Composite; I.e., Plural, Adjacent, Spatially Distinct Metal Components (e.g., Layers, Etc.) Patents (Class 428/548)
  • Patent number: 5466537
    Abstract: An intermetallic thermal sensor comprised of a hermetically sealed housing containing alternating layers of electronegative and active metals or their alloys in intimate contact. The layers may be wafer or washer-shaped. If washer-shaped, the holes in the wafers are aligned with each other to create a well within the housing and any extension thereof. A tubular-shaped liner extends into the well and may contain an energetic composition such as BKNO.sub.3. In one embodiment a thermite charge in the sensor can be ignited for venting applications. The active metal and electronegative metal and their alloys are selected so that when the melting point of one or both metals, alloys, or metal and alloy pairs has reached its or their melting point in response to external heat within a design range of the sensor, a vigorous exothermic reaction occurs to initiate a gas-producing reaction in the well or to ignite the thermite for operation of a cook-off mitigation system.
    Type: Grant
    Filed: April 12, 1993
    Date of Patent: November 14, 1995
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Amos J. Diede, William H. McCune
  • Patent number: 5462808
    Abstract: A high-rigidity composite material having a Young's modulus larger than 25,000 kgf/mm.sup.2 is disclosed, in which particles are dispersed in a matrix of a ferritic steel, and the degree of accumulation of {111} planes in a plane perpendicular to a given direction, in terms of X-ray diffraction intensity, is 30 times larger than that of equiaxial polycrystals.
    Type: Grant
    Filed: September 2, 1994
    Date of Patent: October 31, 1995
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kazutaka Asabe, Masaru Nishiguchi, Sukeyoshi Yamamoto
  • Patent number: 5460893
    Abstract: A TiCN-based cermet cutting insert superior in toughness with improved wear resistance includes a binding phase and at least two of four hard dispersion phases. One of the two hard dispersion phases includes at least one of a duplex or triplex phase structure with a core of a composite carbonitride solid solution and a single-phase structure of a composite carbonitride solid solution. The other hard dispersion phase includes one of a hard dispersion phase of titanium carbonitride and a hard dispersion phase which includes a single-phase structure of titanium carbonitride.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: October 24, 1995
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kiyohiro Teruuchi, Katsuhiko Yano, Niro Odani
  • Patent number: 5451469
    Abstract: There is disclosed a new process for binder phase enrichment. The process combines binder phase enrichment by dissolution of cubic phase with the requirements that cause formation of stratified layers, resulting in a unique structure. The new structure is characterized by, in comparison with the ones previously known, deeper stratified layers and less maximum binder phase enrichment. The possibility of combining dissolution of the cubic phase with formation of stratified layers offers new possibilities to optimize the properties of tungsten carbide based cemented carbides for cutting tools.The new process offers possibilities to combine the two types of gradients. The dissolution of cubic phase moves the zone with maximum amount of stratified binder phase from the surface to a zone close to and below the dissolution front.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: September 19, 1995
    Assignee: Sandvik AB
    Inventors: Per Gustafson, Leif Akesson, Ake Ostlund
  • Patent number: 5447801
    Abstract: A target for magneto-optical recording media having a microstructure having a matrix phase of a eutectic structure of a rare earth metal and an iron-group metal, particles I made of a pure iron-group metal or an alloy thereof and having an average diameter of 200 .mu.m or less and particles II made of a corrosion resistance-improving metal and an iron-group metal and having an average diameter of 200 .mu.m or less is produced by mixing rapidly-quenched powder A made of the rare earth metal and the iron-group metal and having a eutectic structure with powder B made of a pure iron-group metal or an alloy thereof and having an average diameter of 200 .mu.m or less, and powder C made of the corrosion resistance-improving metal and the iron-group metal and having an average diameter of 200 .mu.m or less, and pressure-sintering the resulting mixed powder at a temperature lower than a liquid phase-appearing temperature.
    Type: Grant
    Filed: December 9, 1993
    Date of Patent: September 5, 1995
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kaoru Masuda, Shunichiro Matsumoto
  • Patent number: 5441817
    Abstract: There is provided a method for making diamond and CBN composites, under HP/HT conditions, which comprises bonding a thin refractory material layer on the planar face of the tungsten carbide substrate proximate the diamond or CBN layer. There is also provided a small quantity of fine particles of yet another refractory material admixed in the diamond or CBN layer. The cooperation of these two systems greatly aid in regulating the flow of molten carbide bond metal from the substrate into the diamond or CBN layer, which minimizes abnormal grain growth and bond metal depletion at the diamond/substrate interface.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: August 15, 1995
    Assignee: Smith International, Inc.
