7387844
    Abstract: An Al—Si based brazing material is formed on one surface of a core material, and a cladding material is formed on the other surface of the core material with a cladding ratio of 6 to 30% with respect to an entire thickness thereof. The core material contains 0.2 mass % or less of Mg, 0.3 mass % or less of Cr, 0.2 mass % or less of Fe, 0.2 to 1.0 mass % of Cu, 0.05 to 1.3 mass % of Si, 0.3 to 1.8 mass % of Mn, and 0.02 to 0.3 mass % of Ti in such a manner that a total content of Cu and Si is in the range of 2.0 mass % or less. The cladding material contains 2 to 9 mass % of Zn, 0.3 to 1.8 mass % of Mn and/or 0.04 to 1.2 mass % of Si, and further contains 0.02 to 0.25 mass % of Fe, 0.01 to 0.30 mass % of Cr, 0.005 to 0.15 mass % of Mg, and/or 0.001 to 0.15 mass % of Cu.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: June 17, 2008
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Toshiki Ueda, Fumihiro Koshigoe, Fumihiro Sato
  • Patent number: 7377690
    Abstract: A non-electrical intermetallic thermal sensor with trigger temperatures in a range of 360° F. to about 430° F., comprising, a hermetically sealed housing including at least one layer of electronegative metal disposed in the housing, wherein the electronegative metal comprises tin (Sn), and at least one layer of active lithium/magnesium alloy disposed in the housing, wherein each layer(s) of active lithium/magnesium alloy is disposed in abutting interface with each layer(s) of electronegative metal. The intermetallic thermal sensors of the present invention further include at least one diffusion barrier means for inhibiting the diffusion of the active lithium/magnesium alloy layer into the electronegative layer.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: May 27, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Amos J. Diede
  • Patent number: 7361203
    Abstract: A bearing is manufactured by filling iron-based material powder and copper-based material powder in a filling portion of a mold, compacting those material powder so as to form a green compact, and then sintering the green compact. The copper-based material powder contains flat powder particles, the flat powder particles having a large aspect ratio than particles of the iron-based material powder. The coppers-based powder particles segregate on a sliding surface by vibration. The sliding surface of a bearing is covered with copper, and a ratio of iron increases from the sliding surface toward the inside. Since a rotation shaft slides on the sliding surface covered with copper, a frictional coefficient between the rotation shaft and the sliding surface is reduced, thus enabling a smooth rotation thereof. Simultaneously the usage of iron imparts predetermined strength and durability.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: April 22, 2008
    Assignee: Mitsubishi Materials Corporation
    Inventors: Teruo Shimizu, Tsuneo Maruyama
  • Patent number: 7344773
    Abstract: The present invention provides methods of forming uniform nanoparticle based monolayer films with a high particle density on the surface of a substrate comprising (a) forming a surface modifying layer on a substrate using a material comprising a first functional group that chemically binds to the substrate and a second functional group comprising a group capable of forming van der Waals forces, (b) applying to the surface modifying layer a solution comprising nanoparticles, and (c) curing the resultant structure formed at step (b) for a predetermined time to form a nanoparticle based monolayer film. The present invention further provides substrates and devices comprising the nanoparticle based monolayer films.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: March 18, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kolake Mayya Subramanya, In-seok Yeo
  • Patent number: 7337518
    Abstract: A Cooking vessel has an interior lining of titanium or an allow thereof. The bottom is optionally formed of anodized aluminum as the titanium walls withstand the corrosive environment of the anodizing bath. The titanium lining is more resistant to corrosion, staining and attack by acid foods than anodized aluminum. The method of forming the cooking vessel allows a relatively thin layer of titanium metal to be used as the lining, thus reducing the total weight as well as the cost of the cooking vessel.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: March 4, 2008
    Assignee: Meyer Intellectual Properties Limited
    Inventor: Stanley Kin Sui Cheng
  • Publication number: 20080038575
    Abstract: There is provided a method for depositing a modified MCrAlY coating on a surface of a gas turbine engine component. The method includes cold gas dynamic spraying techniques to provide a metallurgical bond between a substrate, such as a superalloy substrate, and the modified MCrAlY composition. The method further includes post deposition heat treatments including hot isostatic pressing.
