Both Containing 0.01-1.7% Carbon (i.e., Steel) Patents (Class 428/683)
  • Patent number: 11819910
    Abstract: A tool steel composition for a component of a die-casting apparatus or of an extrusion press, comprises, in weight percentage: from about 0.35% to about 0.40% carbon (C); from about 0.32% to about 0.50% silicon (Si); from about 4.50% to about 5.50% chromium (Cr); from about 3.75% to about 4.75% molybdenum (Mo); from about 0.80% to about 1.00% vanadium (V); and iron (Fe).
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 21, 2023
    Assignee: Exco Technologies Limited
    Inventor: Lin Chun Chien
  • Patent number: 11806820
    Abstract: An additively manufactured object formed by depositing weld bead layers, each of the weld bead layers being obtained by melting and solidifying a filler metal made of a mild steel, the additively manufactured object includes a plurality of the weld bead layers having a ferrite phase with an average grain diameter of 11 ?m or less in a part except for a surface oxide film.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: November 7, 2023
    Assignee: KOBE STEEL, LTD.
    Inventors: Shinji Sato, Takeshi Yamada, Takemasa Yamasaki
  • Patent number: 11667987
    Abstract: This coated steel member includes: a steel sheet substrate having a predetermined chemical composition; and a coating formed on a surface of the steel sheet substrate and containing Al and Fe, in which the coating has a low Al content region having an Al content of 3 mass % or more and less than 30 mass % and a high Al content region formed on a side closer to a surface than the low Al content region and having an Al content of 30 mass % or more, a maximum C content of the high Al content region is 25% or less of a C content of the steel sheet substrate, a maximum C content of the low Al content region is 40% or less of the C content of the steel sheet substrate, and a maximum C content in a range from an interface between the steel sheet substrate and the coating to a depth of 10 ?m on a side of the steel sheet substrate is 80% or less of the C content of the steel sheet substrate.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: June 6, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Daisuke Maeda
  • Patent number: 11572601
    Abstract: This coated steel member includes: a steel sheet substrate having a predetermined chemical composition; and a coating formed on a surface of the steel sheet substrate and containing Al and Fe, in which the coating has a low Al content region having an Al content of 3 mass % or more and less than 30 mass % and a high Al content region formed on a side closer to a surface than the low Al content region and having an Al content of 30 mass % or more, a maximum C content of the high Al content region is 25% or less of a C content of the steel sheet substrate, a maximum C content of the low Al content region is 40% or less of the C content of the steel sheet substrate, and a maximum C content in a range from an interface between the steel sheet substrate and the coating to a depth of 10 ?m on a side of the steel sheet substrate is 80% or less of the C content of the steel sheet substrate.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: February 7, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Daisuke Maeda
  • Patent number: 11453935
    Abstract: A steel sheet for hot stamping use used as a material for a hot stamped article excellent in strength or bending deformability, having a predetermined chemical composition, having a microstructure containing at least one of lower bainite, martensite, and tempered martensite in an area ratio of 90% or more, having an X-ray random intensity ratio of {112}<111> of the crystal grains forming the above lower bainite, martensite, or tempered martensite of 2.8 or more, having a number density of grain size 50 nm or less cementite or epsilon carbides in the microstructure of 1×1016/cm3 or more, and having a grain boundary solid solution ratio Z defined by Z=(mass % of one or both of Nb and Mo at grain boundaries)/(mass % of one or both of Nb and Mo at time of melting) of 0.4 or more.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 27, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yuri Toda, Kazuo Hikida, Shingo Fujinaka, Tomohito Tanaka
  • Patent number: 11309099
    Abstract: The present invention relates to a disposal container and a storage system for high-level radioactive waste and, more specifically, to a disposal container for high-level radioactive waste using multiple barriers and a barrier system using thereof, the disposal container having the multiple barriers consisting of an inner wall made of carbon steel for excellent corrosion resistance and ease of manufacture, a middle wall made of Inconel, which is bonded to a lateral surface of the inner wall, and an outer wall made of copper, which is bonded to a lateral surface of the middle wall.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: April 19, 2022
    Assignee: KOREA RADIOACTIVE WASTE AGENCY
    Inventors: Seung-Hyun Kim, Hyung-Jin Kim, Hyung-Ju Yun, Chang-Min Shin, Min-Seok Kim, Jeong-Hwan Lee, Sang-Hwan Lee, Man-Ho Han, Tae-Man Kim
  • Patent number: 11167373
    Abstract: A composite article and process for producing the composite article may include the following steps: i) coupling with interference a first component at least partially made of cast iron and a second component at least partially made of steel; ii) arranging one or more wires of filler material at one or more separation zones between said first and second component; iii) in an inert atmosphere, directing a laser beam mostly or exclusively on the steel of the second component and on the filler material for occupying at least part of the separation zone at least with said molten steel and filler material; iv) solidifying by cooling at least the molten steel and filler material in welding zones to join said first and second component, and thus obtaining the article.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: November 9, 2021
    Assignee: Freni Brembo S.p.A.