    Inventor: Ghanshyam Rai
  • Patent number: 5429876
    Abstract: Disclosed is a copper-lead based bearing material having excellent corrosion resistance, comprising a steel back metal and a bearing layer of a copper-lead based bearing alloy, the latter consisting essentially, by weight, 0.5 to 10% Bi, 0.5 to 8% Sn, 15 to 30% Pb, 2 to 10% Ni, not greater than 0.2% P, the balance Cu and incidental impurities.By adding Bi in a copper-lead based bearing alloy it becomes possible to obtain excellent corrosion resistance without impairing the conformability and seizure resistance of the bearing material in comparison with the conventional copper-lead based bearing alloys.
    Type: Grant
    Filed: April 12, 1994
    Date of Patent: July 4, 1995
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Tsukimitsu Higuchi
  • Patent number: 5427865
    Abstract: A solder preform (250) has solder particles of one alloy (210) arranged within a matrix of a second solder alloy (200). This arrangement forms a structure having the desired predetermined shape of the solder preform. The solder particles comprise one or more of the following elements: tin, lead, bismuth, indium, copper, antimony, cadmium, arsenic, aluminum, gallium, gold, silver. The particles have a predetermined melting temperature. The second solder alloy is compositionally distinct from the solder particles, and has a melting temperature that is lower than the melting temperature of the solder particles. The solder particles may comprise about 88% by weight of the solder preform, and the second solder alloy comprises about 12% by weight of the preform.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: June 27, 1995
    Assignee: Motorola, Inc.
    Inventors: William B. Mullen, III, Kingshuk Banerji, Edwin L. Bradley, III, Vahid Kazem-Goudarzi
  • Patent number: 5422190
    Abstract: The present invention provides a new and useful via fill paste for use in the construction of electronic circuit devices. The unique via fill paste is capable of electrically connecting conductive layers made of dissimilar metals such as gold and silver. The via fill paste includes gold, silver, palladium and a refractory oxide. The refractory oxide comprises one or more metals selected from the group consisting of zirconium, yttrium, niobium, tantalum, lanthanum, thorium, hafnium, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
    Type: Grant
    Filed: January 22, 1993
    Date of Patent: June 6, 1995
    Assignee: Ferro Corporation
    Inventor: John H. Alexander
  • Patent number: 5418071
    Abstract: In the present invention, metal silicide grains form an interlinked structure of a metal silicide phase, and Si grains which form a Si phase are discontinuously dispersed between the metal silicide phase to provide a sputtering target having a high density two-phased structure and having an aluminum content of 1 ppm or less. Because of the high density and high strength of the target, the generation of particles from the target during sputtering is reduced, and due to the reduced carbon content of the target, the mixing of carbon into the thin film during sputtering can be prevented.
    Type: Grant
    Filed: February 4, 1993
    Date of Patent: May 23, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takashi Yamanobe, Takashi Ishigami, Mituo Kawai, Noriaki Yagi, Toshihiro Maki, Minoru Obata, Shigeru Ando
  • Patent number: 5418072
    Abstract: A consumable brazing encapsulate is used for joining aluminum to metal surfaces, e.g. aluminum, copper, brass or steel surfaces, by brazing. The encapsulate comprises a mixture of particles of an eutectic forming metal selected from the group consisting of silicon, germanium, copper and zinc and particles of a brazing flux encapsulated in a layer or layers of aluminum or its alloys, said eutectic forming metal and flux being present in the following parts by weight per 100 parts by weight of the total aluminum in the encapsulate: (a) 7 to 15 parts of silicon and 7 to 45 parts of flux; (b) 25 to 120 parts of germanium and 100 to 250 parts of flux; (c) 40 to 70 parts of copper and 20 to 100 parts of flux; (d) 1300 to 2400 parts of zinc and 1000 to 2000 parts of flux; such that when the encapsulate is placed between aluminum surfaces to be joined and is heated, the eutectic forming metal and the encapsulating aluminum are totally converted in situ into an eutectic filler metal for joining the aluminum surfaces.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: May 23, 1995
    Assignee: Alcan International Limited
    Inventors: Antonio Baldantoni, Roland S. Timsit
  • Patent number: 5418070
    Abstract: An impregnated cathode comprising three layers: a very thin emitting surface layer of metal such as an alloy of tungsten with a high fraction of an activating metal of the platinum group to provide low workfunction; an underlying, thin buffer layer of porous tungsten alloyed with a fraction of activating metal, to retard diffusion loss of activating metal from the emitting layer; and a substrate of porous tungsten impregnated with barium aluminate.
    Type: Grant
    Filed: April 28, 1988
    Date of Patent: May 23, 1995
    Assignee: Varian Associates, Inc.
