Having Metal Oxide Or Copper Sulfide Compound Semiconductor Component Patents (Class 438/104)
  • Patent number: 8889479
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: November 18, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Nitin Kumar, Tony P. Chiang, Chi-I Lang, Prashant B. Phatak, Jinhong Tong
  • Patent number: 8889480
    Abstract: A method of forming a thin-film device includes forming an oxide-semiconductor film formed on the first electrical insulator, and forming a second electrical insulator formed on the oxide-semiconductor film, the oxide-semiconductor film defining an active layer. The oxide-semiconductor film is comprised of a first interface layer located at an interface with the first electrical insulating insulator, a second interface layer located at an interface with the second electrical insulator, and a bulk layer other than the first and second interface layers. The method further includes oxidizing the oxide-semiconductor film to render a density of oxygen holes in at least one of the first and second interlayer layers is smaller than a density of oxygen holes in the bulk layer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: NLT Technologies, Ltd.
    Inventors: Kazushige Takechi, Mitsuru Nakata
  • Patent number: 8889477
    Abstract: A semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsunori Maruyama, Yuki Imoto, Hitomi Sato, Masahiro Watanabe, Mitsuo Mashiyama, Kenichi Okazaki, Motoki Nakashima, Takashi Shimazu
  • Patent number: 8890106
    Abstract: A hybrid circuit comprises a nitride-based transistor portion and a memristor portion. The transistor includes a source and a drain and a gate for controlling conductance of a channel region between the source and the drain. The memristor includes a first electrode and a second electrode separated by an active switching region. The source or drain of the transistor forms one of the electrodes of the memristor.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 18, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Gilberto Medeiros Ribeiro, Byung-Joon Choi, Stanley Williams
  • Patent number: 8890105
    Abstract: A nonvolatile memory according to an embodiment includes a first wiring line; a second wiring line arranged above the first wiring line and extending in a direction crossing the first wiring line; and a resistance change layer arranged in an intersection region of the first wiring line the second wiring line, the second wiring line including a first member extending in the direction in which the second wiring line extends, and an electrode layer containing a metal element arranged on a side surface of the first member along the direction in which the second wiring line extends, a lower surface of the electrode layer being in contact with an upper surface of the resistance change layer.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: November 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kiyohito Nishihara
  • Patent number: 8889478
    Abstract: Provided is a method for manufacturing a variable resistance nonvolatile semiconductor memory element, and a nonvolatile semiconductor memory element which make it possible to operate at a low voltage and high speed when initial breakdown is caused, and exhibit favorable diode element characteristics. The method for manufacturing the nonvolatile semiconductor memory element includes, after forming a top electrode of a variable resistance element and at least before forming a top electrode of an MSM diode element, oxidizing to insulate a portion of a variable resistance film in a region around an end face of a variable resistance layer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Yukio Hayakawa, Yoshio Kawashima, Takeki Ninomiya
  • Patent number: 8889476
    Abstract: The present invention relates to formulations comprising a) at least two different ZnO cubanes of which at least one ZnO cubane is present in solid form under SATP conditions and at least one ZnO cubane is present in liquid form under SATP conditions, and b) at least one solvent, to processes for producing semiconductive ZnO layers from these formulations, to the use of the formulations for producing electronic components and to the electronic components themselves.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 18, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Heiko Thiem, Juergen Steiger, Alexey Merkulov, Duy Vu Pham, Yilmaz Aksu, Stefan Schutte, Matthias Driess
  • Publication number: 20140333864
    Abstract: To provide a display device including a transistor that includes an oxide semiconductor and has favorable characteristics, a pixel electrode electrically connected to the transistor, and a capacitor electrically connected to the pixel electrode. To provide a display device that can be manufactured at low cost. The display device includes a display element including a pixel electrode, a transistor that performs switching of the display element and includes a first oxide semiconductor layer serving as a channel formation region, a capacitor that is electrically connected to the display element and includes a dielectric layer between a pair of electrodes. The pixel electrode is a second oxide semiconductor layer formed on the same surface as that on which the first oxide semiconductor layer is formed, and also serves as one electrode of the capacitor.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 13, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroyuki MIYAKE, Shunpei YAMAZAKI
  • Publication number: 20140332800
    Abstract: To provide a semiconductor device having a structure with which the device can be easily manufactured even if the size is decreased and which can suppress a decrease in electrical characteristics caused by the decrease in the size, and a manufacturing method thereof. A source electrode layer and a drain electrode layer are formed on an upper surface of an oxide semiconductor layer. A side surface of the oxide semiconductor layer and a side surface of the source electrode layer are provided on the same surface and are electrically connected to a first wiring. Further, a side surface of the oxide semiconductor layer and a side surface of the drain electrode layer are provided on the same surface and are electrically connected to a second wiring.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kazuya Hanaoka
  • Publication number: 20140335653