    Inventors: Enrico Ghirardelli, Salvatore Giammarinaro, Marta Rebussi, Carlo Bonetti
  • Patent number: 11118426
    Abstract: Disclosed is a VIT apparatus for mitigating APB in a wellbore casing annulus of a HPHT deepwater well. The apparatus includes inner and outer tubes formed of 15Cr-135 martensitic stainless steel having a vacuum space therebetween and a weld formed of high yield strength alloy for joining the inner and outer tubes. A protective weld overlay formed of corrosion resistant alloy is placed over the weld. The weld and the weld overlay are formed so as not to extend into the inner bore. Also disclosed are a process for forming the apparatus, and a system and method for using the apparatus. Multiple apparatus are connected by threaded couplings to form an elongated device that can be placed within a casing within a wellbore to carry fluids from the deepwater well to a surface location. When exposed to HPHT well conditions, the vacuum in the VIT apparatus is not lost.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: September 14, 2021
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert Eugene Hargrave, Jonathan Scarborough Lee
  • Patent number: 11110686
    Abstract: The invention relates to a hot-forming material composed of a three-layer composite material, comprising a core layer of a hardenable steel which in the press-hardened state of the hot-forming material has a tensile strength >1900 MPa and/or a hardness >575 HV10. Two outer layers are bonded substance-to-substance with the core layer and composed of a steel which is softer in comparison with the core layer and which in the press-hardened state of the hot-forming material have a tensile strength >750 MPa and/or a hardness >235 HV10. The invention further relates to a component and also to a corresponding use.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: September 7, 2021
    Assignee: thyssenkrupp AG
    Inventors: Jens-Ulrik Becker, Stefan Myslowicki
  • Patent number: 11100906
    Abstract: A bow for a stringed musical instrument comprises resilient strips of bamboo, wood, or other wood-like materials, bonded together to form laminated layers. The principal layers are a central core layer, a top layer bonded to a top side of the core layer and a bottom layer bonded to a bottom side of the core layer. Each layer consists of one or more strips. The layers extend longitudinally along the shaft and are oriented perpendicularly to a plane that runs through a central axis of the shaft and a central axis of the hair of the bow. The top layer and the bottom layer preferably each comprise at least one strip of bamboo. The bamboo layers can produce the desired physical and playing characteristics that resemble those made with traditional exotic wood materials. It is beneficial to use bamboo as it is an organic, biodegradable, inexpensive and readily available material.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: August 24, 2021
    Assignee: Mohr & Mohr
    Inventor: Rodney D. Mohr
  • Patent number: 10882277
    Abstract: There is disclosed in the disclosure a protective clad steel plate, comprising hard steel layers (1, 3, 5) and soft steel layers (2, 4) arranged alternately, wherein face layers of the protective clad steel plate are hard steel layers (1, 3, 5), wherein the hard steel layers (1, 3, 5) and soft steel layers (2, 4) are atomically bonded by rolling cladding; wherein the soft steel layers (2, 4) comprise chemical elements in percentage by mass of: C: 0.001-0.01%, 0<Si?0.005%, Mn: 0.05-0.15%, 0<Al?0.005%, Ti: 0.01-0.10%, with a balance of Fe and unavoidable impurities.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: January 5, 2021
    Assignee: Baoshan Iron & Steel Co., Ltd.d
    Inventors: Fengming Song, Donghui Wen, Xiaoping Hu
  • Patent number: 10543562
    Abstract: The present invention provides an overlap-welded member in which an overlapped portion including plural steel sheet members is joined at a spot-welded portion, in which at least one of the plural steel sheet members contains martensite, and the spot-welded portion includes: a nugget formed through spot welding; a heat-affected zone formed in the vicinity of the nugget; the softest zone having the lowest Vickers hardness in the heat-affected zone; and a tempered area formed between a central portion of the nugget and the softest zone and made out of tempered martensite having Vickers hardness of not more than 120% in the case where Vickers hardness of the softest zone is 100%.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 28, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tohru Okada, Hideki Ueda
  • Patent number: 10415124
    Abstract: The present invention relates to a, comprising a tubular element (10) with at least one heat-affected zone (14), characterized by a yield strength Rp0.2 in the heat-affected zone (14) of at least 640 MPa and a tensile strength Rm in the heat-affected zone of at least 850 MPa and by at least the tubular element (10) consisting of a steel alloy consisting, in weight percent: C 0.12-0.22% Mn 1.5-2.5% Si 0.45-0.85% Cr ??<1.5% V ?0.04% B 0.0010-0.0040% Ti ??0.02-0.1% und optionally Mo ???0.6%, balance iron and impurities resulting from smelting.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: September 17, 2019
    Assignee: Benteler Steel/Tube GmbH
    Inventors: Jozef Balun, Thomas Fortmeier, Martin Junker, Sandor Schumann
  • Patent number: 10384315