    Inventor: Michael C. Green
  • Patent number: 5415710
    Abstract: The aluminum alloy of the invention has excellent fatigue strength, high rigidity, and low thermal expansion coefficient, and is suitable for rotating components such as conrods in an internal combustion engine. The aluminum alloy is an Al-Si alloy which contains 7.0-12.0% wt. Si, 3.0-6.0 % wt. Cu, 0.20-1.0% wt. Mg, 0.30-1.5% wt. Mn, 0.40-2.0% wt. Ti+V, 0.05-0.5% wt. Zr, and the remainder Al and being inevitable impurities and which contains a dispersed intermetallic compound of average particle size of 0.5 m or less and containing Ti, V, and Zr. The alloy is preferably manufactured by the rapidly solidifying powder metallurgy process, or by the spray-forming process. By selecting a work-hardening exponent of 0.20 or less, the thread rolling workability is improved.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: May 16, 1995
    Assignees: Honda Motor Co., Ltd., Sumitomo Light Metal Industries, Ltd.
    Inventors: Haruo Shiina, Fumito Usuzaka, Yoshimasa Ohkubo, Shinichi Tani
  • Patent number: 5415944
    Abstract: A solder-clad printed circuit board (100) has solder particles of one alloy (120) arranged within a matrix of a second solder alloy (115). This arrangement forms a flat structure that is alloyed to the solder pads (105) on the substrate. The solder particles (120) have a predetermined melting temperature and are made from one or more of the following elements: tin, lead, bismuth, indium, copper, antimony, cadmium, arsenic, aluminum, gallium, gold, silver. The second solder alloy (115) is compositionally distinct from the solder particles, and has a melting temperature that is lower than the melting temperature of the solder particles. The solder particles may comprise about 88% by weight, and the second solder alloy may comprise about 12% by weight of the solder cladding.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: May 16, 1995
    Assignee: Motorola, Inc.
    Inventors: Vahid Kazem-Goudarzi, Edwin L. Bradley, III, Kingshuk Banerji, Henry F. Liebman
  • Patent number: 5409781
    Abstract: A turbine blade including a blade and blade foot. The blade foot is formed by a ductile material and the blade comprises a material which is brittle compared to the ductile material but resistant to high temperature. The two materials are alloys of the same base compositions but differ as to presence and/or quantity of at least one doping element. The alloys can be hot-compacted with the formation of a transition zone joining the blade and blade root wherein fine crystallites of the blade root interpenetrate coarse crystallites of the blade. The two materials can comprise a gamma-titanium aluminide containing 0.5 to 8 atomic percent of a dopant. The turbine blade exhibits outstanding mechanical properties at high temperatures, good ductility at room temperature and a long service life.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: April 25, 1995
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Joachim Rosler, Manfred Thumann, Christoph Tonnes
  • Patent number: 5405573
    Abstract: The present invention addresses problems in the diamond saw blade and segment art. One aspect of the invention comprises a method for making handleable, strong, discrete, metal-clad abrasive pellets. This method comprises the steps of:(a) spraying onto a bed of gas-fluidized abrasive particles a slurry of metallic powder, a binding agent, and a volatile solvent until substantially all the abrasive particles are coated with at least about 20 wt-% of the metallic powder;(b) recovering the metal powder coated abrasive particles; and(c) heating said recovered coated particles under conditions to form a sintered continuous metal coating enveloping said abrasive particles. The resulting sintered metal-clad pellets form another aspect of the invention.
    Type: Grant
    Filed: May 4, 1992
    Date of Patent: April 11, 1995
    Assignee: General Electric Company
    Inventors: Thomas J. Clark, Roger R. Matarrese, Roger W. McEachron, Sergio Sinigaglia
  • Patent number: 5405707
    Abstract: In order to form internal conductors of a multilayer ceramic electronic component such as a multilayer ceramic capacitor, copper paste containing copper powder having a mean particle size of 0.3 to 2 .mu.m in a particle size range of 0.1 to 4 .mu.m and ceramic powder having a main component which is common to that of a ceramic material contained in the multilayer ceramic electronic component and being in a particle size range of 0.5 to 8 .mu.m, as well as an organic vehicle and a solvent with the contents of the copper powder and the ceramic powder and the total content of the organic vehicle and the solvent in ranges of 40 to 70 percent by weight, 1 to 15 percent by weight and 25 to 60 percent by weight respectively is applied onto ceramic green sheets. The ceramic green sheets provided with such copper paste films are stacked and fired so that occurrence of voids in the laminate and deformation of the laminate are suppressed in the as-obtained multilayer ceramic electronic component.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: April 11, 1995
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroji Tani, Kazuhito Ohshita, Mitsuyoshi Nishide
  • Patent number: 5399438
    Abstract: Disclosed is a stainless steel member with a high corrosion resistance suitable for a structural member used in highly corrosive environments, such as an edge seal plate of a molten carbonate fuel cell. This stainless steel member includes a base material consisting of stainless steel containing chromium, and a corrosion-protective layer formed on the surface of the base material. In this corrosion-protective layer, a granular heterophase containing chromium is precipitated in an ordered alloy consisting of aluminum and the constituent elements of the base material.
