Solid Support And Method Of Culturing Cells On Said Solid Support Patents (Class 435/395)
  • Publication number: 20150093428
    Abstract: A 3D in vitro bi-phasic cartilage-bone organoid includes a layer of an artificial cartilage tissue, and a layer of an artificial bone tissue comprising a structure-giving scaffold and a bone marrow structure. The layer of the artificial cartilage tissue contacts at least one surface of the layer of the artificial bone tissue.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 2, 2015
    Applicant: TISSUSE GMBH
    Inventors: Mark Rosowski, Shirin Fatehi-Varkani, Roland Lauster, Uwe Marx
  • Publication number: 20150094808
    Abstract: A synthetic scaffold for replacing at least a portion of an airway includes an airway mold, one or more structural ribs on the airway mold, and a non-structural wall. Each of the one or more structural ribs is formed from a first material and the non-structural wall is formed from a second material. The non-structural wall coats the airway mold and forms a conduit that incorporates the one or more structural ribs.
    Type: Application
    Filed: June 11, 2014
    Publication date: April 2, 2015
    Applicant: HARVARD APPARATUS REGENERATIVE TECHNOLOGY, INC
    Inventor: Paolo Macchiarini
  • Patent number: 8993324
    Abstract: In a process for the cultivation of living cells, in which the cells are cultivated on a support structure (14), the support structure (14) comprises cellulose. A process for the production of a support structure (14) of cellulose for the cultivation of living cells comprises the steps: preparation of a hollow mould; cultivation of cellulose-forming organisms in an interior space formed by the hollow mould, in order to allow the support structure (14) to grow in the interior space; demoulding of the hollow mould. In the step of demoulding the hollow mould, at least part (2, 3, 4) of the hollow mould is irreversibly deformed.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: March 31, 2015
    Assignee: Bioregeneration GmbH
    Inventor: Günter Bertholdt
  • Patent number: 8986678
    Abstract: The present invention relates to methods of in vitro preparation of a parental cell bank (PCB) from foetal tissue consisting of foetal epiphyseal tissue, foetal Achilles tendon tissue and foetal skin tissue, using a rapid mechanical primary cell culture selection of cell type to be used in methods for wound and tissue repair.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: March 24, 2015
    Assignee: Centre Hospitalier Universitaire Vaudois
    Inventor: Lee Ann Laurent-Applegate
  • Patent number: 8980628
    Abstract: This invention relates to methods of producing hair folliclesin vitro, compositions for producing hair follicles in vitro, in vitro produced hair follicles, methods of providing an in vitro produced hair shaft at an interfollicular or intrafollicular site, methods of treating hair loss by providing an in vitro produced hair shaft at an interfollicular or intrafollicular site and assays for studying the effect of test agents on hair biology. The invention also provides the similar methods and products which are, or use, immature follicles (“defined herein as proto-hairs”). The invention provides a method for in vitro production of a hair follicle or a proto-hair comprising co-culturing dermal papilla cells with keratinocytes, and optionally with melanocytes.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 17, 2015
    Assignee: Aderans Research Institute, Inc.
    Inventors: Jizeng Qiao, Jeffrey Keeler Teumer, Erica Jean Philips
  • Patent number: 8975073
    Abstract: A microfluidic device includes, in one embodiment, a first silk film coupled to a second silk film with at least one microchannel therebetween.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: March 10, 2015
    Assignees: The Charles Stark Draper Laboratory, Inc., Trustees of Tufts College
    Inventors: Jeffrey T. Borenstein, Chris Bettinger, David Kaplan
  • Patent number: 8975074
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 10, 2015
    Assignee: The Invention Science Fund I, LLC
    Inventors: Ed Harlow, Edward K. Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Patent number: 8975075
    Abstract: A hemostatic device, method of making, and method of using for internal and external applications to wounds in the body of a patient to induce hemostasis at an anatomical site.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: March 10, 2015
    Assignee: ACell, Inc.