    Abstract: An exemplary welding consumable according to the invention is provided and includes up to about 0.13 wt % carbon, about 0.3 wt % to about 1.4 wt % manganese, about 7.25 wt % to about 11.5 wt % nickel, about 0.6 wt % to about 1.2 wt % molybdenum, about 0.2 wt % to about 0.7 wt % silicon, up to about 0.3 wt % vanadium, up to about 0.05 wt % titanium, up to about 0.08 wt % zirconium, up to about 2.0 wt % chromium, and a balance of iron and incidental impurities.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: August 20, 2019
    Assignees: CRS Holdings, Inc., The United States Of America, as represented by the Secretary Of The Navy
    Inventors: Matthew Sinfield, Jeffrey Farren, Richard Wong, William J. Martin, Richard H. Smith, Shane Para, James E. Heilmann, Paul M. Novotny, Patrick C. Ray, Dan DeAntonio, Joe Stravinskas
  • Patent number: 10208368
    Abstract: A cold-rolled steel plate having favorable heat spot resistance and favorable antiwear performance is provided. The cold-rolled steel plate has a chemical composition containing C from 0.03 to 0.12%, Si from 0 to 1.0% (including a case where Si is not added), Mn from 0.2 to 0.8%, P at 0.03% or less (excluding a case where P is not added), S at 0.03% or less (excluding a case where S is not added), Ti from 0.04 to 0.3%, and Al at 0.05% or less (excluding a case where Al is not added). A residue is formed of Fe and unavoidable impurities. Each element satisfies a relationship of 5*C %?Si %+Mn %?1.5*Al %<1 within the aforementioned range of the corresponding content. An average diameter of particles of a Ti-based carbide is from 20 to 100 nm. In this way, the Ti-based carbide is dispersed finely and uniformly, thereby enhancing heat spot resistance and antiwear performance.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: February 19, 2019
    Assignee: NISSHIN STEEL CO., LTD
    Inventors: Tomohiro Imanaka, Kouji Omosako, Masahito Suzuki
  • Patent number: 10161462
    Abstract: A clutch plate for a multiplate wet clutch having favorable fatigue strength is provided. A separator plate (1) for use as a clutch plate for a multiplate wet clutch is formed of a steel plate. The steel plate has a chemical composition containing, on a basis of percent by mass, C from 0.03 to 0.08%, Si from 0 to 1.0%, Mn from 0.2 to 0.8%, P at 0.03% or less, S at 0.01% or less, and Al at 0.05% or less, so as to satisfy a formula, 5*C %?Si %+Mn %?1.5*Al %<1. In addition, the steel plate has the chemical component containing at least one of Nb from 0.03 to 0.4%, V from 0.01 to 0.3%, and Ti from 0.01 to 0.3%, so as to satisfy a formula, 0.04<(Nb %/1.4)+(V %/1.1)+Ti %<0.3. Then, an average diameter of particles of a carbide as a precipitate is controlled to be from 20 to 100 nm.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: December 25, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Satoshi Tagashira, Masahito Suzuki, Tomohiro Imanaka
  • Patent number: 10144994
    Abstract: A cold-rolled steel plate having favorable heat spot resistance, favorable antiwear performance, and favorable punching performance is provided. The cold-rolled steel plate has a chemical composition containing, on the basis of percent by mass, C from 0.03 to 0.08%, Si from 0 to 1.0%, Mn from 0.2 to 0.8%, P at 0.03% or less, S at 0.01% or less, and Al at 0.05% or less so as to satisfy the following relationship: 5*C %?Si %+Mn %?1.5*Al %<1. The chemical composition further contains, on the basis of percent by mass, at least one of Nb from 0.03 to 0.4%, V from 0.01 to 0.3%, and Ti from 0.01 to 0.3% so as to satisfy the following relationship: 0.04<(Nb %/1.4)+(V %/1.1)+Ti %<0.3. An average diameter of particles of a carbide as a precipitate is from 20 to 100 nm. A second phase structure having a longitudinal diameter of 5 ?m or more has an area fraction of 5% or less in a cross-sectional structure.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: December 4, 2018
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Satoshi Tagashira, Masahito Suzuki, Tomohiro Imanaka
  • Patent number: 10099311
    Abstract: A spot welding method is a method of performing spot welding to obtain a spot welded joint, the method including a spot welding with two-stage welding, setting a ratio (I2/I1) of a current I2 of a second welding process to a current I1 of a first welding process to from 0.5 to 0.8, setting a time tc of a cooling process within a range of from 0.8×tmin to 2.5×tmin wherein tmin is calculated using the equation (0.2×H2) according to a sheet thickness H of the steel sheets, setting an welding time t2 of a second welding process within a range of from 0.7×tmin to 2.5×tmin, and setting a pressure from the cooling process onward to greater than a pressure until the first welding process.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: October 16, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Seiji Furusako, Fuminori Watanabe, Yasunobu Miyazaki, Tohru Okada, Tasuku Zeniya, Koichi Sato
  • Patent number: 10081071
    Abstract: In an arc spot welded joint manufacturing method in which two steel sheets configured by high strength steel having a component carbon content of 0.07% by mass or greater are overlapped, and the sheets are lap welded together in a spot pattern. The method includes a first welding pass in which a second steel sheet on the lower side is melted up to a back face side, and first weld metal is formed including a first reinforcement portion, and a second welding pass in which a second weld metal including a second reinforcement portion is formed over the first weld metal, such that the heights of the first reinforcement portion or the second reinforcement portion is formed at t/5 or greater with respect to the sheet thickness t of the steel sheets, and the average weld bead diameter is formed at from 3t to 10t.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: September 25, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Seiji Furusako, Shinji Kodama, Yasunobu Miyazaki, Hatsuhiko Oikawa