    Type: Grant
    Filed: September 14, 1993
    Date of Patent: March 21, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Tateishi, Kiyoshi Imai, Hideyuki Ohzu, Kazuaki Nakagawa, Yoshihiro Akasaka
  • Patent number: 5395700
    Abstract: In this invention, a cutting tool comprises two layers of hard sintered compact of cBN. The first sintered compact layer comprises about 75-98% by volume of cBN and a first binder material. The first binder material comprises from about 1 to out 40% by weight of Al. The second sintered compact layer comprises from about 40 to about 65% by volume of cBN and a second binder material. The second binder material comprises about 2 to about 30% by weight of Al. The first sintered compact layer is bonded to the second sintered compact layer. This composite material is bonded directly or indirectly to a tool holder to form a cutting tool. The first sintered compact layer constitutes a rake face of the cutting tool.
    Type: Grant
    Filed: June 25, 1992
    Date of Patent: March 7, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuo Nakai, Mitsuhiro Goto
  • Patent number: 5395699
    Abstract: A turbine blade including a blade foot and a blade. The blade foot is formed by a ductile material and the blade comprises a material which is brittle compared to the ductile material but resistant to high temperature. The two materials are alloys of different chemical compositions and are hot-compacted with the formation of a boundary layer joining the blade foot and blade to produce a bimetallic composite material. The blade foot predominantly comprises a titanium-base alloy and the blade comprises a gamma-titanium aluminide containing 0.5 to 8 atomic percent of a dopant. The turbine blade exhibits outstanding mechanical properties at high temperatures, good ductility at room temperature and a long service life.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: March 7, 1995
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Peter Ernst, Manfred Thumann, Christoph Tonnes
  • Patent number: 5387471
    Abstract: A coating for a part made of a nickel alloy of the following type: Cr: 15% to 20%, Co: 8% to 20%, Mo: 1.5% to 4%, Ti: 3% to 5%, Al: 3% to 3.5%, W: .ltoreq.3.8%, Fe: .ltoreq.1.2%, Nb: .ltoreq.0.9%, C: .ltoreq.0.1%, B: .ltoreq.0.01%, and Ta: .ltoreq.2.8%, the remainder being Ni, the coating having hardness of about 400 HV and including a plurality of layers (5', 5") of a wear-resistant cobalt-containing material of the following type: C: <1%, Cr: 26% to 30%, W: 18% to 21%, Ni: 4% to 6%, V: 0.75% to 1.15%, Fe: .ltoreq.3%, Mn .ltoreq.1%, Si: .ltoreq.1%, and B: .ltoreq.0.05%, the remainder being Co, said coating being characterized in that a buffer layer (5) is disposed between the part and the cobalt-containing layers (5', 5"), which buffer layer is made from a pre-alloyed powder having the following composition: Si: 0.7% to 2.9%, Cr: 11% to 26%, Fe: 0.5% to 3%, C: 0.35% to 0.85%, B: 0.3% to 1.35%, Ni: 20% to 69%, W: 3.6% to 16.8%, Mn .ltoreq.0.8%, and Co: 7% to 41.5%.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: February 7, 1995
    Assignee: European Gas Turbines SA
    Inventors: Emmanuel Kerrand, Vincent Le Castrec, Didier Boucachard
  • Patent number: 5370944
    Abstract: This invention relates to a diamond-coated hard material and a process for the production of the same. The feature of the diamond-coated hard material consists in that in a diamond-coated hard material comprising a substrate of a tungsten carbide-based cemented carbide having a diamond-coated layer provided on the surface of the substrate, a surface-modified layer containing no binder phase or containing a binder phase in a proportion of less than in the interior part of the substrate is present on the outermost surface of the substrate. This hard material can be produced by converting the substrate material into a sintered or heat treated surface or skin and then coating with diamond. The diamond-coated hard material of the present invention has such a high wear resistance and excellent bonding strength to the substrate that it can favorably be applied to various tools, parts, grinding wheels, etc.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: December 6, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naoya Omori, Mitsunori Kobayashi, Toshio Nomura
  • Patent number: 5360673
    Abstract: A semifinished product for electric contact made from a composite material based on silver-tin oxide is described as well as a powder-metallurgical process of making said product. The structure of the semifinished products contains regions which contain no metal oxide or very little metal oxide in alternation with regions which contain the entire metal oxide component or a greatly predominating/share thereof in a fine division.
    Type: Grant
    Filed: September 17, 1990
    Date of Patent: November 1, 1994
    Assignee: Doduco GmbH + Co. Dr. Eugen Durrwachter
    Inventors: Ursula Mayer, Roland Michal, Karl E. Saeger
  • Patent number: 5360674
    Abstract: A permanent magnet formed by a permanent magnet alloy of R--T--B system chiefly comprising a transition metal T, a rare earth element R including yttrium and boron B, and coated with a protective plating layer of Ni or an Ni alloy, wherein said protective plating layer is 30 .mu.m or less in thickness, and the inter-cell pitch in the surface of said protective plating layer is 14 .mu.m or more.
