Having Metal Oxide Or Copper Sulfide Compound Semiconductor Component Patents (Class 438/104)
  • Patent number: 8912040
    Abstract: An object is to establish a processing technique in manufacture of a semiconductor device in which an oxide semiconductor is used. A gate electrode is formed over a substrate, a gate insulating layer is formed over the gate electrode, an oxide semiconductor layer is formed over the gate insulating layer, the oxide semiconductor layer is processed by wet etching to form an island-shaped oxide semiconductor layer, a conductive layer is formed to cover the island-shaped oxide semiconductor layer, the conductive layer is processed by dry etching to form a source electrode, and a drain electrode and part of the island-shaped oxide semiconductor layer is removed by dry etching to form a recessed portion in the island-shaped oxide semiconductor layer.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: December 16, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Shinya Sasagawa, Taiga Muraoka
  • Publication number: 20140362634
    Abstract: Methods, devices, and systems associated with oxide based memory are described herein. In one or more embodiments, a method of forming an oxide based memory cell includes forming a first electrode, forming a tunnel barrier, wherein a first portion of the tunnel barrier includes a first material and a second portion of the tunnel barrier includes a second material, forming an oxygen source, and forming a second electrode.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 11, 2014
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20140361291
    Abstract: A semiconductor device using oxide semiconductor with favorable electrical characteristics, or a highly reliable semiconductor device is provided. A semiconductor device is manufactured by: forming an oxide semiconductor layer over an insulating surface; forming source and drain electrodes over the oxide semiconductor layer; forming an insulating film and a conductive film in this order over the oxide semiconductor layer and the source and drain electrodes; etching part of the conductive film and insulating film to form a gate electrode and a gate insulating layer, and etching part of the upper portions of the source and drain electrodes to form a first covering layer containing a constituent element of the source and drain electrodes and in contact with the side surface of the gate insulating layer; oxidizing the first covering layer to form a second covering layer; and forming a protective insulating layer containing an oxide over the second covering layer.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 11, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shinya Sasagawa, Motomu Kurata, Kazuya Hanaoka, Suguru Hondo
  • Publication number: 20140361295
    Abstract: A semiconductor device (100A) includes a substrate (2), an oxide semiconductor layer (5) formed on the substrate (2), source and drain electrodes (6s, 6d) electrically connected to the oxide semiconductor layer (5), a first transparent electrode (7) electrically connected to the drain electrode (6d), a dielectric layer (8) formed on the source and drain electrodes (6s, 6d), and a second transparent electrode (9) formed on the dielectric layer (8). The upper and/or lower surface(s) of the first transparent electrode (7) contacts with a reducing insulating layer (8a) with the property of reducing an oxide semiconductor included in the oxide semiconductor layer (5). The second transparent electrode (9) overlaps at least partially with the first transparent electrode (7) via the dielectric layer (8). The oxide semiconductor layer (5) and the first transparent electrode (7) are formed out of the same oxide film.
    Type: Application
    Filed: January 24, 2013
    Publication date: December 11, 2014
    Inventors: Tadayoshi Miyamoto, Kazuatsu Ito, Shigeyasu Mori, Mitsunobu Miyamoto, Yasuyuki Ogawa, Makoto Nakazawa, Seiichi Uchida, Takuya Matsuo
  • Publication number: 20140363920
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Inventors: Zhendong Hong, Vidyut Gopal, Imran Hashim, Randall J. Higuchi, Tim Minvielle, Hieu Pham, Takeshi Yamaguchi
  • Publication number: 20140363921
    Abstract: A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventors: YONG SU LEE, YOON HO KHANG, DONGJO KIM, HYUN JAE NA, SANG HO PARK, SE HWAN YU, CHONG SUP CHANG
  • Publication number: 20140361289
    Abstract: Objects are to obtain a minute transistor by reducing the channel length L of a transistor used in a semiconductor integrated circuit such as an LSI, a CPU, or a memory, increase the operation speed of the circuit, and reduce power consumption. Oxide layers having compositions different from the composition of an oxide semiconductor layer including a channel formation region are provided below and over the oxide semiconductor layer, and in the oxide semiconductor layer including the channel formation region, low-resistance regions are provided to interpose the channel formation region therebetween in the lateral direction. The low-resistance regions are formed in a region other than the channel formation region so as to be in contact with a metal film or a metal oxide film by diffusion of a metal element (e.g., aluminum) contained in the metal or metal oxide films into the parts of the oxide semiconductor layer.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 11, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideomi Suzawa
  • Patent number: 8906736