    Type: Application
    Filed: December 14, 2004
    Publication date: February 14, 2008
    Inventors: Federico Renteria, Murali N. Madhava, Yiping Hu, Derek Raybould, Huu-Duc Trinh-Le
  • Patent number: 7325290
    Abstract: A method is disclosed for manufacturing a multi-part component that dampens vibration and noise caused by forces acting on the component. A pre-formed first part is treated for application of a resilient material. The material is dissolved in a solvent and is selectively applied to areas of the first part that are subject to strong forces. A second part is mechanically attached to the first part, and the entire component is cured so that the resilient material is cured, the solvent is evaporated and the parts are bonded together.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: February 5, 2008
    Assignee: Illinois Tool Works Inc.
    Inventors: Ray C. Hetherington, James D. Jones, Jr., Mark K. Conlee, Todd L. Tesky, Vishal M. Shah
  • Patent number: 7320832
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 22, 2008
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20070281566
    Abstract: A prepreg having low dielectric constant, low dielectric loss, and high heat cycle resistance. The prepreg includes a sheet-like preform and a resin-impregnated, sheet-like, fiber-reinforced material thermal pressure adhered to the sheet-like preform. The sheet-like preform includes a graft copolymer (a) in which 15 to 40 parts by mass of an aromatic vinyl monomer are grafted to 60 to 85 parts by mass of a random or block copolymer comprising monomer units selected from nonpolar ?-olefin monomers and nonpolar conjugated diene monomers. The resin-impregnated, sheet-like, fiber-reinforced material includes a sheet-like, fiber-reinforced material (b1) and a thermoplastic resin (b2) into which the sheet-like, fiber-reinforced material (b1) is impregnated. The thermoplastic resin (b2) is a random or block copolymer composed of 60 to 90 mass % of a monomer unit, which is selected from nonpolar ?-olefin monomers and nonpolar conjugated diene monomers, and 10 to 40 mass % of an aromatic vinyl monomer unit.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 6, 2007
    Applicants: NOF CORPORATION, TDK CORPORATION
    Inventors: Toshihiro Ohta, Tomiho Yamada, Shigeru Asami
  • Patent number: 7250082
    Abstract: Provided is a chemical wet preparation method for Group 12-16 compound semiconductor nanocrystals. The method includes mixing one or more Group 12 metals or Group 12 precursors with a dispersing agent and a solvent followed by heating to obtain a Group 12 metal precursor solution; dissolving one or more Group 16 elements or Group 16 precursors in a coordinating solvent to obtain a Group 16 element precursor solution; and mixing the Group 12 metal precursors solution and the Group 16 element precursors solution to form a mixture, and then reacting the mixture to grow the semiconductor nanocrystals. The Group 12-16 compound semiconductor nanocrystals are stable and have high quantum efficiency and uniform sizes and shapes.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: July 31, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-joo Jang, Tae-kyung Ahn
  • Publication number: 20070141374
    Abstract: An environmentally resistant gas turbine engine disk is disclosed. The disk includes a substrate metal having locally enriched surface regions, the locally enriched surface regions comprising alloying elements present in a higher percentage than found in the substrate metal. A method for making the disk and other articles is also disclosed. The method includes furnishing a plurality of powder particle substrates made of a substrate metal, providing a nonmetallic precursor of a metallic coating material, wherein the metallic coating material includes an alloying element that is thermophysically melt incompatible with the substrate metal, contacting the powder particle substrates with the nonmetallic precursor, and chemically reducing the nonmetallic precursor to form coated powder particles comprising the powder particle substrates having a surface-enriched layer of the metallic coating material thereon, wherein the step of chemically reducing is performed without melting the powder particle substrates.