    Type: Grant
    Filed: December 16, 1992
    Date of Patent: November 1, 1994
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hideki Kawai, Katsuhiko Kojo, Kiyoshi Eguchi, Yoshiko Ogawa
  • Patent number: 5358793
    Abstract: A PTC device has two electrodes affixed to opposed surfaces. The electrodes consist of a metal foil having a conductive layer on their surfaces that contact the PTC material. The conductive layer has a thermal coefficient of expansion intermediate between the thermal coefficients of expansion of the metal foil and the PTC material. The intermediate value of the thermal coefficient of expansion of the conductive layer prevents peeling of the electrodes off the PTC element due to the variation of the temperature of the PTC device resulting from repeated voltage applications. In addition, improved adhesion of the electrodes to the PTC material reduces resistance changes after repeated temperature cycling.
    Type: Grant
    Filed: May 7, 1992
    Date of Patent: October 25, 1994
    Assignee: Daito Communication Apparatus Co., Ltd.
    Inventors: Toshiyuki Hanada, Mayumi Takata, Naoki Yamazaki, Isao Morooka, Kazuhiko Harazaki
  • Patent number: 5354352
    Abstract: Disclosed is a contact material for vacuum circuit breakers and a manufacturing process thereof. The contact material includes a copper component, a chromium component and a bismuth component, and has a metallographic structure comprising: a first phase including the copper component and the bismuth component; and a second phase including the chromium component and interposed among the first phase. In this structure, the boundary surface between the first phase and the second phase appears in a structural cross section of the alloy composition as a substantially smooth boundary line, such that when a segment of the boundary line is defined by two arbitrary points which lie on the boundary line at a straight distance of 10 .mu.m, the ratio of the length of the segment to the straight distance of 10 .mu.m lies within a range of approximately 1.0 to 1.4.
    Type: Grant
    Filed: April 14, 1992
    Date of Patent: October 11, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsuneyo Seki, Tsutomu Okutomi, Atsushi Yamamoto, Mikio Okawa, Kiyofumi Otobe
  • Patent number: 5350436
    Abstract: An aluminum alloy composite material for brazing has a core member, an Al--Si filler member clad on one surface of the core member and an aluminum alloy cladding member clad on the other side of the core member. The core member is made of an aluminum alloy containing 0.3 to 1.3 wt. % of Si, 0.3 to 1.5 wt. % of Mn, 0.02 to 0.3 wt. % of Ti, and, as required, 0.3 wt. % or less of Cr and 0.2 wt. % or less of Zr, the content of Mg being restricted to 0.2 wt. % or less and the content of the Cu being restricted to 0.2 wt. % or less as an impurity. The cladding member is made of an aluminum alloy containing 0.3 to 3 wt. % of Mg, 5 wt. % or less of Zn, 0.1 to 1.0 wt. % of Si. The thickness of the core member is preferably, 2.5 times or more greater than that of the filler member, falling within a range of 0.1 to 1 mm.
    Type: Grant
    Filed: November 24, 1993
    Date of Patent: September 27, 1994
    Assignees: Kobe Alcoa Transportation Products Ltd., Nippondenso Co., Ltd.
    Inventors: Osamu Takezoe, Jun Takigawa, Tadashi Okamoto, Mituo Hashiura, Sunao Fukuda, Keizo Takeuchi, Yasuaki Isobe
  • Patent number: 5342573
    Abstract: A method of producing a tungsten heavy alloy product according to a powder metallurgical procedure utilizing the injection molding technique which enables production of tungsten heavy alloy products having high dimensional accuracy and complex configuration and yet having high physical strength and toughness in high productivity and at low cost. A powder mixture of tungsten powder and nickel powder, iron powder or copper powder is mixed with an organic binder and they are kneaded together. The kneaded mixture is injection molded into a predetermined shape, and thereafter the binder is removed from the molded product. Subsequently, the molded product is sintered in a temperature range of from the melting point of the bond phase of nickel, iron or copper to +50.degree. C. relative to the melting point.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: August 30, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshinari Amano, Masahiro Omati, Junzo Matsumura
  • Patent number: 5334459
    Abstract: There is now provided a tool for chipforming machining of metals and similar materials comprising a high speed steel core and a cover of more wear resistant material than the core. If the material in the core has a carbon content 0.05-0.25% lower than the conventional carbon content for the high speed steel in question, improved properties can be obtained.
    Type: Grant
    Filed: June 16, 1993
    Date of Patent: August 2, 1994
    Assignee: Sandvik AB
    Inventors: Rolf G. Oskarsson, Mats O. Lundstrom
  • Patent number: 5328772
    Abstract: A multilayer sliding material for high-speed engine, comprising a steel back metal, a Cu or Cu-base alloy plating layer, a Cu-Pb bearing alloy layer, and an overlay, said steel back metal having 155 or more of Vickers hardness and 42 kgf/mm.sup.2 or more of 0.2% yield strength, a Cu-Pb bearing alloy layer containing 15-30 wt % of Pb and 0.5-2.0 wt % of Sn and having 0.25 cal/cm.s..degree. C. or more of thermal conductivity, 75 or more of Vickers hardness and 18 kgf/mm.sup.2 or more of tensile strength, said overlay of a lead base alloy containing 2-8 wt % of Sn and 3-11 wt % of In and having more than 250.degree. C. of melting start temperature. The material has a superior antiseizure property at high speed of engine. In particular, the rising of the melting start temperature of the metal of the overlay and the thermal conductivity of the bearing alloy provides a superior sliding property of plain bearing at high speed of engine.