    Abstract: Photolithography and etching steps for forming an island-shaped semiconductor layer are omitted, and a liquid crystal display device is manufactured with four photolithography steps: a step of forming a gate electrode (including a wiring formed using the same layer as the gate electrode), a step of forming source and drain electrodes (including a wiring formed using the same layer as the source and drain electrodes), a step of forming a contact hole (including the removal of an insulating layer and the like in a region other than the contact hole), and a step of forming a pixel electrode (including a wiring formed using the same layer as the pixel electrode). By the reduction in the number of photolithography steps, a liquid crystal display device can be provided at low cost and high productivity. Formation of a parasitic channel is prevented by an improvement in shape and potential of a wiring.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventor: Jun Koyama
  • Publication number: 20140332807
    Abstract: When a semiconductor device including a transistor in which a gate electrode layer, a gate insulating film, and an oxide semiconductor film are stacked and a source and drain electrode layers are provided in contact with the oxide semiconductor film is manufactured, after the formation of the gate electrode layer or the source and drain electrode layers by an etching step, a step of removing a residue remaining by the etching step and existing on a surface of the gate electrode layer or a surface of the oxide semiconductor film and in the vicinity of the surface is performed. The surface density of the residue on the surface of the oxide semiconductor film or the gate electrode layer can be 1×1013 atoms/cm2 or lower.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 13, 2014
    Inventors: Shunpei YAMAZAKI, Masahiko HAYAKAWA, Tatsuya HONDA
  • Publication number: 20140335652
    Abstract: A miniaturized semiconductor device including a transistor in which a channel formation region is formed using an oxide semiconductor film and variation in electric characteristics due to a short-channel effect is suppressed is provided. In addition, a semiconductor device whose on-state current is improved is provided. A semiconductor device is provided with an oxide semiconductor film including a pair of second oxide semiconductor regions which are amorphous regions and a first oxide semiconductor region located between the pair of second oxide semiconductor regions, a gate insulating film, and a gate electrode provided over the first oxide semiconductor region with the gate insulating film interposed therebetween. Hydrogen or a rare gas is added to the second oxide semiconductor regions.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Inventor: Shunpei YAMAZAKI
  • Patent number: 8883556
    Abstract: A semiconductor device capable of high speed operation is provided. Further, a semiconductor device in which change in electric characteristics due to a short channel effect is hardly caused is provided. An oxide semiconductor having crystallinity is used for a semiconductor layer of a transistor. A channel formation region, a source region, and a drain region are formed in the semiconductor layer. The source region and the drain region are formed by self-aligned process in which one or more elements selected from Group 15 elements are added to the semiconductor layer with the use of a gate electrode as a mask. The source region and the drain region can have a wurtzite crystal structure.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8883558
    Abstract: An object is, in a thin film transistor in which an oxide semiconductor is used as an active layer, to prevent change in composition, film quality, an interface, or the like of an oxide semiconductor region serving as an active layer, and to stabilize electrical characteristics of the thin film transistor. In a thin film transistor in which a first oxide semiconductor region is used as an active layer, a second oxide semiconductor region having lower electrical conductivity than the first oxide semiconductor region is formed between the first oxide semiconductor region and a protective insulating layer for the thin film transistor, whereby the second oxide semiconductor region serves as a protective layer for the first oxide semiconductor region; thus, change in composition or deterioration in film quality of the first oxide semiconductor region can be prevented, and electrical characteristics of the thin film transistor can be stabilized.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Toshinari Sasaki, Hideaki Kuwabara
  • Patent number: 8883557
    Abstract: A method of fabricating a resistive random access memory (ReRAM) cell may include forming a set of nanolaminate structures over an electrode, such that each structure includes at least one first element oxide layer and at least one second element oxide layer. The overall set is operable as a resistive switching layer in a ReRAM cell. In this set, an average atomic ratio of the first element to the second element is different in at least two nanolaminate structures. This ratio may be less in nanolaminate structures that are closer to electrodes than in the middle nanolaminate structures. Alternatively, this ratio may increase from one end of the set to another. The first element may be less electronegative than the second elements. The first element may be hafnium, while the second element may be one of zirconium, aluminum, titanium, tantalum, or silicon.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: November 11, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Chien-Lan Hsueh, Vidyut Gopal, Randall J. Higuchi, Takeshi Yamaguchi
  • Patent number: 8883555
    Abstract: A film formation is performed using a target in which a material which is volatilized more easily than gallium when heated at 400° C. to 700° C., such as zinc, is added to gallium oxide by a sputtering method with high mass-productivity which can be applied to a large-area substrate, such as a DC sputtering method or a pulsed DC sputtering method. This film is heated at 400° C. to 700° C., whereby the added material is segregated in the vicinity of a surface of the film. Another portion of the film has a decreased concentration of the added material and a sufficiently high insulating property; therefore, it can be used for a gate insulator of a semiconductor device, or the like.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8884264
    Abstract: A variable resistance memory device includes: a pair of first electrodes and a second electrode interposed between the pair of first electrodes; a first variable resistance material layer interposed between one of the first electrodes and the second electrode; and a second variable resistance material layer interposed between the other of the first electrodes and the second electrode, wherein the pair of first electrodes are electrically connected to each other, and a first set voltage and a first reset voltage of the first variable resistance material layer are different from a second set voltage and a second reset voltage of the second variable resistance material layer, respectively.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: November 11, 2014
    Assignee: SK Hynix Inc.