    Type: Application
    Filed: December 19, 2005
    Publication date: June 21, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David P. Mourer, Kenneth R. Bain
  • Patent number: 7226666
    Abstract: An improved magnetoelectric composite which incorporates LaSrMn or LaCaMn oxides as a magnetostrictive composition are described. The magnetostrictive composition preferably has the formula La0.7Sr0.3MnO3 or La0.7Ca0.3MnO3. The composites preferably have a magnetostrictive layer joined to a piezoelectric layer. The composites are useful for sensors, read-heads, storage media and high frequency transducer devices.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 5, 2007
    Assignee: Oakland University
    Inventor: Gopalan Srinivasan
  • Patent number: 7144648
    Abstract: A bipolar plate has a multi-layered structure including an inner metallic layer and at least one outer metallic, corrosion-resistant layer splatted, embedded, diffused and interlocked into the inner metallic layer.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: December 5, 2006
    Assignees: The Research Foundation of State University of New York, Long Island Power Authority
    Inventors: Hazem Tawfik, Yue Hung
  • Patent number: 7097685
    Abstract: A cemented carbide comprises a binder phase consisting essentially of an iron family metal, a first hard phase consisting essentially of WC having a hexagonal crystal structure, and a second hard phase consisting essentially of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table having an NaCl-type cubic crystal structure. The cemented carbide is formed by a surface region with a thickness of 2 to 50 ?m consisting of the binder phase and the first hard phase, and an inner region present underneath the surface region consisting of the binder phase, the first hard phase and the second hard phase. A ratio of an average grain size of the first hard phase in the surface region to an average grain size of the first hard phase in the inner region is 1 or less, and a ratio of an area of the binder phase in the surface region to an area of the binder phase in the inner region is greater than 1.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: August 29, 2006
    Assignee: Tungaloy Corporation
    Inventors: Hiroyuki Miura, Satoshi Kinoshita
  • Patent number: 7078108
    Abstract: Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: July 18, 2006
    Assignee: The Regents of the University of California
    Inventors: Xinghang Zhang, Amit Misra, Michael A. Nastasi, Richard G. Hoagland
  • Patent number: 6991860
    Abstract: Interference pigment flakes and foils are provided which have color shifting properties. The pigment flakes can have a symmetrical coating structure on opposing sides of a reflector layer, can have an asymmetrical coating structure with all of the layers on one side of the reflector layer, or can be formed with encapsulating coatings around a core reflector layer. The coating structure of the flakes and foils includes a reflector layer, a dielectric layer on the reflector layer, and a titanium-containing absorber layer on the dielectric layer. The pigment flakes and foils exhibit a discrete color shift so as to have a first color at a first angle of incident light or viewing and a second color different from the first color at a second angle of incident light or viewing. The pigment flakes can be interspersed into liquid media such as paints or inks to produce colorant compositions for subsequent application to objects or papers.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: January 31, 2006
    Assignee: JDS Uniphase Corporation
    Inventors: Roger W. Phillips, Charlotte R. LeGallee, Paul T. Kohlmann, Vladimir Raksha, Alberto Argoitia
  • Patent number: 6991856
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt or soften the joining material, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: January 31, 2006
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Michael Reiss, Omar Knio, Albert Joseph Swiston, Jr., David van Heerden, Todd Hufnagel
  • Patent number: 6982047
    Abstract: The present invention improves the oxidation resistance of an ultrafine metal powder for use in the internal electrode of a multilayer ceramic capacitance and suppresses an increase in the thickness of a metal internal electrode film resulting from the spheroidization of the molten metal under surface tension during the formation of the metal internal electrode film. The ultrafine metal powder has a sulfur-containing compound of not less than one element selected from the group consisting of Y, Zr, and La present on the surface of the particle thereof and is produced by performing an ultrafine metal powder purification step of dispersing the ultrafine metal powder in a slurry, a surface treatment step of adding an aqueous solution containing a sulfate of not less than one element selected from the group consisting of Y, Zr, and La to the slurry to form the compound on the surface of the metal particle, a filtering step, and a drying step.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: January 3, 2006
    Assignee: Kawatetsu Mining Co., Ltd.