    Type: Grant
    Filed: February 12, 1992
    Date of Patent: July 12, 1994
    Assignee: Daido Metal Company
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Motomu Wada, Koichi Yamamoto, Hideo Ishikawa, Youji Nagai, Kenji Sakai
  • Patent number: 5324592
    Abstract: A copper powder-free friction material which is made by sintering and intended for friction surfaces of couplings or brakes contains powdery and/or granular metallic and non-metallic components, at least 50% by weight of the non-ferrous heavy metal component being brass powder.
    Type: Grant
    Filed: March 20, 1992
    Date of Patent: June 28, 1994
    Assignee: Hoerbiger & Co.
    Inventors: Fred Blankenhagen, Hermann Putz
  • Patent number: 5318214
    Abstract: A method for brazing together two parts at least one of which comprises a titanium aluminide material is described wherein a metallic layer of foil or powder is inserted between the parts in laminar contact with respective confronting surfaces thereof to be joined, the metallic layer comprising a metal which forms with titanium a eutectic composition having a characteristic fusion temperature lower than the fusion temperature of the metal, and the metallic layer and confronting surfaces of the parts are heated to a temperature of about the characteristic fusion temperature of the eutectic composition.
    Type: Grant
    Filed: November 18, 1987
    Date of Patent: June 7, 1994
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Matthew J. Lucas, Jr., Murray S. Smith, Jr.
  • Patent number: 5316863
    Abstract: A novel self-brazing aluminum laminated structure is described, as well as a method of making the laminated structure and a brazed product produced therefrom. The laminated structure consists of a thin layer of a powder mixture consisting of eutectic-forming metal powder and a flux powder sandwiched between an aluminum alloy sheet and an aluminum foil. The laminate is fabricated by roll bonding to provide adequate adhesion of the foil to the underlying sheet through and around the powder layer. This can be done by arranging the powder layer into clusters of powder with spaces therebetween so that roll bonding between the foil and the aluminum alloy substrate takes place by way of direct metal contact between the clusters. These clusters may be created by the method of applying the powder, e.g. silk screen, or by providing depressions in the surface of the substrate by a process of roughening or of embossing within which clusters of the powder are located.
    Type: Grant
    Filed: May 18, 1992
    Date of Patent: May 31, 1994
    Assignee: Alcan International Limited
    Inventors: John J. Johnson, Roland S. Timsit
  • Patent number: 5314756
    Abstract: Disclosed is to improve corrosion resistance of rare-earth-element (RE)/transition-metal system permanent magnets by means of surface treatment, the magnets containing one or more of RE comprising yttrium, transition metals mainly comprising Fe. A conductive underlayer is formed on the surface of the magnet, on which an electroplated (hereinafter referred to as e-) Cu layer with the average crystal grain size not larger than 0.9 .mu.m is further formed. The underlayer may be any of an e-Ni layer, an electroless-plated Cu layer, an e-Cu layer by a cyanic Cu bath and another e-Cu layer by a bath of an alkaline organic acid salt of Cu containing phosphoric ester as a primary ingredient. A protective layer may be formed on the e-Cu layer, which is any of an e-Ni layer, an electroless-plated Ni-P layer, an e-Ni-alloy layer. The e-Cu layer is formed with a Cu pyrophosphate bath.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: May 24, 1994
    Assignee: Hitachi Metals, Ltd.
    Inventor: Atsushi Tagaya
  • Patent number: 5312581
    Abstract: An object of the present invention is to provide a method for forming connector terminal electrodes of a lamination capacitor which has firm connection between the internal electrodes and the connector terminal electrode. The ceramic main body part (10) having internal electrodes of palladium is put into a mixture of two powders, one being a silver powder (3) with a diffusion coefficient different from the internal electrodes and the other being a zirconium powder (2) which is inactive to both the internal electrode and the silver powder (3). The ceramic main body part (10) in the mixture is subjected to a heat treatment at a heat temperature. Thereafter a connector terminal electrode (20) is formed on each of the sides of the ceramic main body part (10).
    Type: Grant
    Filed: May 4, 1993
    Date of Patent: May 17, 1994
    Assignee: Rohm Co., Ltd.