    Inventors: Clay Fette, Abram Janis, Benjamin Kibalo
  • Publication number: 20150064146
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Ed Harlow, Roderick A. Hyde, Edward K.Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, JR.
  • Patent number: 8962316
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: February 24, 2015
    Assignee: The Invention Science Fund I, LLC
    Inventors: Ed Harlow, Roderick A. Hyde, Edward K. Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Patent number: 8962324
    Abstract: A composition for reconstruction, replacement or repair of damaged or diseased biological tissue comprising an extracellular matrix (ECM) composition that includes an ECM scaffold component and a bioactive agent component. In a preferred embodiment, the ECM scaffold component comprises mesothelial tissue and the bioactive agent comprises a statin.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: February 24, 2015
    Inventor: Robert G Matheny
  • Publication number: 20150050735
    Abstract: Well plates for use in various laboratory experiments may include a plurality of wells each having an interior wall that includes a ledge positioned at a fixed depth within the well.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: Solomon Iyasere, Meagan Lazor, Eun Seok Gil, Manav Mehta
  • Publication number: 20150050736
    Abstract: A hybrid tissue scaffold is provided which comprises a porous primary scaffold having a plurality of pores and a porous secondary scaffold having a plurality of pores, wherein the secondary scaffold resides in the pores of the primary scaffold to provide a hybrid scaffold. The pores of the porous primary scaffold may have a pore size in a range of 0.50 mm to 5.0 mm, and the pores of the porous secondary scaffold may have a pore size in a range of 50 ?m to 600 ?m. The primary scaffold may provide 5% to 30% of a volume of the hybrid scaffold.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 19, 2015
    Inventors: Jeffrey N. HARRIS, Jian LING, Xingguo CHENG
  • Patent number: 8956868
    Abstract: The present invention provides a method for producing iPS cells, comprising reacting cells with at least one connexin inhibitor and at least one TGF? signaling inhibitor; iPS cells comprising at least one connexin inhibitor; an iPS cell inducer comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors; a medium for inducing iPS cells, comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors; and a kit for inducing iPS cells, comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: February 17, 2015
    Assignee: LSIP, LLC
    Inventors: Tetsuro Takamatsu, Ping Dai
  • Patent number: 8956867
    Abstract: A three-dimensional microwell system that supports long term pluripotent cell culture and formation of homogeneous embryoid bodies (EBs) is described. Microwell-cultured pluripotent cells remain viable and undifferentiated for several weeks in culture and maintain undifferentiated replication when passaged to Matrigel®-coated, tissue culture-treated polystyrene dishes. Microwell-cultured pluripotent cells maintain pluripotency, differentiating to each of the three embryonic germ layers. Pluripotent cell aggregates released from microwells can be passaged for undifferentiated replication or differentiated to monodisperse EBs. The ability to constrain pluripotent cell growth in three dimensions advantageously provides for more efficient, reproducible culture of undifferentiated cells, high-throughput screening, and the ability to direct pluripotent cell differentiation by generating monodisperse EBs of a desired size and shape.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: February 17, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Timothy J. Kamp, Jianhua Zhang, Jeffrey C. Mohr, Juan J. Depablo, Sean P. Palecek
  • Publication number: 20150037385
    Abstract: Ink formulations comprising bioactive particles, methods of printing the inks into three-dimensional (3D) structures, and methods of making the inks are provided. Also provided are objects, such as tissue growth scaffolds and artificial bone, made from the inks, methods of forming the objects using 3D printing techniques, and method for growing tissue on the tissue growth scaffolds. The inks comprise a plurality of bioactive ceramic particles, a biocompatible polymer binder, optionally at least one bioactive factor, and a solvent.