    Abstract: A nonvolatile memory element is disclosed comprising a first electrode, a near-stoichiometric metal oxide memory layer having bistable resistance, and a second electrode in contact with the near-stoichiometric metal oxide memory layer. At least one electrode is a resistive electrode comprising a sub-stoichiometric transition metal nitride or oxynitride, and has a resistivity between 0.1 and 10 ?cm. The resistive electrode provides the functionality of an embedded current-limiting resistor and also serves as a source and sink of oxygen vacancies for setting and resetting the resistance state of the metal oxide layer. Novel fabrication methods for the second electrode are also disclosed.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: December 9, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
  • Patent number: 8906738
    Abstract: Disclosed herein is a method of manufacturing a thin film transistor having a structure that a gate electrode and an oxide semiconductor layer are disposed with a gate insulating film interposed between the gate electrode and the oxide semiconductor layer, and a source/drain electrode is electrically connected to the oxide semiconductor layer, the method including: continuously depositing an aluminum oxide (Al2O3) layer as a protective film and an aluminum (Al) layer in this order on any of the source/drain electrode, the gate insulating film, and the oxide semiconductor layer by using sputtering.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: December 9, 2014
    Assignee: Sony Corporation
    Inventors: Takahide Ishii, Yoshihiro Oshima
  • Patent number: 8907313
    Abstract: An internal electrical field in a resistive memory element can be formed to reduce the forming voltage. The internal electric field can be formed by incorporating one or more charged layers within the switching dielectric layer of the resistive memory element. The charged layers can include adjacent charge layers to form dipole layers. The charged layers can be formed at or near the interface of the switching dielectric layer with an electrode layer. Further, the charged layer can be oriented with lower valence substitution side towards lower work function electrode, and higher valence substitution side towards higher work function electrode.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 9, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Sergey Barabash, Charlene Chen, Dipankar Pramanik
  • Patent number: 8906739
    Abstract: A method includes: a step of forming a gate electrode (14) on a substrate (10a); a step of forming a gate insulating film (15) to cover the gate electrode (14), and then forming an In-Ga-Zn-O-based oxide semiconductor layer (16) in which a ratio of In:Ga:Zn in atomic % is 1:1:1 or 4:5:1 on the gate insulating film (15) to overlap the gate electrode (14); a step of forming a source electrode (19a) and a drain electrode (19b) on the oxide semiconductor layer (16) to overlap the gate electrode (14) and to face each other; and a step of performing an annealing process in an atmosphere containing steam (S) on the substrate (10a) provided with the source electrode (19a) and the drain electrode (19b).
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: December 9, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshifumi Ohta, Yoshimasa Chikama, Masahiko Suzuki, Okifumi Nakagawa, Yoshiyuki Harumoto
  • Patent number: 8907314
    Abstract: Molybdenum oxide can be used to form switching elements in a resistive memory device. The atomic ratio of oxygen to molybdenum can be between 2 and 3. The molybdenum oxide exists in various Magneli phases, such as Mo13O33, Mo4O11, Mo17O47, Mo8O23, or Mo9O26. An electric field can be established across the switching layers, for example, by applying a set or reset voltage. The electric field can cause movement of the oxygen charges, e.g., O2? ions, changing the composition profile of the switching layers, forming bistable states, including a high resistance state with MoO3 and a low resistance state with MoOx (x<3).
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 9, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Sergey Barabash, Tony P. Chiang, Dipankar Pramanik
  • Patent number: 8906737
    Abstract: An object is to provide a method for manufacturing a semiconductor device including an oxide semiconductor and having improved electric characteristics. The semiconductor device includes an oxide semiconductor film, a gate electrode overlapping the oxide semiconductor film, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. The method includes the steps of forming a first insulating film including gallium oxide over and in contact with the oxide semiconductor film; forming a second insulating film over and in contact with the first insulating film; forming a resist mask over the second insulating film; forming a contact hole by performing dry etching on the first insulating film and the second insulating film; removing the resist mask by ashing using oxygen plasma; and forming a wiring electrically connected to at least one of the gate electrode, the source electrode, and the drain electrode through the contact hole.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 9, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihiro Ishizuka, Yutaka Yonemitsu, Shinya Sasagawa
  • Publication number: 20140353567
    Abstract: A current-limiting layer and a current-reducing layer are incorporated into a resistive switching memory device to form memory arrays. The incorporated current-limiting layer reduces the occurrence of current spikes during the programming of the resistive switching memory device and the incorporated current-reducing layer minimizes the overall current levels that can flow through the resistive switching memory device. Together, the two incorporated layers help improve device performance and lifetime.