  • Patent number: 10060004
    Abstract: A cold-rolled steel plate having favorable heat spot resistance and favorable antiwear performance is provided. The cold-rolled steel plate has a chemical composition containing, on the basis of percent by mass, C from 0.03 to 0.12%, Si from 0 to 1.0%, Mn from 0.2 to 0.8%, P at 0.03% or less, S at 0.03% or less, and Al at 0.05% or less. The chemical composition further contains any one of Nb from 0.03 to 0.4% and V from 0.03 to 0.3%. These elements satisfy 5*C %?Si %+Mn %?1.5*Al %<1 within the aforementioned range of the corresponding content. A residue is formed of Fe and unavoidable impurities. An average diameter of particles of carbides containing any one of Nb, V and Ti as precipitates is from 20 to 100 nm. In this way, the chemical composition is regulated and the precipitates are dispersed finely and uniformly, thereby enhancing heat spot resistance and antiwear performance.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: August 28, 2018
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Satoshi Tagashira, Masahito Suzuki, Tomohiro Imanaka
  • Patent number: 9671199
    Abstract: A process for making steel armor products for use, for example as body armor. The steel armor product made has a compound curve and is made from a flat blank of armor steel by high-temperature annealing an armor steel blank to slightly above its austenitizing temperature, then followed by a slow, temperature-controlled cooling it, over-pressing the annealed blank to a first configuration so it springs back to a second configuration approximating the desired product shape when released from the press, and then heat-treating the product back to its austenitizing temperature, quenching it, and tempering it at a low temperature. The tool is conveniently made by lamination, using a series of thin plates of tool steel each cut to produce an approximation of the desired die.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: June 6, 2017
    Assignee: Premier Body Armor, LLC
    Inventors: Jon Miller, Frank A. Stewart, Doug Moore
  • Patent number: 9142326
    Abstract: Radioactive waste may be stored in storage containers that are suitable for long-term disposal, but do not provide adequate shielding. By assembling an overpack from metal plates, the metal plates each being substantially flat, and the overpack providing sufficient shielding for the radioactive waste, and enclosing the storage container that contains radioactive waste in the overpack, the storage container can then be stored safely in a weatherproof enclosure. The enclosure does not need to provide radiation shielding. The plates can be stored as a flat-pack, and assembled into the overpack when required.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: September 22, 2015
    Assignee: Soletanche Freyssinet SA
    Inventors: Ian Shaw, Antony Gaffka
  • Patent number: 9028746
    Abstract: Provided a build-up welding material which contains C: 0.2 to 1.5 mass %, Si: 0.5 to 2 mass %, Mn: 0.5 to 2 mass %, Cr: 20 to 40 mass %, Mo: 2 to 6 mass %, Ni: 0.5 to 6 mass %, V: 1 to 5 mass % and W: 0.5 to 5 mass %, with the balance being Fe and unavoidable impurities.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 12, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Tsutomu Takeda, Ryuichi Kobayashi
  • Publication number: 20150114199
    Abstract: Methods of thermo-mechanically processing a preform composed of tool steel and tools to modify a workpiece. The preform has a region containing austenite. The method comprises establishing the region at a process temperature between a martensitic start temperature and a stable austenitic temperature. While at the process temperature, the region is deformed to change an outer dimension and to modify the microstructure to a depth of 1 millimeter or more. The tool comprises a member composed of tool steel. The member includes a first region that extends from the outer surface to a depth of greater than 1 millimeter and a second region. The first region includes a plurality of grains having an average misorientation angle greater than about 34°, an average grain size that is at least 10% smaller than the second region, and has a different grain orientation than the second region.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 30, 2015
    Inventors: Christon L. Shepard, Shrinidhi Chandrasekharan, Ronald R. Laparre, David L. Turpin, Alan L. Shaffer
  • Publication number: 20150099140
    Abstract: The invention relates generally to welding and, more specifically, to welding wires for arc welding, such as Gas Metal Arc Welding (GMAW) or Flux Core Arc Welding (FCAW). A disclosed tubular welding wire has a sheath and a core, and the tubular welding wire includes an organic stabilizer component, a rare earth component, and a corrosion resistant component comprising one or more of: nickel, chromium, and copper.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Mario Anthony Amata, Steven Edward Barhorst, Tre' Dorell Heflin-King
  • Publication number: 20150099068
    Abstract: A steel cord (2) for an extrusion process, where a steel wire (6) is connected to the leading end of the steel cord (2). The steel wire (6) is easy to insert through an extruder head (12) and leads the steel cord (2) through the extruder head (12), to facilitate the change-over of steel cord (12) on an extruder (10) to reduce the change-over time. Also an apparatus (10), a change-over process, and the use of the steel cord (2) for an extrusion process is disclosed.