    Type: Application
    Filed: August 2, 2014
    Publication date: February 5, 2015
    Inventors: Ramille N. Shah, Adam E. Jakus
  • Patent number: 8945909
    Abstract: The invention relates to tunable elastomeric nanochannels for nanofluidic manipulation. In particular, the present invention relates to nanochannels for performing biological assays.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 3, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Shuichi Takayama, Michael David Thouless, Dongeun Huh, Kristen L. Mills, Nicholas Joseph Douville
  • Patent number: 8945535
    Abstract: For the repair of a cartilage defect in a human or animal patient use is made of an implant comprising an implant body including a natural cartilage matrix and being coated with cells having a chondrogenic potential. These cells are produced by in vitro cell proliferation starting from chondrocytes isolated from a cartilage biopsy. The chondrocytes which are de-differentiated during cell proliferation are re-differentiated during tissue culturing and are in particular suitable for producing and maintaining the cartilage matrix of the implant body. The cells adhering to the surface of the implant body are preferably also chondrocytes being de-differentiated by cell proliferation, but not re-differentiated, and are therefore particularly suitable for integrating the implant in the defect. Due to the cells adhering to the surface of the implant body, the implant is successfully integrated in the viable tissue surrounding the defect.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: February 3, 2015
    Assignee: Zimmer Orthobiologics, Inc.
    Inventors: Matthias R. Steinwachs, Peter Bittmann
  • Patent number: 8940478
    Abstract: Methods for forming cell arrays of multiple cell samples arranged substantially in a monolayer on a single substrate particularly suited for diagnostic analysis are disclosed. The cell arrays are formed with a high-speed dispensing apparatus capable of dispensing small volumes in precise, complex patterns. Also disclosed are substrates upon which cell arrays may be formed, and methods for conducting diagnostic analyzes on the formed cell arrays.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: January 27, 2015
    Assignees: Accupath Diagnostic Laboratories, Inc., Biodot, Inc.
    Inventors: Mathew Moore, Miriam Reyes, David Baunoch, Thomas C. Tisone, Brendan O'Farrell
  • Patent number: 8927284
    Abstract: A method for producing a tooth having a desired length in one direction includes the steps of: placing a first cell aggregate and a second cell aggregate in the inside of a support while bringing the first and the second cell aggregates into close contact with each other; and culturing the first and the second cell aggregates in the inside of the support, in which the first cell aggregate is composed of one of mesenchymal cells or epithelial cells and the second cell aggregate is composed of the other, and the size of the tooth is controlled by adjusting the length of contact between the first cell aggregate and the second cell aggregate in one direction.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 6, 2015
    Assignee: Organ Technologies, Inc.
    Inventors: Takashi Tsuji, Kazuhisa Nakao
  • Patent number: 8927282
    Abstract: The present invention relates to cell and tissue culture. In particular, the present invention provides a method for preparing an organotypic culture using dissociated cells or microexplants obtained from an animal organ. The method for preparing an organotypic culture comprises culturing cells from an organ on a surface characterized in that the cells are compacted. The invention further relates to a high-throughput method for the preparation of a collection of organotypic cultures. The invention further relates to a device for carrying out a method of organotypic culture according to the invention.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: January 6, 2015
    Assignee: Capsant Neurotechnologies S.A.
    Inventor: Luc Stoppini
  • Patent number: 8927283
    Abstract: Methods for treating surfaces of polymeric substrates (as used in medical implants) with inert plasmas to promote the growth of bioentities (such as cells) on these surfaces is disclosed. The treated surfaces are subsequently exposed to an environment to form functionalities associated with enhanced growth of the bioentity on the surface. For example, the substrate may be exposed to the ambient environment. The bioentity may then be deposited on the modified surface. This inert plasma treatment and exposure to a suitable environment does not degrade the implants, and thus improved implants are created. Also, due to the specific functional groups at the modified surface, high cell densities are achieved.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of California
    Inventors: Kyriakos Komvopoulos, Satomi Tajima
  • Patent number: 8920813
    Abstract: The invention relates to a replication-deficient adenoviral vector comprising two or more nucleic acid sequences encoding Dengue virus antigens and a chimeric hexon protein. The chimeric hexon protein comprises a first portion and a second portion. The first portion comprises at least 10 contiguous amino acid residues from a first adenovirus serotype (e.g., serotype 5 adenovirus hexon protein), optionally with one amino acid substitution. The second portion comprises (a) at least one hypervariable region (HVR) of a hexon protein of an adenovirus of a second adenovirus serotype, or (b) at least one synthetic hypervariable region (HVR) that is not present in the hexon protein of the wild-type adenovirus of the first adenovirus serotype.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: December 30, 2014
    Assignee: GenVec, Inc.