    Inventor: Seung-Hwan Lee
  • Patent number: 8883655
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: November 11, 2014
    Assignees: Intermoecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik
  • Patent number: 8883554
    Abstract: In a manufacturing process of a semiconductor device formed using a thin film transistor, an object is to provide a technique by which the number of photomasks can be reduced, manufacturing cost can be reduced, and improvement in productivity and reliability can be achieved. A main point is that a film forming a channel protective layer is formed over an oxide semiconductor layer having a light-transmitting property, a positive photoresist is formed over the film forming a channel protective layer, and a channel protective layer is selectively formed over a channel formation region in the oxide semiconductor layer by using a back surface light exposure method.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichiro Sakata, Tadashi Serikawa
  • Publication number: 20140326990
    Abstract: Embodiments of the invention relate to an array substrate, a method for fabricating the same and a display device. The method for fabricating the array substrate includes: forming a pattern of an etch stop layer on an active layer and a gate insulation layer not covered by the active layer; forming a pattern of a source/drain electrode layer on the etch stop layer; forming a patterning of a color filter layer on the source/drain electrode layer and the etch stop layer not covered by the source/drain electrode layer.
    Type: Application
    Filed: June 7, 2013
    Publication date: November 6, 2014
    Inventors: Dongfang Wang, Liangchen Yan
  • Publication number: 20140327001
    Abstract: The present invention relates to a method for manufacturing an oxide semiconductor thin film transistor and to an actively operating display device and actively operating sensor display device using the same. A method for manufacturing an oxide semiconductor thin film transistor includes: forming a gate electrode by depositing and patterning a gate layer over a substrate; sequentially depositing a gate insulation film, an oxide semiconductor, and an etch stopper over the gate electrode and patterning the etch stopper; patterning the oxide semiconductor; forming a source electrode and a drain electrode over the patterned oxide semiconductor; and depositing a protective layer over the source electrode and the drain electrode and forming a contact hole in the protective layer, where the oxide semiconductor is formed to a thickness that is smaller than or equal to 4 nm.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Jin Jang, Mallory Mativenga, Dong Han Kang
  • Patent number: 8878177
    Abstract: Provided is a miniaturized transistor having high electrical characteristics. The transistor includes a source electrode layer in contact with one side surface of the oxide semiconductor layer in the channel-length direction and a drain electrode layer in contact with the other side surface thereof. The transistor further includes a gate electrode layer in a region overlapping with a channel formation region with a gate insulating layer provided therebetween and a conductive layer having a function as part of the gate electrode layer in a region overlapping with the source electrode layer or the drain electrode layer with the gate insulating layer provided therebetween and in contact with a side surface of the gate electrode layer. With such a structure, an Lov region is formed with a scaled-down channel length maintained.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Motomu Kurata
  • Patent number: 8878154
    Abstract: A circuit including a semiconductor device having a set of space-charge control electrodes is provided. The set of space-charge control electrodes is located between a first terminal, such as a gate or a cathode, and a second terminal, such as a drain or an anode, of the device. The circuit includes a biasing network, which supplies an individual bias voltage to each of the set of space-charge control electrodes. The bias voltage for each space-charge control electrode can be: selected based on the bias voltages of each of the terminals and a location of the space-charge control electrode relative to the terminals and/or configured to deplete a region of the channel under the corresponding space-charge control electrode at an operating voltage applied to the second terminal.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: November 4, 2014
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8877551
    Abstract: In a method of manufacturing a thin film transistor, a gate electrode is formed on a first surface of a base substrate, a oxide semiconductor layer, insulation layer and photo resist layer are formed an the fast surface of the base substrate having the gate electrode. The insulation layer and the oxide semiconductor layer are patterned using a first photo resist pattern to form an etch-stopper and an active pattern. A source and a drain electrode are formed on the base substrate having the active pattern and the etch-stopper, the source electrode and the drain electrode are overlapped with both ends of the etch-stopper and spaced apart from each other. Therefore, a manufacturing cost may be decreased by omitting a mask when forming the active pattern and the etch-stopper.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 4, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Bo-Sung Kim, Jun-Ho Song, Doo-Na Kim, Kang-Moon Jo, Tae-Young Choi, Masataka Kano, Yeon-Taek Jeong