    Type: Application
    Filed: August 13, 2014
    Publication date: December 4, 2014
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Publication number: 20140353658
    Abstract: A thin film transistor includes a gate electrode, a source electrode, a drain electrode disposed on the same layer as the source electrode and facing the source electrode, an oxide semiconductor layer disposed between the gate electrode and the source electrode or the drain electrode, and a gate insulating layer disposed between the gate electrode and the source electrode or the drain electrode, in which the oxide semiconductor layer includes thallium and at least one of indium, zinc, tin, and gallium. Also an oxide sputtering target including: an oxide including thallium (Tl); and at least one of indium, zinc, tin, and gallium.
    Type: Application
    Filed: October 9, 2013
    Publication date: December 4, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Katsushi KISHIMOTO, Takayuki FUKASAWA
  • Publication number: 20140357018
    Abstract: To provide a method for manufacturing a thin film transistor in which contact resistance between an oxide semiconductor layer and source and drain electrode layers is small, the surfaces of the source and drain electrode layers are subjected to sputtering treatment with plasma and an oxide semiconductor layer containing In, Ga, and Zn is formed successively over the source and drain electrode layers without exposure of the source and drain electrode layers to air.
    Type: Application
    Filed: August 14, 2014
    Publication date: December 4, 2014
    Inventors: Kengo AKIMOTO, Masashi TSUBUKU
  • Publication number: 20140353660
    Abstract: A flat panel display device with an oxide thin film transistor is disclosed which includes: a buffer film formed on a substrate; an oxide semiconductor layer which has a width of a first length and is formed on the buffer film; a gate insulation film which has a width of a second length and is formed on the oxide semiconductor layer; a gate electrode which has a width of a third length and is formed on the gate insulation film; an interlayer insulation film formed on the entire surface of the substrate provided with the gate electrode; source and drain electrodes formed on the interlayer insulation film and connected to the oxide semiconductor layer; a passivation film formed on the entire surface of the substrate provided with the source and drain electrode; and a pixel electrode formed on the passivation film and connected to the drain electrode. The first length is larger than the second length and the second length is larger than the third length.
    Type: Application
    Filed: December 9, 2013
    Publication date: December 4, 2014
    Applicant: LG Display Co., Ltd.
    Inventors: Ki Young JUNG, Ki Tae KIM, Chang Hoon HAN
  • Publication number: 20140357017
    Abstract: A method for fabricating a thin-film transistor is disclosed. Firstly, a patterned dielectric mask structure with a bottom thereof having a gate dielectric layer is formed on a gate-stacked structure so that the gate dielectric layer covers a gate of the gate-stacked structure. Top surface of the patterned dielectric mask structure has at least two openings. A semiconductor layer is formed on the gate-stacked structure via the openings by a sputtering method. The semiconductor layer comprises a channel above the gate, a source and a drain below the openings. The channel has a thickness which sequentially decreases from edge to center.