    Inventors: Joseph T. Bruder, Duncan McVey, Douglas E. Brough
  • Patent number: 8921103
    Abstract: Compositions and methods for creating a laminar construct for tissue-engineered dermal equivalent are provided. One composition provided herein comprises a hydrogel matrix comprising two or more hydrogels layers and a population of stem cells. Associated methods are also provided.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: December 30, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventors: Laura Suggs, Shanmugasundaram Natesan, Ge Zhang, Robert J. Christy, Thomas Walters
  • Patent number: 8921109
    Abstract: A cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof. The matrix suitable for preparation of cellular or acellular implants for growth and de novo formation of an articular hyaline-like cartilage. A gel-matrix composite system comprising collagen-based matrix having a narrowly defined porosity capable of inducing hyaline-like cartilage production from chondrocytes in vivo and in vitro.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: December 30, 2014
    Assignee: Histogenics Corporation
    Inventors: R. Lane Smith, Laurence J. B. Tarrant, Akihiko Kusanagi, Hans Peter Ingemar Claesson
  • Patent number: 8906685
    Abstract: The present disclosure relates general to devices, systems, and methods of using such devices in creating and handling hanging drops of fluid. The present disclosure also relates to cell culture devices, methods and/or systems of using such devices as well as the use of cell culture devices, for example, for research and high throughput screening.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 9, 2014
    Assignees: The Regents of The University of Michigan, 3D Biomatrix, Inc.
    Inventors: Shuichi Takayama, Yi-Chung Tung, Amy Yu-Ching Hsiao, Edward Jan
  • Patent number: 8906684
    Abstract: Provided are methods of the production of patterned 3-dimensional biopolymer scaffolds containing living cells. The methods include selective photopolymerization of biopolymers to create patterned structures and the patterning of cells within relatively homogenous slabs of biopolymer using dielectrophoresis. Also provided are patterned 3-dimensional biopolymer scaffolds generated by the methods and their use.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: December 9, 2014
    Assignee: The Regents of the University of California
    Inventors: Sangeeta N. Bhatia, Valerie Liu Tsang, Dirk R. Albrecht
  • Patent number: 8906687
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: December 9, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Ed Harlow, Roderick A. Hyde, Edward K. Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Patent number: 8906686
    Abstract: Neo-cartilage constructs suitable for implantation into a joint cartilage lesion in situ and a method for repair and restoration of function of injured, traumatized, aged or diseased cartilage. The construct comprises at least chondrocytes incorporated into a support matrix processed according to the algorithm comprising variable hydrostatic or atmospheric pressure or non-pressure conditions, variable rate of perfusion, variable medium composition, variable temperature, variable cell density and variable time to which the chondrocytes are subjected.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: December 9, 2014
    Assignee: Histogenics Corporation
    Inventors: Shuichi Mizuno, Akihiko Kusanagi, Laurence J. B. Tarrant, Toshimasa Tokuno, Robert Lane Smith
  • Patent number: 8906444
    Abstract: A method for modifying silk polymer by coupling a chemical moiety to a tyrosine residue of a silk polymer is described herein for the purpose of altering the physical properties of the silk protein. Thus, silk proteins with desired physical properties can be produced by the methods described herein. These methods are particularly useful when the introduction of cells to a mammal is desired, since modifications to the silk protein affect the physical properties and thus the adhesion, metabolic activity and cell morphology of the desired cells. The silk protein can be modified to produce, or modify, a structure that provides an optimal environment for the desired cells.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: December 9, 2014