    Type: Application
    Filed: November 23, 2012
    Publication date: April 9, 2015
    Inventors: Zhichao Cheng, Pengfei Wang, Linglong Yang
  • Patent number: 8974916
    Abstract: A method for solid state bonding of a plurality of metallic layers and devices made by that method are disclosed. First and second metallic layers are solid state bonded utilizing a protective coating on the non-bonded surfaces that engage the pressure applying appliance to prevent the surfaces from adhering to the pressure applying appliance and to protect the surfaces from imprinting during the bonding process. The invention can be used to fabricate micro-channel devices with smooth outer surfaces and eliminate mold release compounds utilized in conventional bonding procedures.
    Type: Grant
    Filed: December 20, 2009
    Date of Patent: March 10, 2015
    Assignee: Agilent Technologies, Inc.
    Inventors: Reid Brennen, Kevin Killeen, Karen L. Seaward
  • Patent number: 8962149
    Abstract: Provided is a spot welded joint (10) which includes at least one thin steel plate with a tensile strength of 750 MPa to 1850 MPa and a carbon equivalent Ceq of equal to or more than 0.22 mass % to 0.55 mass % and in which a nugget (3) is formed in an interface of the thin steel plates (1A, 1B). In a nugget outer layer zone, a microstructure consists of a dendrite structure in which an average value of arm intervals is equal to or less than 12 ?m, an average grain diameter of carbides contained in the microstructure is 5 nm to 100 nm, and a number density of carbides is equal to or more than 2×106/mm2.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: February 24, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hatsuhiko Oikawa, Hideki Hamatani, Masafumi Azuma, Noriyuki Suzuki, Fuminori Watanabe, Naoki Maruyama, Hiroyuki Kawata
  • Publication number: 20150030882
    Abstract: The invention relates to a steel plate, the chemical composition of which comprises, the contents being expressed by weight: 0.010%?C?0.20%, 0.06%?Mn?3%, Si?1.5%, 0.005%?Al?1.5%, S?0.030%, P?0.040%, 2.5%?Ti?7.2%, (0.45×Ti)?0.35%?B?(0.45×Ti)+0.70%, and optionally one or more elements chosen from: Ni?1%, Mo?1%, Cr?3%, Nb?0.1%, V?0.1%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Frederic BONNET, Olivier BOUAZIZ, Jean-Claude CHEVALLOT
  • Publication number: 20140363693
    Abstract: The present invention relates to a metal substrate for a fixing belt, having excellent durability. The metal substrate for a fixing belt of the present invention including an austenite stainless steel including a martensite phase includes: a region of austenite stainless steel including a martensite phase, with a nickel content of 8 mass % or more, sandwiched between regions of austenite stainless steel including a martensite phase, with a nickel content less than 8 mass %, in the thickness direction.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 11, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Hirotomo Tamiya
  • Publication number: 20140322560
    Abstract: Disclosed is a build-up welding material and a machinery part welded with a weld overlay metal. The build-up welding material contains C of 0.2 to 1.0 percent by mass, Si of 0.2 to 0.5 percent by mass, Mn of 0.5 to 2.0 percent by mass, Cr of 15 to 30 percent by mass, Mo of 0.2 to 6.0 percent by mass, and W of 0.1 to 1.5 percent by mass, with the remainder including Fe and inevitable impurities.
    Type: Application
    Filed: December 7, 2012
    Publication date: October 30, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Ryuichi Kobayashi, Tsutomu Takeda
  • Patent number: 8765269
    Abstract: An APIX100-grade high strength steel pipe includes a base material containing, in mass percentage, C: more than 0.03% and 0.08% or less, Si: 0.01% to 0.5%, Mn: 1.5% to 3.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01% to 0.08%, Nb: 0.005% to 0.025%, Ti: 0.005% to 0.025%, N: 0.001% to 0.010%, O: 0.005% or less, and B: 0.0003% to 0.0020%, further contains one or more of Cu, Ni, Cr, Mo, and V, satisfies 0.19?Pcm?0.25, the balance being Fe and unavoidable impurities, and has a TS of 760 to 930 MPa, a uniform elongation of 5% or more, and a YR of 85% or less; the seam weld metal has a specific composition.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: July 1, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junji Shimamura, Nobuyuki Ishikawa, Mitsuhiro Okatsu, Nobuo Shikanai
  • Publication number: 20140113159
    Abstract: When contents of Ti, V, Zr, Nb, and C (mass %) are represented as [Ti], [V], [Zr], [Nb], and [C] respectively, a value of a parameter Q represented by “Q=([Ti]/48+[V]/51+[Zr]/91+[Nb]/93)/([C]/12)” is not less than 0.9 nor more than 1.1. A matrix of a metal structure is a ferrite phase, and the metal structure does not include a non-recrystallized structure. An average grain size of ferrite grains constituting the ferrite phase is not less than 10 ?m nor more than 200 ?m. A precipitate containing at least one selected from the group consisting of Ti, V, Zr, and Nb exists with a density of 10 ?m?3 or more in the ferrite grain. An average grain size of the precipitate is not less than 0.002 ?m nor more than 0.2 ?m.