    Type: Application
    Filed: November 8, 2013
    Publication date: December 4, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: HORNG-CHIH LIN, RONG-JHE LYU
  • Publication number: 20140357019
    Abstract: The silicon nitride layer 910 formed by plasma CVD using a gas containing a hydrogen compound such as silane (SiH4) and ammonia (NH3) is provided on and in direct contact with the oxide semiconductor layer 905 used for the resistor 354, and the silicon nitride layer 910 is provided over the oxide semiconductor layer 906 used for the thin film transistor 355 with the silicon oxide layer 909 serving as a barrier layer interposed therebetween. Therefore, a higher concentration of hydrogen is introduced into the oxide semiconductor layer 905 than into the oxide semiconductor layer 906. As a result, the resistance of the oxide semiconductor layer 905 used for the resistor 354 is made lower than that of the oxide semiconductor layer 906 used for the thin film transistor 355.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 4, 2014
    Inventors: Jun KOYAMA, Junichiro SAKATA, Tetsunori MARUYAMA, Yuki IMOTO, Yuji ASANO, Junichi KOEZUKA
  • Publication number: 20140353659
    Abstract: A method of manufacturing a flat panel display device includes forming a first gate electrode and a second gate electrode on a substrate. The method includes forming a gate insulating layer on the substrate covering the gate electrodes. The method includes forming a first active layer and a second active layer on the gate insulating layer. The method includes forming an active insulation layer on the gate insulating layer to cover the first active layer. The active insulation layer includes a first hole and a second hole exposing portions of the first active layer. The method includes forming a first source electrode and a first drain electrode on the active insulation layer respectively filling the first hole and the second hole. The method includes forming a second source electrode and a second drain electrode to contact portions of the second active layer.
    Type: Application
    Filed: October 22, 2013
    Publication date: December 4, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventor: SANG IL PARK
  • Publication number: 20140353648
    Abstract: To provide is a p-type oxide, including an oxide, wherein the oxide includes: Cu; and an element M, which is selected from p-block elements, and which can be in an equilibrium state, as being present as an ion, wherein the equilibrium state is a state in which there are both a state where all of electrons of p-orbital of an outermost shell are lost, and a state where all of electrons of an outermost shell are lost, and wherein the p-type oxide is amorphous.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 4, 2014
    Applicant: RICOH COMPANY, LTD.
    Inventors: Yukiko Abe, Naoyuki Ueda, Yuki Nakamura, Mikiko Takada, Shinji Matsumoto, Yuji Sone, Ryoichi Saotome
  • Patent number: 8900965
    Abstract: A method of manufacturing a nonvolatile memory device that is a variable resistance nonvolatile memory device, which has good consistency with a dual damascene process that is suitable for the formation of fine copper lines and which enables large capacity and high integration. This method includes: forming a variable resistance element, a contact hole and a line groove; and forming a current steering layer of a bidirectional diode element above interlayer insulating layers and a variable resistance layer to cover the line groove without covering a bottom surface of the contact hole.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: December 2, 2014
    Assignee: Panasonic Corporation
    Inventors: Haruyuki Sorada, Takumi Mikawa, Kenji Tominaga, Kiyotaka Tsuji
  • Patent number: 8900916
    Abstract: A highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics, and a manufacturing method thereof. In the manufacturing method of the semiconductor device which includes a thin film transistor where a semiconductor layer including a channel formation region is an oxide semiconductor layer, heat treatment which reduces impurities such as moisture to improve the purity of the oxide semiconductor layer and oxidize the oxide semiconductor layer (heat treatment for dehydration or dehydrogenation) is performed. Not only impurities such as moisture in the oxide semiconductor layer but also those existing in a gate insulating layer are reduced, and impurities such as moisture existing in interfaces between the oxide semiconductor layer and films provided over and under and in contact with the oxide semiconductor layer are reduced.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Miyuki Hosoba, Kosei Noda, Hiroki Ohara, Toshinari Sasaki, Junichiro Sakata
  • Patent number: 8901531
    Abstract: A magnetic memory with a memory layer having magnetization, the direction of magnetization of which changes according to information recorded therein; a reference layer having a fixed magnetization against which magnetization of the memory layer can be compared; a nonmagnetization layer between the memory layer and the reference layer; and an electrode on one side of the memory layer facing away from the reference layer, wherein, the memory device memorizes the information by reversal of the magnetization of the memory layer by a spin torque generated when a current flows between the memory layer, the nonmagnetization layer and the reference layer, and a heat conductivity of a center portion of the electrode is lower than a heat conductivity of surroundings thereof. The memory and reference preferably have vertical magnetizations.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: December 2, 2014