  • Patent number: 8877550
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: November 4, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Pragati Kumar, Sean Barstow, Sunil Shanker, Tony Chiang
  • Patent number: 8877569
    Abstract: An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiOX is used for a channel formation region. In order to reduce contact resistance between the In—Sn—O-based oxide semiconductor layer including SiOX and a wiring layer formed from a metal material having low electric resistance, a source region or drain region is formed between a source electrode layer or drain electrode layer and the In—Sn—O-based oxide semiconductor layer including SiOX. The source region or drain region and a pixel region are formed using an In—Sn—O-based oxide semiconductor layer which does not include SiOX.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiaki Oikawa, Hotaka Maruyama, Hiromichi Godo, Daisuke Kawae, Shunpei Yamazaki
  • Patent number: 8878153
    Abstract: A structure for a variable-resistance element using an electrochemical reaction. The structure limits a position at which metal cross-linking breaks to a position most preferred for cross-linking break: namely, a part of an ion conduction layer closest to a first electrode. Also provided is a method for manufacturing the variable-resistance element, which has a first electrode serving as a source for a metal ion(s), a second electrode which is less ionizable (i.e. has a higher redox potential) than the first electrode, and an ion conduction layer which is interposed between the first and second electrodes and can conduct the metal ion(s). There is a first region in the ion conduction layer, adjacent to the first electrode, having a diffusion coefficient that increases continuously towards the first electrode right upto contacting the first electrode.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: November 4, 2014
    Assignee: NEC Corporation
    Inventor: Yukihide Tsuji
  • Patent number: 8877533
    Abstract: A method of manufacturing oxide thin film transistor and display device are provided. In the method of manufacturing an oxide thin film transistor, the method includes: forming an active layer of an oxide semiconductor on a substrate, and performing surface treatment with plasma for the active layer to permeate oxygen into the active layer.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: November 4, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Kyechul Choi, Bong Chul Kim, Chan Ki Ha, Sang Moo Park
  • Publication number: 20140319514
    Abstract: Electrical characteristics of a semiconductor device including the oxide semiconductor are improved. Furthermore, a highly reliable transistor with small variation in electrical characteristics is manufactured. An oxynitride insulating film functioning as a base insulating film and a transistor in contact with the oxynitride insulating film are provided. The transistor includes an oxide semiconductor film in contact with the oxynitride insulating film functioning as a base insulating film. The total amount of gas having a mass-to-charge ratio of 30 released from the oxynitride insulating film by heat treatment and double of the amount of a gas having a mass-to-charge ratio of 32 released from the oxynitride insulating film by heat treatment is greater than or equal to 5×1015/cm2 and less than or equal to 5×1016/cm2, or greater than or equal to 5×1015/cm2 and less than or equal to 3×1016/cm2.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 30, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kosei Noda, Satoshi Toriumi, Kazuki Tanemura
  • Publication number: 20140319517
    Abstract: To provide a transistor formed using an oxide semiconductor film with reduced oxygen vacancies. To provide a semiconductor device that operates at high speed. To provide a highly reliable semiconductor device. To provide a miniaturized semiconductor device. The semiconductor device includes an oxide semiconductor film; a gate electrode overlapping with the oxide semiconductor film; a gate insulating film between the oxide semiconductor film and the gate electrode; and a protective insulating film that is above the oxide semiconductor film, the gate electrode, and the gate insulating film and includes a region containing phosphorus or boron.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kosei Noda, Yuichi Sato, Yuta Endo
  • Publication number: 20140322862
    Abstract: A method for forming a resistive random access memory (RRAM) device is disclosed. The method comprises forming a first electrode, forming a resistive switching oxide layer comprising a metal oxide by thermal atomic layer deposition (ALD), doping the resistive switching oxide layer with a metal dopant different from metal forming the metal oxide, and forming a second electrode by thermal atomic layer deposition (ALD), where the resistive switching layer is interposed between the first electrode and the second electrode. In some embodiments, forming the resistive switching oxide may be performed without exposing a surface of the switching oxide layer to a surface-modifying plasma treatment after depositing the metal oxide.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 30, 2014
    Applicant: ASM IP Holding B.V.