    Type: Application
    Filed: August 16, 2012
    Publication date: April 24, 2014
    Inventors: Masahiro Fujikura, Yoshiyuki Ushigami, Tesshu Murakawa, Shinichi Kanao, Makoto Atake, Takeru Ichie, Kojiro Hori, Shinichi Matsui
  • Publication number: 20140079958
    Abstract: A steel wire having a stainless steel exterior; the steel wire includes a core region that comprises at least 55 wt. % iron which is metallurgically bonded to a stainless steel coating that consists of a stainless steel region and a bonding region. The stainless steel region can have a thickness of about 1 ?m to about 250 ?m, and a stainless steel composition that is approximately consistent across the thickness of the stainless steel region. The stainless steel composition includes an admixture of iron and about 10 wt. % to about 30 wt. % chromium. The bonding region is positioned between the stainless steel region and the core region, has a thickness that is greater than 1 ?m and less than the thickness of the stainless steel region, and has a bonding composition.
    Type: Application
    Filed: October 12, 2013
    Publication date: March 20, 2014
    Applicant: ARCANUM ALLOY DESIGN INC.
    Inventors: Daniel E. Bullard, Joseph E. McDermott
  • Patent number: 8623154
    Abstract: An electron-beam welded joint including, by mass %, C: 0.02% to 0.1%, Si: 0.03% to 0.30%, Mn: 1.5% to 2.5%, Ti: 0.005 to 0.015%, N: 0.0020 to 0.0060%, O: 0.0010% to 0.0035%, Nb: 0% to 0.020%, V: 0% to 0.030%, Cr: 0% to 0.50%, Mo: 0% to 0.50%, Cu: 0% to 0.25%, Ni: 0% to 0.50%, B: 0% to 0.0030%, S: limited to 0.010% or less, P: limited to 0.015% or less, Al: limited to 0.004% or less, and a balance consisting of iron and unavoidable impurities, wherein an index value CeEB is 0.49% to 0.60%, a number of oxides having an equivalent circle diameter of 1.0 ?m or more is 20 pieces/mm2 or less, and a number of oxides having an equivalent circle diameter of 0.05 ?m or more and less than 0.5 ?m is 1×103 pieces/mm2 to 1×105 pieces/mm2 at a thickness center portion.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 7, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Ryuichi Honma, Ryuji Uemori, Tadashi Ishikawa, Akihiko Kojima, Manabu Hoshino
  • Publication number: 20130309525
    Abstract: A value of a parameter Q represented by “Q=([Ti]/48+[V]/51+[Zr]/91+[Nb]/93)/([C]/12)” is not less than 0.9 nor more than 1.1, when contents of Ti, V, Zr, Nb, and C (mass %) are represented as [Ti], [V], [Zr], [Nb], and [C] respectively. A matrix of a metal structure is a ferrite phase, and the metal structure does not contain a non-recrystallized structure. An average grain size of ferrite grains constituting the ferrite phase is not less than 30 ?m nor more than 200 ?m. A precipitate containing at least one selected from the group consisting of Ti, V, Zr, and Nb exists with a density of 1 particle/?m3 or more in the ferrite grain. An average grain size of the precipitate is not less than 0.002 ?m nor more than 0.2 ?m.
    Type: Application
    Filed: August 17, 2012
    Publication date: November 21, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masahiro Fujikura, Yoshiyuki Ushigami, Tesshu Murakawa, Shinichi Kanao, Makoto Atake, Takeru Ichie, Kojiro Hori, Shinichi Matsui
  • Patent number: 8574381
    Abstract: To provide weld metal that has a high strength and toughness in the as-welded condition or in the annealed condition. The weld metal of the present invention contains by weight %, C: 0.04-0.15%, Si: 0.50% or less, Mn: 1.0-1.9%, Ni: 1.0-4.0%, Cr: 0.10-1.0%, Mo: 0.20 to 1.2%, Ti: 0.010-0.060%, Al: 0.030% or less, O: 0.15-0.060%, N: 0.010% or less, Fe and inevitable impurities as the remaining contents. The weld metal is further characterized by the fact that the ratio of Ti content (%) to Si content (%) i.e., [compound type Ti]/[compound type Si] is more than 1.5, and the number A defined by the following formula is 0.50 or more, wherein A=[Ti]/([O]?1.1×[Al]+0.05×[Si]).
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 5, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hidenori Nako, Yoshitomi Okazaki, Ken Yamashita, Hideaki Takauchi, Minoru Otsu
  • Publication number: 20130288074
    Abstract: This alloying element-saving hot rolled duplex stainless steel material contains, by mass %, C: 0.03% or less, Si: 0.05% to 1.0%, Mn: 0.5% to 7.0%, P: 0.05% or less, S: 0.010% or less, Ni: 0.1% to 5.0%, Cr: 18.0% to 25.0%, N: 0.05% to 0.30% and Al: 0.001% to 0.05%, with a remainder being Fe and inevitable impurities, wherein the alloying element-saving hot rolled duplex stainless steel material is produced by hot rolling, a chromium nitride precipitation temperature TN is in a range of 960° C. or lower, a yield strength is 50 MPa or more higher than that of a hot rolled steel material which is subjected to a solution heat treatment, and the alloying element-saving hot rolled duplex stainless steel material is as hot rolled state, and is not subjected to a solution heat treatment. This clad steel plate includes a duplex stainless steel as a cladding material, the duplex stainless steel has the above composition, and the chromium nitride precipitation temperature TN is in a range of 800° C. to 970° C.