    Assignee: Sony Corporation
    Inventors: Hiroyuki Ohmori, Masanori Hosomi, Kazuhiro Bessho, Yutaka Higo, Kazutaka Yamane, Hiroyuki Uchida
  • Patent number: 8901554
    Abstract: A first insulating film in contact with an oxide semiconductor film and a second insulating film are stacked in this order over an electrode film of a transistor including the oxide semiconductor film, an etching mask is formed over the second insulating film, an opening portion exposing the electrode film is formed by etching a portion of the first insulating film and a portion of the second insulating film, the opening portion exposing the electrode film is exposed to argon plasma, the etching mask is removed, and a conductive film is formed in the opening portion exposing the electrode film. The first insulating film is an insulating film whose oxygen is partly released by heating. The second insulating film is less easily etched than the first insulating film and has a lower gas-permeability than the first insulating film.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Hiroshi Fujiki, Yoshinori Ieda
  • Patent number: 8901528
    Abstract: A PCRAM device and a method of manufacturing the same are provided. The PCRAM device includes a semiconductor substrate, and a PN diode formed on the semiconductor substrate and including a layer interposed therein to suppress thermal diffusion of ions.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jin Ku Lee, Min Yong Lee, Jong Chul Lee
  • Patent number: 8900917
    Abstract: An embodiment is to include a staggered (top gate structure) thin film transistor in which an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer and a buffer layer is provided between the semiconductor layer and a source and drain electrode layers. A metal oxide layer having higher carrier concentration than the semiconductor layer is provided intentionally as the buffer layer between the source and drain electrode layers and the semiconductor layer, whereby an ohmic contact is formed.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hidekazu Miyairi, Kengo Akimoto, Kojiro Shiraishi
  • Patent number: 8901556
    Abstract: In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Toshinari Sasaki, Shuhei Yokoyama, Takashi Hamochi
  • Publication number: 20140346495
    Abstract: A method of fabricating a stable high mobility amorphous MOTFT includes a step of providing a substrate with a gate formed thereon and a gate dielectric layer positioned over the gate. A carrier transport structure is deposited by sputtering on the gate dielectric layer. The carrier transport structure includes a layer of amorphous high mobility metal oxide adjacent the gate dielectric and a relatively inert protective layer of material deposited on the layer of amorphous high mobility metal oxide both deposited without oxygen and in situ. The layer of amorphous metal oxide has a mobility above 40 cm2/Vs and a carrier concentration in a range of approximately 1018 cm?3 to approximately 5×1019 cm?3. Source/drain contacts are positioned on the protective layer and in electrical contact therewith.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Inventors: Chan- Long Shieh, Gang Yu, Fatt Foong, Juergen Musolf
  • Publication number: 20140346498
    Abstract: A thin film transistor includes a gate electrode, a channel overlapped with the gate electrode, a source electrode contacting the channel, and a drain electrode spaced apart from the source electrode and contacting the channel. The channel includes indium-zinc-tin oxide sourced from a source including a single phase indium-zinc-tin oxide.
    Type: Application
    Filed: April 27, 2014
    Publication date: November 27, 2014
    Applicants: Samsung Display Co., Ltd., Kobe Steel, LTD.
    Inventors: Byung-Du AHN, Gun-Hee KIM, Jun-Hyung LIM, Toshihiro KUGIMIYA, Hiroshi GOTO, Aya MIKI, Shinya MORITA
  • Publication number: 20140346496
    Abstract: An array substrate includes a thin film transistor on a substrate, a color pattern on the substrate, a light blocking pattern on the thin film transistor, an organic insulation layer covering the color pattern and the light blocking pattern, a pixel electrode on the organic insulation layer, and a low-reflective pattern on the pixel electrode. An opening portion is defined in the light blocking pattern and exposes the thin film transistor. A contact hole is defined in the organic insulation layer and corresponding to the opening portion. The pixel electrode is electrically connected to the thin film transistor through the contact hole. The low-reflective pattern corresponds to the opening portion.
    Type: Application
    Filed: November 15, 2013
    Publication date: November 27, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sung-In RO, Eun-Je JANG, Hyun-Wuk KIM, Ock-Soo SON
  • Publication number: 20140349443
    Abstract: One embodiment is a method for manufacturing a stacked oxide material, including the steps of forming an oxide component over a base component; forming a first oxide crystal component which grows from a surface toward an inside of the oxide component by heat treatment, and leaving an amorphous component just above a surface of the base component; and stacking a second oxide crystal component over the first oxide crystal component. In particular, the first oxide crystal component and the second oxide crystal component have common c-axes. Same-axis (axial) growth in the case of homo-crystal growth or hetero-crystal growth is caused.