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Amanda Murphy
  • Publication number: 20140356950
    Abstract: A cell culture comprising human foreskin cells, the human foreskin cells being capable of maintaining stem cells in an undifferentiated state when co-cultured therewith.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Michal AMIT, Joseph Itskovitz-Eldor
  • Patent number: 8900868
    Abstract: A medium for growing vascular lineage cells is described. The vascular lineage cell growth medium includes an oligosaccharide-based hydrogel and a growth factor that promotes vascularization by vascular lineage cells.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: December 2, 2014
    Assignee: The Johns Hopkins University
    Inventors: Donny Hanjaya-Putra, Sharon Gerecht
  • Patent number: 8900866
    Abstract: A method for forming a nerve graft includes the following steps. A carbon nanotube structure is provided. A hydrophilic layer is formed on a surface of the carbon nanotube structure. The hydrophilic layer is polarized to form a polar surface on the hydrophilic layer. A number of neurons are formed on the polar surface of the hydrophilic layer to form a nerve network. The neurons connect with each other.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chen Feng, Li Fan, Wen-Mei Zhao
  • Patent number: 8900851
    Abstract: The present invention relates to the diagnosis and treatment of cancer, and in particular breast cancer. Specifically, in some embodiments the invention relates to methods of diagnosing cancer, and in particular breast cancer, using an antibody specific for a gene product that localizes selectively to the endoplasmic reticulum of the cancer cell(s). In some embodiments, the invention relates to methods of treating cancer, and in particular breast cancer, by administering a composition comprising an RNA interference sequence (e.g., shRNA, RNAi and/or siRNA molecule) characterized by an ability to inhibit an mRNA molecule, which mRNA molecule is encoded by the C43 gene (SEQ ID NO: 1). The invention additionally relates to methods for detecting cancer cells by detecting reduced methylation of the C43 promoter, and methods for reducing cancer metastasis by using demethylation inhibitors that result in increased methylation of the C43 promoter.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: December 2, 2014
    Assignee: The Research Foundation for the State University of New York
    Inventor: Jian Cao
  • Patent number: 8900865
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: December 2, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Ed Harlow, Roderick A. Hyde, Edward K. Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Patent number: 8900867
    Abstract: A method for forming a culture medium includes the following steps. A carbon nanotube structure is provided. A hydrophilic layer is formed on a surface of the carbon nanotube structure. The hydrophilic layer is polarized to form a polar surface on the hydrophilic layer. A number of neurons are formed on the polar surface of the hydrophilic layer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chen Feng, Li Fan, Wen-Mei Zhao
  • Patent number: 8895304
    Abstract: A hemostatic device, method of making, and method of using for internal and external applications to wounds in the body of a patient to induce hemostasis at an anatomical site.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 25, 2014
    Assignee: ACell, Inc.
    Inventors: Clay Fette, Abram Janis, Benjamin Kibalo
  • Patent number: 8895046
    Abstract: Adult autologous stem cells cultured on a porous, three-dimensional tissue scaffold-implant for bone regeneration by the use of a hyaluronan and/or dexamethasone to accelerate bone healing alone or in combination with recombinant growth factors or transfected osteogenic genes. The scaffold-implant may be machined into a custom-shaped three-dimensional cell culture system for support of cell growth, reservoir for peptides, recombinant growth factors, cytokines and antineoplastic drugs in the presence of a hyaluronan and/or dexamethasone alone or in combination with growth factors or transfected osteogenic genes, to be assembled ex vivo in a tissue incubator for implantation into bone tissue.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: November 25, 2014
    Assignee: Zimmer, Inc.