    Inventor: Morishige Uchida
  • Patent number: 6955112
    Abstract: A lightweight armor system may comprise multiple reinforcement materials layered within a single metal matrix casting. These reinforcement materials may comprise ceramics, metals, or other composites with microstructures that may be porous, dense, fibrous or particulate. Various geometries of flat plates, and combinations of reinforcement materials may be utilized. These reinforcement materials are infiltrated with liquid metal, the liquid metal solidifies within the material layers of open porosity forming a dense hermetic metal matrix composite armor in the desired product shape geometry. The metal infiltration process allows for metal to penetrate throughout the overall structure extending from one layer to the next, thereby binding the layers together and integrating the structure.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: October 18, 2005
    Assignee: Ceramics Process Systems
    Inventors: Richard Adams, Mark Occhionero
  • Patent number: 6949300
    Abstract: The present invention is directed to a process for preparing aluminum and aluminum alloy surfaces in heat exchangers for brazing by depositing thereon a kinetic sprayed brazing composition. The process simultaneously deposits monolith or composite coatings that can include all braze materials and corrosion protection materials used in the brazing of aluminum fins to plates and tubes in a single stage.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: September 27, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Bryan A. Gillispie, Zhibo Zhao, John Robert Smith, Thomas Hubert Van Steenkiste, Alaa A. Elmoursi, Yang Luo, Hartley F. Hutchins
  • Patent number: 6939622
    Abstract: A copper foil having a high etching factor, enabling formation of fine patterns excellent in linearity of bottom lines of circuit patterns and without leaving particles of copper foil forming the circuit patterns in the resin, free from a drop in bond strength between the copper foil and resin substrate due to the processing for formation of solder balls, excellent in visibility, and excellent in mounting of ICs on fine patterns, comprising a copper foil on at least one surface of which is provided an alloy fine roughening particle layer comprised of a copper-cobalt-nickel alloy with contents of cobalt and nickel equal to or greater than that of copper, specifically a copper foil on the surface of the copper foil for bonding with the resin substrate of which is provided an alloy fine roughening particle layer comprised of 5 to 12 mg/dm2 copper, 6 to 13 mg/dm2 cobalt, and 5 to 12 mg/dm2 nickel, wherein the alloy fine roughening particle layer provided on the copper foil surface may be treated for stainproof or
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: September 6, 2005
    Assignee: Furukawa Circuit Foil Co., LTD
    Inventors: Yasuhisa Yoshihara, Hisao Kimijima
  • Patent number: 6938815
    Abstract: Methods of making improved electronic systems and circuits boards, and more specifically to methods of making improved electronic systems and circuits boards using heat-resistant composite materials having superior mechanical, thermal, and electrical properties.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: September 6, 2005
    Inventor: Chou H. Li
  • Patent number: 6939619
    Abstract: A metal powder is formed by the steps of preparing a reducing agent solution, preparing a mixed metallic salt solution by dissolving a nickel salt and a copper salt in a solvent, and mixing the reducing agent solution and the mixed metallic salt solution so that the copper salt is reduced to precipitate copper particle nuclei and then the nickel salt is reduced to precipitate nickel around the copper particle nuclei. A metal power produced by this production method, a conductive paste containing the metal powder and a monolithic ceramic electronic component in which internal electrodes are formed using the conductive paste are also disclosed.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: September 6, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tadasu Hosokura, Atsuyoshi Maeda
  • Patent number: 6902824
    Abstract: This invention provides a metal foil and an etching process which overcomes the problem of etching of the copper foil layer and the plating copper layer formed on a metal clad laminate during the conventional semi-additive process for producing printed wire boards. In the present invention, the metal foil and the metal foil with carrier foil include a nickel or tin layer 0.5 to 3 ?m thick formed on the external surface of a metal clad laminate which protects the surface of the plated layer during the final flash etching of the copper foil layer.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 7, 2005