    Type: Application
    Filed: June 5, 2014
    Publication date: November 27, 2014
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20140349445
    Abstract: Provided are a display substrate, a display device, and a method of manufacturing the display substrate. The display substrate includes: a substrate in which a pixel region is defined; a gate electrode and a gate pad are formed on the substrate; a gate insulating layer formed on the gate electrode and the gate pad; a buffer layer pattern overlaps the gate electrode and is formed on the gate insulating layer; an insulating film pattern formed on the buffer layer pattern; an oxide semiconductor pattern formed on the insulating film pattern; a source electrode formed on the oxide semiconductor pattern; and a drain electrode formed on the oxide semiconductor pattern and is separated from the source electrode.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Seung-Ha CHOI, Kyoung-Jae CHUNG, Woo-Geun LEE
  • Publication number: 20140347590
    Abstract: A semiconductor device includes a thin-film transistor (101), a terminal portion (102), an interlevel insulating layer (14) including a first insulating layer (12) which contacts with the surface of a drain electrode (11d), and a first transparent conductive layer (15), a first dielectric layer (17) and a second transparent conductive layer (19a) formed on the interlevel insulating layer (14). The terminal portion (102) includes a lower conductive layer (3t), a second semiconductor layer (7t) arranged on a gate insulating layer (5), and lower and upper transparent connecting layers (15t, 19t). The gate insulating layer (5) and the second semiconductor layer (7t) have a contact hole (CH2), and their side surfaces located on a side of the contact hole (CH2) are aligned with each other. The lower transparent connecting layer (15t) contacts with the lower conductive layer (3t) in the contact hole (CH2).
    Type: Application
    Filed: January 8, 2013
    Publication date: November 27, 2014
    Inventors: Tetsuo Fujita, Yoshihito Hara, Yukinobu Nakata
  • Publication number: 20140346497
    Abstract: According to one embodiment, a thin-film transistor comprises an oxide semiconductor layer formed on a part of a substrate, a first gate insulator film of a silicon dioxide film formed on the oxide semiconductor layer and by the CVD method with a silane-based source gas, a second gate insulator film of a silicon dioxide film formed on the first gate insulator film by the CVD method with a TEOS source gas, and a gate electrode formed on the second gate insulator film.
    Type: Application
    Filed: April 18, 2014
    Publication date: November 27, 2014
    Applicant: Japan Display Inc.
    Inventors: Masato HIRAMATSU, Masayoshi Fuchi, Arichika Ishida
  • Publication number: 20140346502
    Abstract: A semiconductor device (100a) with a thin-film transistor (10a) includes: a gate electrode (62) formed on a substrate (60); a gate insulating layer (66) formed on the gate electrode; an oxide semiconductor layer (68) formed on the gate insulating layer; source and drain electrodes (70s, 70d) electrically connected to the oxide semiconductor layer; a protective layer (72) formed on the oxide semiconductor layer and the source and drain electrodes; an oxygen supplying layer (74) formed on the protective layer; an anti-diffusion layer (78) formed on the oxygen supplying layer; and a transparent electrode (81) formed on the anti-diffusion layer and made of an amorphous transparent oxide.
    Type: Application
    Filed: December 3, 2012
    Publication date: November 27, 2014
    Applicant: Sharp Kabushiki Kaisha
    Inventor: Hiroshi Matsukizono
  • Publication number: 20140349444
    Abstract: A minute transistor and the method of manufacturing the minute transistor. A source electrode layer and a drain electrode layer are each formed in a corresponding opening formed in an insulating layer covering a semiconductor layer. The opening of the source electrode layer and the opening of the drain electrode layer are formed separately in two distinct steps. The source electrode layer and the drain electrode layer are formed by depositing a conductive layer over the insulating layer and in the openings, and subsequently removing the part located over the insulating layer by polishing. This manufacturing method allows for the source electrode later and the drain electrode layer to be formed close to each other and close to a channel forming region of the semiconductor layer. Such a structure leads to a transistor having high electrical characteristics and a high manufacturing yield even in the case of a minute structure.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Toshihiko SAITO, Atsuo ISOBE, Kazuya HANAOKA, Sho NAGAMATSU
  • Patent number: 8895334
    Abstract: Embodiments of the present invention disclose a thin film transistor array substrate and a method for manufacturing the same and an electronic device.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Boe Technology Group Co., Ltd.