    Inventors: Zou Xuenong, Haisheng Li, Cody Bunger
  • Patent number: 8895048
    Abstract: Substrates and devices for culturing cells are disclosed, along with methods of using the same. The substrates and devices include top surfaces with one or more divots disposed therein. Each divot is defined by an opening in the top surface, a rounded bottom surface spaced from the opening, and an interior side-wall surface extending between the rounded bottom surface and the opening. The top surface of the substrates and devices are optionally walled to form wells containing one or more divots. The substrates and devices may be used for reaggregating cells, for example, to form small islet cell clusters and for high throughput testing methodologies.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 25, 2014
    Assignee: The University of Kansas
    Inventors: Lisa A. Stehno-Bittel, Karthik Ramachandran
  • Patent number: 8889414
    Abstract: Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 18, 2014
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Carolyn A. Larabell, Wolfgang J. Parak, Mark Le Gros, Rosanne Boudreau
  • Patent number: 8889416
    Abstract: Provided herein are devices and methods for the micro-isolation of biological cellular material. A micro-isolation apparatus described can comprise a photomask that protects regions of interest against DNA-destroying illumination. The micro-isolation apparatus can further comprise photosensitive material defining access wells following illumination and subsequent developing of the photosensitive material. The micro-isolation apparatus can further comprise a chambered microfluidic device comprising channels providing access to wells defined in photosensitive material. The micro-isolation apparatus can comprise a chambered microfluidic device without access wells defined in photosensitive material where valves control the flow of gases or liquids through the channels of the microfluidic device.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 18, 2014
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Emil P. Kartalov, Darryl Shibata, Clive Taylor, Lawrence A. Wade
  • Patent number: 8889415
    Abstract: A method for expanding human corneal endothelial cells includes: (a) providing an amniotic membrane with or without amniotic cells, wherein the amniotic membrane has an extracellular matrix; (b) placing onto the amniotic membrane, a sheet of endothelial layer, or a cell suspension including human corneal endothelial stem cells; and (c) culturing the corneal endothelial cells on the amniotic membrane for a duration sufficient for the corneal endothelial stem cells to expand to an appropriate area. The invention also relates to a method for creating a surgical graft for a recipient site of a patient using the method for expanding human corneal endothelial cells, and the surgical graft prepared therefrom.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: November 18, 2014
    Inventor: Ray Jui-Fang Tsai
  • Publication number: 20140335612
    Abstract: The present disclosure provides tissue supports and methods for preparing a cartilage composition for repairing cartilage defects, which is prepared by expanding and integrating small cartilage tissue pieces derived from donor or engineered tissue. The methods and supports described herein promote cell migration and integration of neighboring tissue pieces in culture to form the cartilage composition. Methods of cartilage repair using the cartilage composition are also described.
    Type: Application
    Filed: June 9, 2014
    Publication date: November 13, 2014
    Inventors: Jian Q. Yao, Hali Wang
  • Patent number: 8883503
    Abstract: Disclosed herein are biodegradable hydrogel scaffolds for use in tissue engineering. The hydrogel scaffolds are composed of synthetic terpolymers complexed with polyvinyl alcohol (PVA), which facilitate cell-sheet and tissue growth. In the presence of a monosaccharide, the PVA-hydrogel is dissolved and cell-sheets are released for harvesting. Further disclosed herein are methods for producing PVA hydrogels which support tissue growth. Tissue engineering applications and methods are also disclosed.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: November 11, 2014
    Assignee: Indian Institute of Technology Kanpur
    Inventor: Ashok Kumar
  • Patent number: 8877500
    Abstract: The present invention relates to collagen hydrogels. Particularly, the invention relates to hydrogels comprising a telopeptide collagen (“telo-collagen”) and an atelopeptide collagen (“atelo-collagen”); hydrogels comprising collagen and chitosan; methods of making the hydrogels; methods of reducing gelation of a hydrogel mixture at room temperature; methods of reducing compaction of cells; and methods of culturing cells on such hydrogels.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: November 4, 2014