    Type: Application
    Filed: January 26, 2012
    Publication date: October 31, 2013
    Inventors: Shinji Tsuge, Yuusuke Oikawa, Yoichi Yamamoto, Haruhiko Kajimura, Kazuhiko Ishida
  • Publication number: 20130266821
    Abstract: A high-strength galvanized steel sheet with high yield ratio having excellent ductility and stretch flange formability, the steel sheet having a chemical composition containing, by mass %, C: 0.04% or more and 0.13% or less, Si: 0.9% or more and 2.3% or less, Mn: 0.8% or more and 2.4% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.01% or more and 0.1% or less, N: 0.008% or less, and the balance being Fe and inevitable impurities and a microstructure including, in terms of area ratio, 94% or more of a ferrite phase and 2% or less of a martensite ferrite phase, wherein mean grain size of ferrite is 10 ?m or less, Vickers hardness of ferrite is 140 or more, mean grain size of carbide particles existing at grain boundaries of ferrite is 0.5 ?m or less, and aspect ratio of carbide particles existing at the grain boundaries of ferrite is 2.0 or less.
    Type: Application
    Filed: July 12, 2011
    Publication date: October 10, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Tatsuya Nakagaito, Shinjiro Kaneko, Yasunobu Nagataki, Keisuke Fukushi
  • Patent number: 8545993
    Abstract: A composite material with a ballistic protective effect having a first, outer layer made of a first steel alloy and at least one second layer which is arranged under the first layer and is made of a second steel alloy. The composite material with a ballistic protective effect allows for a reduction in the weight or the wall thicknesses of the composite material in comparison to conventional composite ballistic materials, by utilizing a first steel alloy of the first layer that has the following alloy constituents in percent by weight (% by weight): 0.06%?C ?1.05%, 0.05%?Si?1.65%, 0.3%?Mn?2.65%, 0.015%?Al?1.55%; Cr?1.2%, Ti?0.13%, Mo?0.7%, Nb?0.1%, B?0.005%, P?0.08%, S?0.01%, Ni?4.0%, and V?0.05%, the remainder being Fe and inevitable impurities. The second layer of the composite material having a higher elongation than the first layer.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: October 1, 2013
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Jens-Ulrik Becker, Harald Hofmann, Christian Höckling, Andreas Kern, Udo Schriever, Horst Walter Tamler, Hans-Joachim Tschersich
  • Patent number: 8541110
    Abstract: A resistance spot welding manufacture includes a first metal layer having a first thickness, a second metal layer having a faying surface defining an embossed region, wherein the second metal layer has a second thickness that is less than the first thickness so that a ratio of the first thickness to the second thickness is greater than about 2:1, a third metal layer sandwiched between the first metal layer and the embossed region, wherein the third metal layer has a third thickness that is greater than the second thickness, and a weld joint penetrating each of the first metal layer, the third metal layer, and the faying surface at the embossed region to thereby join each of the first metal layer and the second metal layer to the third metal layer. A method of forming a resistance spot welding manufacture is also disclosed.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: September 24, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chih-Chang Chen, Michael J. Bland, Daniel C. Hutchinson
  • Patent number: 8535813
    Abstract: A use of a coilable multi-layer metallic composite material produced by means of roll-cladding in a vehicle structure, in particular a body structure, provides an alternative to monolithic materials. The composite material used in a vehicle structure is a lightweight composite material and comprises three layers of a steel alloy, wherein at least one of the layers is formed from a high-strength or very high-strength steel alloy.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 17, 2013
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Jens-Ulrik Becker, Lothar Patberg, Peter Seyfried, Horst Walter Tamler, Roland Wunderlich
  • Publication number: 20130189536
    Abstract: A steel for electron-beam welding according to the present invention includes at least C: 0.02% to 0.10%, Si: 0.03% to 0.30%, Mn: 1.5% to 2.5%, Ti: 0.005% to 0.015%, N: 0.0020% to 0.0060%, and O: 0.0010% to 0.0035%, further includes S: limited to 0.010% or less, P: limited to 0.015% or less, and Al: limited to 0.004% or less, with a balance including iron and inevitable impurities. An index value CeEBB obtained by substituting composition of the steel into following Formula 1 falls in the range of 0.42 to 0.65%, the number of oxide having an equivalent circle diameter of 1.0 ?m or more is 20 pieces/mm2 or less at a thickness center portion in cross section along the thickness direction of the steel, and the number of oxide containing Ti of 10% or more and having an equivalent circle diameter of not less than 0.05 ?m or more and less than 0.5 ?m falls in the range of 1×103 to 1×105 pieces/mm2 at the thickness center portion.