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Takuya Yamamoto, Takashi Kataoka, Yutaka Hirasawa, Naotomi Takahashi
  • Patent number: 6895851
    Abstract: A lightweight armor system may comprise multiple reinforcement materials layered within a single metal matrix casting. These reinforcement materials may comprise ceramics, metals, or other composites with microstructures that may be porous, dense, fibrous or particulate. Various geometries of flat plates, and combinations of reinforcement materials may be utilized. These reinforcement materials are infiltrated with liquid metal, the liquid metal solidifies within the material layers of open porosity forming a dense hermetic metal matrix composite armor in the desired product shape geometry. The metal infiltration process allows for metal to penetrate throughout the overall structure extending from one layer to the next, thereby binding the layers together and integrating the structure.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: May 24, 2005
    Assignee: Ceramics Process Systems
    Inventors: Richard Adams, Mark Occhionero
  • Patent number: 6893732
    Abstract: The invention relates to superconductor articles, and compositions and methods for making superconductor articles. The methods can include using a precursor solution having a relatively small concentration of total free acid. The articles can include more than one layer of superconductor material in which at least one layer of superconductor material can be formed by a solution process, such as a solution process involving the use of metalorganic precursors.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 17, 2005
    Assignee: American Superconductor Corporation
    Inventors: Leslie G. Fritzemeier, Wei Zhang, Walter C. Palm, Martin W. Rupich
  • Patent number: 6872464
    Abstract: A soldering agent for use in diffusion soldering processes contains, in a soldering paste, a mixture of at least partially metallic grains of a high-melting metal and a solder metal. In a diffusion soldering process, the solder metal reacts completely with the high-melting metal and metals belonging to parts that are to be joined to one another by the soldering process, to form an intermetallic phase.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: March 29, 2005
    Assignee: Infineon Technologies AG
    Inventors: Holger Hübner, Vaidyanathan Kripesh
  • Patent number: 6866941
    Abstract: A compressor having a corrosive resistant coating is disclosed. The coating has a first spray coated metallic layer. A sealant layer is disposed over the sprayed metallic coating which has an organic component, a solvent component, and an inorganic phase.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: March 15, 2005
    Assignee: Copeland Corporation
    Inventors: Kirk E. Cooper, Marc J. Scancarello, Todd A. DeVore, Don G. Reu
  • Patent number: 6852425
    Abstract: The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: February 8, 2005
    Assignee: Ut-Battelle, LLC
    Inventor: Zhong-Cheng Hu
  • Patent number: 6835463
    Abstract: Magnetoelectric multilayer composites comprising alternate layers of a bimetal ferrite wherein one of the metals is zinc and a piezoelectric material for facilitating conversion of an electric field into a magnetic field or vice versa. The preferred composites include cobalt, nickel, or lithium zinc ferrite and PZT films which are arranged in a bilayer or in alternating layers, laminated, and sintered at high temperature. The composites are useful in sensors for detection of magnetic fields; sensors for measuring rotation speed, linear speed, or acceleration; read-heads in storage devices by converting bits in magnetic storage devices to electrical signals; magnetoelectric media for storing information; and high frequency devices for electric field control of magnetic devices or magnetic field control of electric devices.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: December 28, 2004
    Assignee: Oakland University
    Inventor: Gopalan Srinivasan
  • Patent number: 6830823
    Abstract: Gold powders and methods for producing gold powders. The powders preferably have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes novel devices and products formed from the gold powders.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: December 14, 2004
    Assignee: Superior MicroPowders LLC
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell, Clive D. Chandler
  • Publication number: 20040247924
    Abstract: A novel nanoscale, metal particle containing Fe atoms and Au atoms in solid solution. The particle is superparamagnetic with a large magnetic susceptibility at room temperature, is resistant to oxidation, and can be readily functionalized for use in diverse applications by attaching organic molecules to its surface.