    Assignee: MedTrain Technologies, LLC
    Inventors: Albert J. Banes, Mari Tsuzaki, Jie Qi
  • Patent number: 8877498
    Abstract: The present invention relates to scaffolds that can physically guide cells, e.g. neurons, while best matching the material properties of native tissue. The present invention also relates to methods of generating such scaffolds, and for the use of such scaffolds, e.g. in spinal cord and peripheral nerve injury repair. The methods of the present invention include a uniquely controlled freeze casting process to generate highly porous, linearly oriented scaffolds. The scaffolds of the present invention not only comprise a highly aligned porosity, but also contain secondary guidance structures in the form of ridges running parallel to the pores to create a series of microstructured and highly aligned channels. This hierarchy of structural guidance aligns and guides neurite outgrowth down the channels created by the ridges, and keep neurites from branching perpendicular to the inter-ridge grooves.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: November 4, 2014
    Assignee: Drexel University
    Inventors: Ulrike G.K. Wegst, Margaret Wheatley, Benjamin W. Riblett, Nicola Francis, Amalie Elizabeth Donius
  • Patent number: 8877493
    Abstract: The present invention provides a culture substrate which enables maintenance culture of human pluripotent stem cells in a pluripotent state under a feeder-free culture environment, and a culture method of human pluripotent stem cells using the culture substrate. By seeding human pluripotent stem cells dissociated into single cells at a cell density of 4×104 to 10×104 cells/cm2 onto a culture substrate coated with human laminin ?5?1?1 E8 fragment or human laminin ?3?3?2 E8 fragment preferably at a concentration of 0.5 to 25 ?g/cm2, the human pluripotent stem cells can be rapidly expanded in a pluripotent state.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 4, 2014
    Assignees: Osaka University, Kyoto University
    Inventors: Kiyotoshi Sekiguchi, Sugiko Futaki, Yukimasa Taniguchi, Maria Hayashi, Norio Nakatsuji, Takamichi Miyazaki, Eihachiro Kawase, Hirofumi Suemori
  • Patent number: 8871462
    Abstract: The present invention relates to organotypic cultures of epidermal cells and the use thereof for the screening of pharmaceutical and cosmetic agents. Specifically, means for the improvement of the long-term stability of such cultures are disclosed. Thus, the present invention contemplates a skin equivalent comprising (a) a dermal equivalent comprising a matrix comprising nonwoven viscose fabric and fibroblasts and (b) keratinocytes. Moreover, the present invention contemplates a method for manufacturing the skin equivalent and a method for screening agents capable of influencing skin, such as a therapeutic or cosmetic agent.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 28, 2014
    Assignees: Deutsches Krebsforschungszentrum, Landesstiftung Baden-Wurttemberg gGmbH
    Inventors: Hans-Juergen Stark, Norbert Fusenig, Petra Boukamp, Karsten Boehnke
  • Patent number: 8871461
    Abstract: Methods and devices for applying hemodynamic patterns to human/animal cells in culture are described. Hemodynamic flow patterns are measured directly from the human circulation and translated to a motor that controls the rotation of a cone. The cone is submerged in fluid (i.e., cell culture media) and brought into close proximity to the cells. Rotation of the cone creates time-varying shear stresses. This model closely mimics the physiological hemodynamic forces imparted on endothelial cells in vivo. A TRANSWELL coculture dish (i.e., a coculture dish comprising an artificial porous membrane) may be incorporated, permitting two, three, or more different cell types to be physically separated within the culture dish environment. In-flow and out-flow tubing may be used to supply media, drugs, etc. separately and independently to both the inner and outer chambers. The physical separation of the cell types permits each cell type to be separately isolated for analysis.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: October 28, 2014
    Assignee: Hemoshear, LLC
    Inventors: Brett R. Blackman, Brian R. Wamhoff
  • Patent number: 8871512
    Abstract: Sugar-acrylic monomers are synthesized to have a carbohydrate moiety linked to an acrylate group. The sugar-acrylic monomers may be polymerized to form polymers, adhesives, hydrogels, and the like. The sugar-acrylic monomers and polymers may be used in tissue engineering, adhesives and sealers, wound healing, and the like.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: October 28, 2014
    Assignee: Empire Technology Development LLC
    Inventors: William B. Carlson, Gregory D. Phelan, Phillip A. Sullivan