    Type: Application
    Filed: October 27, 2011
    Publication date: July 25, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Ryuichi Honma, Ryuji Uemori, Tadashi Ishikawa, Akihiko Kojima, Manabu Hoshino
  • Patent number: 8492004
    Abstract: The invention provides a friction joining structure comprising steel products, a friction joining steel plate inserted there between, and a fastening device, which are mutually friction joined by a compressive force derived from the fastening device. A portion of projected streaks on the friction joining steel plate is designed to have a Vickers hardness at least 3 times greater than the surface of the steel products, which allows the projected streaks to more easily enter the steel products thereby increasing the friction coefficient between the steel products. The friction joining structure is constituted by a slip resistance mechanism which can be easily validated from a theoretical or an experimental point of view and is also small in variance of the friction coefficient. Therefore, a friction coefficient used in design can be set at a high value with high accuracy to realize a rational design.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: July 23, 2013
    Assignees: Nippon Steel Engineering Co., Ltd., Nippon Steel & Sumitomo Metal Corporation
    Inventors: Atsushi Watanabe, Atsushi Tomimoto
  • Patent number: 8485788
    Abstract: A steam turbine rotor shaft and method of manufacturing the same are provided wherein the sliding characteristics of a journal are improved, and the journal is free from welding cracks and does not need a post heat treatment. The low alloy steel coating layer having better sliding characteristics than 9 to 13% Cr heat resisting steel and an area rate of defects including pores and oxides in a range of 3 to 15% is formed by a high velocity flame spray coating method on a sliding surface of the journal.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: July 16, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Arikawa, Akira Mebata, Masahiko Arai, Yoshitaka Kojima, Haijime Toriya
  • Publication number: 20130174942
    Abstract: The invention relates to a steel plate, the chemical composition of which comprises, the contents being expressed by weight: 0.010%?C?0.20%, 0.06%?Mn?3%, Si?1.5%, 0.005%?Al?1.5%, S?0.030%, P?0.040%, 2.5%?Ti?7.2%, (0.45×Ti)?0.35%?B?(0.45×Ti)+0.70%, and optionally one or more elements chosen from: Ni?1%, Mo?1%, Cr?3%, Nb?0.1%, V?0.1%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting.
    Type: Application
    Filed: June 25, 2010
    Publication date: July 11, 2013
    Applicant: ArcelorMittal France
    Inventors: Frederic BONNET, Olivier BOUAZIZ, Laure CALA
  • Patent number: 8481170
    Abstract: A composite manufacture includes a first steel substrate, a second steel substrate disposed in contact with the first steel substrate to define a faying interface therebetween, and a spot weld joint penetrating the first steel substrate and the second steel substrate at the faying interface to thereby join the second steel substrate to the first steel substrate. The first steel substrate has a heat-affected zone adjacent the spot weld joint having a boundary, wherein the boundary and the faying interface define an angle therebetween of greater than about 75°.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Sampath K. Vanimisetti, David R. Sigler
  • Publication number: 20130171471
    Abstract: A steel form having a stainless steel exterior; the steel form includes a core region that comprises at least 55 wt. % iron which is metallurgically bonded to a stainless steel coating that consists of a stainless steel region and a bonding region. The stainless steel region can have a thickness of about 1 ?m to about 250 ?m, and a stainless steel composition that is approximately consistent across the thickness of the stainless steel region. The stainless steel composition includes an admixture of iron and about 10 wt. % to about 30 wt. % chromium. The bonding region is positioned between the stainless steel region and the core region, has a thickness that is greater than 1 ?m and less than the thickness of the stainless steel region, and has a bonding composition.
    Type: Application
    Filed: September 28, 2012
    Publication date: July 4, 2013
    Applicant: ARCANUM ALLOY DESIGN INC.
    Inventor: Arcanum Alloy Design Inc.
  • Publication number: 20130171472
    Abstract: Provided a build-up welding material which contains C: 0.2 to 1.5 mass %, Si: 0.5 to 2 mass %, Mn: 0.5 to 2 mass %, Cr: 20 to 40 mass %, Mo: 2 to 6 mass %, Ni: 0.5 to 6 mass %, V: 1 to 5 mass % and W: 0.5 to 5 mass %, with the balance being Fe and unavoidable impurities.
    Type: Application
    Filed: September 28, 2011
    Publication date: July 4, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tsutomu Takeda, Ryuichi Kobayashi
  • Patent number: 8430980
    Abstract: A method of hard-facing a steel casting is described in which a hard-facing, which comprises a weld alloy matrix and a hard particulate substance, is attached to the casting by welding. In some embodiments the matrix can be of a similar composition to the casting, and in other embodiments the hard particulates can be rounded and/or substantially spherical, or of a substantially even size. A method is also described for hardening and tempering a steel casting after attaching the hard-facing to the casting by welding. After hard-facing the casting is hardened and tempered by heat treatment. In one embodiment the hard-faced casting is heat treated by heating to a temperature in excess of the austenitising temperature of the steel and then cooled by quenching in an aqueous solution, followed by tempering. In one embodiment the steel casting is tempered at a temperature in the range about 550° C. to about 700° C. prior to hard-facing the casting.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 30, 2013
    Assignee: Bradken Resources Pty Ltd
    Inventors: Darren Muir, John McCracken