    Type: Application
    Filed: February 24, 2003
    Publication date: December 9, 2004
    Applicant: Purdue Research Foundation
    Inventors: Ronald P. Andres, Alicia T. Ng
  • Publication number: 20040247925
    Abstract: A method of making a load plate for an attach hardware assembly of a circuit assembly includes adjusting a curvature of the load plate based on a target load to be applied by the attach hardware.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 9, 2004
    Inventor: Stephen Daniel Cromwell
  • Patent number: 6828037
    Abstract: The invention provides a hydrogen permeable structure, which can effectively prevent peeling-off of a hydrogen permeable film and hence has higher durability, and a method of manufacturing the structure. The hydrogen permeable structure has a hydrogen permeable film formed on the surface of or inside a porous support, having a thickness of not more than 2 &mgr;m, and containing palladium (Pd). The hydrogen permeable film is formed on the surface of or inside the porous support by supplying a Pd-containing solution and a reducing feed material from opposite sides of the porous support.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 7, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Uemura, Kentaro Yoshida, Nobuyuki Okuda, Takeshi Hikata
  • Publication number: 20040229035
    Abstract: The present invention relates to thermally conductive, elastomeric pads. The pads can be made by injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
    Type: Application
    Filed: June 17, 2004
    Publication date: November 18, 2004
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller
  • Publication number: 20040229068
    Abstract: The invention is directed to a nodular nickel boron coating having lubricating properties. Nodular and columnar boron coatings made by the above methods disclosed in the above patents have a low coefficient of friction. The above process results in a columnar structure with nodules in the surface layer. Nodules can be produced in other nickel coatings by blasting the surface with hard particles to form the nodules. Using blasting to form the nodules produces an inferior coating in contrast to the electroless nickel boron coatings having a columnar structure.
    Type: Application
    Filed: June 17, 2004
    Publication date: November 18, 2004
    Inventor: Edward McComas
  • Patent number: 6811887
    Abstract: This invention relates to a transformer and more particularly, to a system and method for making a transformer utilizing dynamic magnetic compaction. A coil is placed in a conductive container, and a conductive powder material, such as ferrite, is placed in the container and surrounds the coil and the turns of the coil. A power supply energizes a capacitor which subsequently provides a high energizing current to a second, energizing coil within which the container, material and inner coil are situated, thereby causing the container, powder materials and coil to be compacted to provide an electrical component, such as a transformer, motor, commutator, rotor or choke.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: November 2, 2004
    Assignee: IAP Research, Inc.
    Inventors: John P. Barber, David P. Bauer, Edward A. Knoth, Duane C. Newman
  • Publication number: 20040209105
    Abstract: The invention relates to a composite sheet material for brazing, the composite sheet material having a structure comprising an aluminium or aluminium alloy substrate on at least one side coupled to a layer comprising a polyolefin/acrylic acid copolymer as a carrier filled with brazing flux material, and optionally also with a metal powder, in an amount sufficient to achieve brazing. The invention further relates to a method of manufacturing composite sheet material for brazing, which method comprises the steps (a) mixing the polyolefin/acrylic acid copolymer with the brazing flux material and/or metal powder, and (b) applying to at least one surface of the metal substrate a mixture of said copolymer filled with the brazing flux material and/or metal powder, in an amount sufficient to achieve subsequent brazing.