    Inventors: Xiang Liu, Jianshe Xue
  • Patent number: 8896042
    Abstract: An object is to provide a semiconductor device with a novel structure. The semiconductor device includes a first wiring; a second wiring; a third wiring; a fourth wiring; a first transistor having a first gate electrode, a first source electrode, and a first drain electrode; and a second transistor having a second gate electrode, a second source electrode, and a second drain electrode. The first transistor is provided in a substrate including a semiconductor material. The second transistor includes an oxide semiconductor layer.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato
  • Patent number: 8895953
    Abstract: A programmable memory element can include an insulating layer formed over a bottom structure; an opening formed in the insulating layer; a sidewall structure formed next to side surfaces of the opening; a tapered structure formed within the opening adjacent to the sidewall structure; and a solid electrolyte forming at least a portion of a structure selected from: the bottom structure, the sidewall structure, and the tapered structure.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: November 25, 2014
    Assignee: Adesto Technologies Corporation
    Inventors: Jeffrey Allan Shields, John Ross Jameson, Wei Ti Lee
  • Patent number: 8895356
    Abstract: A chemical vapor deposition apparatus includes: a reaction chamber including an inner tube having a predetermined volume of an inner space, and an outer tube tightly sealing the inner tube; a wafer holder disposed within the inner tube and on which a plurality of wafers are stacked at predetermined intervals; and a gas supply unit including at least one gas line supplying an external reaction gas to the reaction chamber, and a plurality of spray nozzles communicating with the gas line to spray the reaction gas to the wafers, whereby semiconductor epitaxial thin films are grown on the surfaces of the wafers, wherein the semiconductor epitaxial thin film grown on the surface of the wafer includes a light emitting structure in which a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer are sequentially formed.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Sun Maeng, Young Sun Kim, Hyun Wook Shim, Sung Tae Kim
  • Patent number: 8895977
    Abstract: A thin film transistor includes a substrate, an oxide semiconductor layer that is disposed on the substrate, a gate electrode that overlaps with the oxide semiconductor layer, a gate insulating layer that is disposed between the oxide semiconductor layer and the gate electrode, and a source electrode and a drain electrode that at least partially overlap with the oxide semiconductor layer and are spaced from each other. The gate insulating layer includes an oxide including a first material. The oxide semiconductor layer includes an oxide which includes a same material as the first material and a second material, and the source electrode and the drain electrode include an oxide that includes a same material as the second material and a third material, and a grain boundary is not formed on an interface between at least one of the gate insulating layer and the oxide semiconductor layer or between the oxide semiconductor layer, and the source electrode and the drain electrode.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: November 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Doo Hyoung Lee, Bo Sung Kim, Chan Woo Yang, Seung-Ho Jung, Yeon Taek Jeong, June Whan Choi, Tae-Young Choi
  • Patent number: 8895948
    Abstract: According to one embodiment, a memory device includes a first electrode, a second electrode and a resistance change film. The resistance change film is connected between the first electrode and the second electrode. An ion metal is introduced in a matrix material in the resistance change film. A concentration of the ion metal in a first region on the first electrode side of the resistance change film is higher than a concentration of the ion metal in a second region on the second electrode side of the resistance change film A layer made of only the ion metal is not provided in the memory device.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yusuke Arayashiki
  • Publication number: 20140342498
    Abstract: A semiconductor device is manufactured using a transistor in which an oxide semiconductor is included in a channel region and variation in electric characteristics due to a short-channel effect is less likely to be caused. The semiconductor device includes an oxide semiconductor film having a pair of oxynitride semiconductor regions including nitrogen and an oxide semiconductor region sandwiched between the pair of oxynitride semiconductor regions, a gate insulating film, and a gate electrode provided over the oxide semiconductor region with the gate insulating film positioned therebetween. Here, the pair of oxynitride semiconductor regions serves as a source region and a drain region of the transistor, and the oxide semiconductor region serves as the channel region of the transistor.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Yuta ENDO, Toshinari SASAKI, Kosei NODA
  • Publication number: 20140342499