    Inventors: Koshi Amano, Seiichi Katsumata
  • Patent number: 5306568
    Abstract: A high Young's modulus material comprises carbon steel or alloying steel and contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2. Furthermore, a surface-coated tool member comprises a substrate comprised of carbon steel or alloying steel and a hard coating layer having a Young's modulus of not less than 24,000 kgf/mm.sup.2 in which the substrate contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: April 26, 1994
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Yukinori Matsuda, Kozo Ozaki, Koichi Sudo
  • Patent number: 5304427
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb--Ti.sub.27-40.5 --Al.sub.4.5-10.5 --Hf.sub.1.5-5.5 Cr.sub.4.5-8.5 V.sub.0-6,where each metal of the metal/metal composite has a body centered cubic crystal structure, andwherein the ratio of concentrations of Ti to Nb (Ti/Nb) is greater than or equal (.gtoreq.) to 0.5, andwherein the maximum concentration of the Hf+V+Al+Cr additives is less than or equal (.ltoreq.) to the expression:16.5+(5.times.Ti/Nb),and the reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: July 2, 1992
    Date of Patent: April 19, 1994
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5298336
    Abstract: The present invention provides a multilayer composite sliding material with excellent seizure resistance property having a steel plate or a steel plate having surfaces plated with copper or the like; a bond layer having a thickness of 0.05 to 0.5 mm, formed on the steel plate, and made of a sintered powder material consisting of 5 to 16% Sn, 0 to 15% Pb, 0 to 0.5% P and balance essentially Cu; and an alloy layer having a thickness of 0.1 to 1.0 mm, formed on the bond layer, and made of a sintered powder material consisting of 5 to 16% Sn, 1 to 12% MoS.sub.2 and balance essentially Cu. In a modified form of the alloy layer, not more than 20% Pb, not more than 1% P or not more than 12% Ni may be added. MoS.sub.2 powder may be coated with Cu or Ni.
    Type: Grant
    Filed: February 17, 1993
    Date of Patent: March 29, 1994
    Assignee: Daido Metal Company, Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Tsukimitsu Higuchi
  • Patent number: 5290637
    Abstract: This invention relates to an improved ballistic metallic armor and a method f producing same. The object of this invention is accomplished by utilizing composite metallic materials made up of two but preferably three or more layers of different metals or alloys. The arrangement of the layers are made so that the front face is a hard brittle material (Rockwell C-60) designed to shatter the steel penetrator and the hardness of the layers should decrease from front to back.
    Type: Grant
    Filed: November 23, 1965
    Date of Patent: March 1, 1994
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Joseph L. Sliney
  • Patent number: 5281484
    Abstract: Coated components are produced to withstand high stresses and are composed of the intermetallic phase titanium aluminide material for use, in particular, in piston engines, gas turbines and exhaust gas turbochargers. This material has good technical properties but otherwise only a low resistance to oxidation and wear as a result of friction processes. These disadvantages are overcome in that the components are coated, at least on the parts of their surface which are at risk of hot corrosion and/or wear, with a sheet of a solderable nickel-based alloy soldered on under vacuum. A coating thickness of 0.1 to 0.4 mm is adequate. The nickel-based alloys, of which the soldered-on sheet is composed, preferably have a melting point of below 1180.degree. C.
    Type: Grant
    Filed: January 28, 1993
    Date of Patent: January 25, 1994
    Assignee: Mercedes-Benz AG
    Inventors: Eggert Tank, Wolfgang Kleinekathofer
  • Patent number: 5277990
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb--Ti.sub.32-45 --Al.sub.3-18 --Hf.sub.8-15and the reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: January 11, 1994
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5264293
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expression:Nb-Ti.sub.35-45- Hf.sub.10-15,and the reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: November 23, 1993
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, John R. Hughes
  • Patent number: 5264292
    Abstract: Transfer films consist essentially of a support film, a release layer and a transfer layer detachable from this release layer and composed of two magnetic layers and said transfer films may have, on the second magnetic layer, an adhesive layer which serves for fixing the transfer layer to a substrate, the two magnetic layers each containing a magnetizable material having a different coercive force.
    Type: Grant
    Filed: September 4, 1991
    Date of Patent: November 23, 1993
    Assignee: BASF Magnetics GmbH
    Inventors: Jenoe Kovacs, Manfred Ohlinger, Manfred Steuerwald
  • Patent number: 5264021
    Abstract: A compacted and consolidated aluminum-based alloy material is obtained by compacting and consolidating a rapidly-solidified material having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c M.sub.d or Al.sub.a' Ni.sub.b X.sub.c M.sub.d Q.sub.e, where X is one or two elements selected from La and Ce or an Mm; M is Zr or Ti; Q is one or more elements selected from Mg, Si, Cu and Zn, and a, a', b, c, d and e are, in atomic percentages, 84.ltoreq.a.ltoreq.94.8, 82.ltoreq.a'.ltoreq.94.6, 5.ltoreq.b .ltoreq.10, 0.1.ltoreq.c.ltoreq.3, 0.1.ltoreq.d.ltoreq.3, and 0.2.ltoreq.e.ltoreq.2. According to the production process of the invention, powder or flakes obtained by rapidly solidifying are compacted, followed by compressing, forming and consolidating by conventional plastic working operations. The consolidated material has an elongation sufficient to withstand secondary working operations. Moreover, the material retains the excellent properties of its raw material as they are.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: November 23, 1993
    Assignee: Yoshida Kogyo K.K.