    Type: Application
    Filed: May 10, 2004
    Publication date: October 21, 2004
    Applicant: CORUS ALUMINIUM WALZPRODUKTE GMBH
    Inventor: Adrianus Jacobus Wittebrood
  • Patent number: 6787246
    Abstract: Composite materials, particularly those that are highly filled, e.g. comprising about 60 to 70 volume % of finely powdered filler material in a polymer matrix, are made by dissolving the polymer in a volatilisable solvent and forming a homogeneous mixture of the components by high shear mixing. The solvent is then removed while maintaining complete homogeneity in the mixture by evaporating much of the solvent in a high shear mill, then extruding an extremely thin film or tape (e.g. 0.0125 mm (0.0005 in)) from which the remaining solvent is removed by heating without introducing any appreciable non-uniformity, such as bubble holes. Required bodies are formed from the dried film or tape by stacking the thin coherent layers, typically about 6 to 120, then heating and pressing the stack in a mold melting the polymer, uniting the separate layers and dispersing the melted polymer into the interstices between the filler particles.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 7, 2004
    Assignee: Kreido Laboratories
    Inventors: Richard A. Holl, Philip L. Lichtenberger, Kenneth S. Yao
  • Patent number: 6773824
    Abstract: A clad article of a substrate of one powdered metal that is clad with a second dissimilar powdered metal. A separation layer may be provided between the substrate and the clad layer to separate these layers during consolidation and to facilitate bonding thereof. The consolidation operation may be performed by hot isostatic pressing of the powders within a deformable container.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: August 10, 2004
    Assignee: Crucible Materials Corp.
    Inventors: Frank J. Rizzo, Brian A. Hann, Joseph F. Perez
  • Patent number: 6773823
    Abstract: By utilizing the sequential synthesis afforded reverse micelles, nanocomposite materials can be synthesized which have a diamagnetic core surrounded by a thin shell of ferromagnetic material passivated with a second shell of a diamagnet. Using gold as the diamagnetic material and iron as the ferromagnetic material, nanocomposites can be synthesized where there is a thin layer of the magnetic material, which is passivated and protected from oxidation. In this case, all of the spins of the magnetic layer lie within the surface of the particle.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: August 10, 2004
    Assignee: University of New Orleans Research and Technology Foundation, Inc.
    Inventors: Charles J. O'Connor, Everett E. Carpenter, Jessica Ann Sims
  • Patent number: 6767648
    Abstract: There are provided a copper-based sintered sliding material comprising a steel back metal layer, and a sintered layer made of Cu or a Cu-based alloy which is bonded onto the steel back metal layer, the steel back metal layer having a hardness not less than 160 Hv and an elongation not less than 10%, the sintered layer having a hardness not more than 130 Hv and crystal grains each provided with a grain size not more than 45 &mgr;m, a method of producing the sliding material, and a sliding bearing formed of the sliding material.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: July 27, 2004
    Assignee: Daido Metal Company Ltd.
    Inventors: Yasushi Saitou, Eisaku Inoue, Masahito Fujita, Takayuki Shibayama
  • Publication number: 20040126609
    Abstract: This invention provides a metal powder for powder magnetic cores, which have good insulation performance and high magnetic flux density, and which is favorable for motor cores. Ferromagnetic metal powder may be coated with a coating material and a phosphate or phosphoric acid compound containing aluminum is used for the coating material. Coating the surface of iron powder with aluminum phosphate realizes to produce high-quality powder magnetic cores that have good insulation performance and high magnetic flux density and are favorable for motor cores. Further coating the aluminum phosphate-coated metal powder with silane compound or surfactant realizes more stable compressed shaped articles of the powder. And the properties of the articles do not fluctuate while stored for, so long as they are resistant to moisture. This invention contributes to producing powder magnetic cores for motors, and to the process for powder magnetic cores, furthermore, to the related art field.
    Type: Application
    Filed: December 9, 2003
    Publication date: July 1, 2004
    Applicant: JFE STEEL CORPORATION
    Inventors: Masateru Ueta, Naomichi Nakamura, Toshio Maetani, Satoshi Uenosono
  • Publication number: 20040101686
    Abstract: A powder of a composite material comprising a non-evaporable getter material with a palladium coating continuously sorbs hydrogen. Embodiments in which the coverage of the palladium coating over the particles of the NEG material is complete can sorb hydrogen without the need for an activation treatment. Other embodiments in which the palladium coverage is less than total but greater than about 10% can also sorb gaseous species other than hydrogen. Loose powders, pressed powders, and sintered powders of the composite material are incorporated into getter devices and into the evacuated spaces of double-walled pipes, dewars, and thermal bottles. Methods for preparing powders of these composite materials utilize evaporative, sputter, and CVD deposition techniques. Another method prepares powders of the composite material by a liquid phase impregnation process.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 27, 2004
    Applicant: SAES Getters S.p.A.