    Abstract: The contact resistance between an oxide semiconductor film and a metal film is reduced. A transistor that uses an oxide semiconductor film and has excellent on-state characteristics is provided. A semiconductor device capable of high-speed operation is provided. In a transistor that uses an oxide semiconductor film, the oxide semiconductor film is subjected to nitrogen plasma treatment. Thus, part of oxygen included in the oxide semiconductor film is replaced with nitrogen, so that an oxynitride region is formed. A metal film is formed in contact with the oxynitride region. The oxynitride region has lower resistance than the other region of the oxide semiconductor film. In addition, the oxynitride region is unlikely to form high-resistance metal oxide at the interface with the contacting metal film.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Inventors: Junichi KOEZUKA, Shinji OHNO, Yuichi SATO, Sachiaki TEZUKA, Tomokazu YOKOI, Yusuke SHINO
  • Publication number: 20140339547
    Abstract: A transistor with stable electric characteristics is provided. A transistor with small variation in electrical characteristics is provided. A miniaturized transistor is provided. A transistor having low off-state current is provided. A transistor having high on-state current is provided. A semiconductor device including the transistor is provided. One embodiment of the present invention is a semiconductor device including an island-shaped stack including a base insulating film and an oxide semiconductor film over the base insulating film; a protective insulating film facing a side surface of the stack and not facing a top surface of the stack; a first conductive film and a second conductive film which are provided over and in contact with the stack to be apart from each other; an insulating film over the stack, the first conductive film, and the second conductive film; and a third conductive film over the insulating film.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Suguru HONDO, Daigo Ito
  • Publication number: 20140339537
    Abstract: The present disclosure relates to an oxide thin film transistor and a fabricating method thereof. In the oxide thin film transistor, which uses amorphous zinc oxide (ZnO) semiconductor as an active layer, damage to the oxide semiconductor due to dry etching may be minimized by forming source and drain electrodes in a multilayered structure having at least two layers, and improving stability and reliability of a device by employing a dual passivation layer structure, which includes a lower layer for overcoming a deficiency and an upper layer for minimizing external affection, on the multilayered source and drain electrodes.
    Type: Application
    Filed: September 13, 2013
    Publication date: November 20, 2014
    Applicant: LG Display Co., Ltd.
    Inventor: JongUk BAE
  • Publication number: 20140340604
    Abstract: The present invention provides a thin film transistor comprising at least a gate electrode formed on a substrate, and a gate insulating layer in contacting the gate electrode, and an oxide semiconductor layer deposited on the other side of the gate insulating layer. The concentration of hydrogen in the gate insulating layer has a gradient distribution, wherein the concentration of hydrogen adjacent the gate electrode is higher; and while the concentration of hydrogen adjacent the oxide semiconductor layer is lower. The present invention further provides a method for manufacturing a thin film transistor and an according thin-film-transistor liquid crystal display device.
    Type: Application
    Filed: June 24, 2013
    Publication date: November 20, 2014
    Applicant: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Cheng-Lung Chiang, Po-Lin Chen
  • Publication number: 20140340607
    Abstract: This semiconductor device (100A) includes: a thin-film transistor (101); a gate line layer; an interlevel insulating layer (14) including a first insulating layer (12) which contacts at least with the surface of a drain electrode (11d); a first transparent conductive layer (15) on the interlevel insulating layer (14); a drain connected transparent conductive layer (15a) arranged on the interlevel insulating layer (14) and not electrically connected to the first transparent conductive layer (15); a dielectric layer (17) arranged on the first transparent conductive layer (15); and a second transparent conductive layer (19a) which is arranged over the dielectric layer (17) so as to overlap at least partially with the first transparent conductive layer (15) with the dielectric layer (17) interposed between them.
    Type: Application
    Filed: November 15, 2012
    Publication date: November 20, 2014
    Inventors: Yukinobu Nakata, Tetsuo Fujita, Yoshihito Hara
  • Patent number: 8889492
    Abstract: Embodiments generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching capacity by using multiple layers of variable resistance layers. In one embodiment, the resistive switching element comprises at least three layers of variable resistance materials to increase the number of logic states. Each variable resistance layer may have an associated high resistance state and an associated low resistance state. As the resistance of each variable resistance layer determines the digital data bit that is stored, the multiple variable resistance layers per memory element allows for additional data storage without the need to further increase the density of nonvolatile memory devices.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: November 18, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventor: Tony P. Chiang