    Inventors: Kazuhiko Kita, Makoto Kawanishi, Hidenobu Nagahama
  • Patent number: 5256494
    Abstract: The sliding member of the invention comprises a steel backing and a sintered Cu-alloy layer mounted integrally on one surface of the backing metal, wherein the sintered Cu-alloy comprises 1 to 15% Sn, 1 to 20% Ni-B compound, 1% or less phosphorus, and the balance of Cu and impurities. Cu-alloy may further contain 1 to 30% Pb and/or 0.5 to 8% graphite. Pb and graphite provide the sliding alloy layer with good lubrication property. Preferably the Ni-B compound is used, which is composed of 7 to 15% B and the balance of Ni and impurities.
    Type: Grant
    Filed: November 26, 1991
    Date of Patent: October 26, 1993
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Tsukimitsu Higuchi
  • Patent number: 5236787
    Abstract: A coating for a metallic substrate has a metallic bond coat, a metallic seal coat and a centrally disposed layer of ceramic material. Transition layers comprising a controllably positioned mixture of metallic and ceramic materials are interposed, respectively, between the bond coat and the central layer of ceramic material, and between the seal coat and the central layer of ceramic material. The coating provides a desirable thermal barrier for internal engine components. Further, the coating is graded to avoid harmful internal thermal stress between dissimilar materials in the coating, and has a sealed external surface that is resistant to corrosion, erosion, hot gas infiltration, and wear during operation in an internal combustion engine.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: August 17, 1993
    Assignee: Caterpillar Inc.
    Inventor: John A. Grassi
  • Patent number: 5226953
    Abstract: A process for producing a laminated material for slide elements including at least one backing layer and at least one functional layer of a material frozen in the amorphous state and the backing layer.
    Type: Grant
    Filed: July 16, 1991
    Date of Patent: July 13, 1993
    Assignee: Glyco Metallwerke Daelen & Loos GmbH
    Inventors: Erich Hodes, Robert Mergen
  • Patent number: 5158933
    Abstract: A method of forming a phase-separated composite material which utilizes sputtering in a thermal gradient at relatively high sputtering pressures generally above about 0.1 Torr sufficient to produce nanoscale particles which are embedded in a continuous phase matrix produced by normal sputtering. This method avoids the alloying and/or compound formation which prevents preparation of phase-separated composites by conventional co-sputtering, and the invention thus enables particulate composites to be formed from entirely new classes of materials. Microhardness testing shows that the phase-separated composites produced by the present invention have an increased hardness compared to the pure matrix material.
    Type: Grant
    Filed: November 15, 1990
    Date of Patent: October 27, 1992
    Inventors: Ronald L. Holtz, Gan-Moog Chow, Alan S. Edelstein
  • Patent number: 5158828
    Abstract: An improved carbon/metal composite is disclosed which comprises a carbon matrix and metal fibers distributed in the carbon matrix. The improvement is that the metal fibers are selected from (A) metal fibers in which the surfaces of at least a portion of the fibers are coated or alloyed with another material which has a tendency to form carbides which is equal to or lower than that of the metal constituting the metal fibers, (B) metal fibers comprising at least two different types of metal fibers which differ with respect to their dimensions and/or material, and (C) metal fibers distributed in the carbon matrix in such a manner that their content varies along the thickness of the composite, thereby imparting to the composite improved properties with respect to at least one of mechanical strength, impact resistance, wear resistance, and electric conductivity.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: October 27, 1992
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kiyoshi Sudani, Masato Kano, Yukihiro Sugimoto, Takashi Fukuda, Toru Iwahashi
  • Patent number: 5124215
    Abstract: A magnetic refrigeration composition for magnetic refrigeration including at least three kinds of magnetic substances selected from the group consisting of magnetic substances having the formulaR'Al.sub.2, R'.sub.3 Al.sub.2, and R'Al.sub.2+.delta.wherein R' is at least one element selected from the group consisting of Gd, Tb, Dy, Ho and Er, provided that the total number of atoms satisfies the above formula and 0<.delta.<0.2, the composition being a mixture of the magnetic substances or a multilayered composition of the magnetic substances, and when a multilayered composition, each layer of the multilayered composition consists of one magnetic substance, wherein each kind of said at least three kinds of magnetic substances has a Curie temperature which is different from that of the other kinds and which preferably range up to about 77.degree. K.
    Type: Grant
    Filed: March 15, 1989
    Date of Patent: June 23, 1992
    Assignee: Tokyo Institute of Technology
    Inventor: Takasu Hashimoto