    Inventors: Paolo della Porta, Claudio Boffito, Luca Toia
  • Publication number: 20040101738
    Abstract: A bipolar plate has a multi-layered structure including an inner metallic layer and at least one outer metallic, corrosion-resistant layer splatted, embedded, diffused and interlocked into the inner metallic layer.
    Type: Application
    Filed: November 22, 2002
    Publication date: May 27, 2004
    Applicant: The Research Foundation of State University of New York
    Inventors: Hazem Tawfik, Yue Hung
  • Publication number: 20040091732
    Abstract: A multi-layer sliding part is prepared by a process including mixing 1-50 parts by volume of a Cu-plated solid lubricant powder with 100 parts by volume of a Cu-based alloy powder comprising 5-20 mass % of Sn and a remainder of Cu to form a mixed powder, sintering the mixed powder in a reducing atmosphere to form a sintered mass, pulverizing the sintered mass to form a powder, dispersing the powder formed by pulverizing on a steel backing plate, and sintering the dispersed powder to bond grains of the dispersed powder to each other and to the backing plate.
    Type: Application
    Filed: August 21, 2003
    Publication date: May 13, 2004
    Inventors: Issaku Sato, Kenzou Tadokoro, Hideaki Tanibata
  • Patent number: 6713161
    Abstract: A light-transmitting electromagnetic wave-shielding material includes a hydrophilic transparent resin layer laminated on a transparent substrate. An electroless plating layer is laminated on the hydrophilic transparent resin layer in a pattern, and a black pattern section is formed on the hydrophilic transparent resin layer under the electroless plating layer. Therefore, a black electroplating layer is formed to cover the electroless plating layer laminated in a pattern.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: March 30, 2004
    Assignee: Nissha Printing Co., Ltd.
    Inventors: Shuzo Okumura, Masahiro Nishida, Tatsuo Ishibashi
  • Patent number: 6710020
    Abstract: The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: March 23, 2004
    Assignees: Yeda Research and Development Co. Ltd., Holon Academic Institute of Technology
    Inventors: Reshef Tenne, Lev Rapoport, Mark Lvovsky, Yishay Feldman, Volf Leshchinsky
  • Patent number: 6706415
    Abstract: A compressor having a corrosive resistant coating is disclosed. The coating has a first spray coated metallic layer. A sealant layer is disposed over the sprayed metallic coating which has an organic component, a solvent component, and an inorganic phase.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: March 16, 2004
    Assignee: Copeland Corporation
    Inventors: Kirk E. Cooper, Marc J. Scancarello, Todd A. DeVore, Don G. Reu
  • Patent number: RE39814
    Abstract: The present invention relates to a coated cemented carbide cutting tool particularly for turning applications with high toughness demands, of stainless steels of different compositions and microstructures, and of low and medium alloyed non-stainless steels. The cemented carbide is WC-Co based with a composition of 9-12 wt % Co, 0.2-2.0 wt % cubic carbides from elements from group IVa, Va or VIa of the periodic table and balance WC with a grain size of 1.5-2 ?m. The binder phase is W-alloyed with a CW-ratio in the range of 0.77-0.95. The coating includes a multilayered structure of the composition (TixAl1?x,)N in which x varies repeatedly between the two ranges 0.45<x<0.55 and 0.70<x<0.80, adding up to a total thickness of 2-9 ?m.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: September 4, 2007
    Assignee: Sandvik Intellectual Property AB
    Inventors: Mikael Lindholm, Anders Lenander, Per Lindskog