    Inventors: Qi Xie, Vladimir Machkaoutsan, Jan Willem Maes, Michael Givens, Petri Raisanen
  • Patent number: 8871566
    Abstract: A thin film transistor includes a gate electrode, a first insulating layer on the gate electrode, a semiconductor layer on the gate electrode and separated from the gate electrode by the first insulating layer, the semiconductor layer including a channel region corresponding to the gate electrode, a source region, and a drain region, a hydrogen diffusion barrier layer on the semiconductor layer, the hydrogen diffusion barrier layer covering the channel region and exposing the source and drain regions, and a second insulation layer on the source and drain regions and on the hydrogen diffusion barrier layer, such that the hydrogen diffusion barrier layer is between the second insulation layer and the channel region.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-soo Shin, Yeon-gon Mo, Jae-kyeong Jeong, Jin-seong Park, Hun-jung Lee, Jong-han Jeong
  • Patent number: 8871565
    Abstract: An object is to manufacture a semiconductor device including an oxide semiconductor film, which has stable electric characteristics and high reliability. A crystalline oxide semiconductor film is formed, without performing a plurality of steps, as follows: by utilizing a difference in atomic weight of plural kinds of atoms included in an oxide semiconductor target, zinc with low atomic weight is preferentially deposited on an oxide insulating film to form a seed crystal including zinc; and tin, indium, or the like with high atomic weight is deposited on the seed crystal while causing crystal growth. Further, a crystalline oxide semiconductor film is formed by causing crystal growth using a seed crystal with a hexagonal crystal structure including zinc as a nucleus, whereby a single crystal oxide semiconductor film or a substantially single crystal oxide semiconductor film is formed.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 28, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yusuke Nonaka, Takayuki Inoue, Masashi Tsubuku, Kengo Akimoto, Akiharu Miyanaga
  • Patent number: 8871119
    Abstract: A composite oxide sintered body includes In, Zn, and Sn, and has a relative density of 90% or more, an average crystal grain size of 10 ?m or less, and a bulk resistance of 30 m?cm or less, the number of tin oxide aggregate particles having a diameter of 10 ?m or more being 2.5 or less per mm2 of the composite oxide sintered body.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: October 28, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Hirokazu Kawashima
  • Patent number: 8871567
    Abstract: The present invention achieves a formation of a metal oxide film of a thin film transistor with a simplified process. The present invention is concerned with a method for manufacturing a field-effect transistor comprising a gate electrode, a source electrode, a drain electrode, a channel layer and a gate insulating layer wherein the channel layer is formed by using a metal salt-containing composition comprising a metal salt, a polyvalent carboxylic acid having a cis-form structure of —C(COOH)?C(COOH)—, an organic solvent and a water wherein a molar ratio of the polyvalent carboxylic acid to the metal salt is in the range of 0.5 to 4.0.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: October 28, 2014
    Assignees: Panasonic Corporation, Dai-Ichi Kogyo Seiyaku Co., Ltd.
    Inventors: Koichi Hirano, Shingo Komatsu, Yasuteru Saito, Naoki Ike
  • Patent number: 8872150
    Abstract: Some embodiments include memory constructions having a plurality of bands between top and bottom electrically conductive materials. The bands include chalcogenide bands alternating with non-chalcogenide bands. In some embodiments, there may be least two of the chalcogenide bands and at least one of the non-chalcogenide bands. In some embodiments, the memory cells may be between a pair of electrodes; with one of the electrodes being configured as a lance, angled plate, container or beam. In some embodiments, the memory cells may be electrically coupled with select devices, such as, for example, diodes, field effect transistors or bipolar junction transistors.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Agostino Pirovano
  • Patent number: 8872148
    Abstract: A phase-change memory device includes a diode, a plug, a doping layer pattern, a phase-change layer pattern and an upper electrode. The diode is disposed on a substrate. The plug is disposed on the diode and has a bottom surface whose area is equal to the area of a top surface of the diode. The plug is formed of metal or a conductive metallic compound. The doping layer pattern is disposed on the plug and has a bottom surface whose area is equal to the area of a top surface of the plug, and includes the same metal or conductive metallic compound as the plug. The phase-change layer pattern is disposed on the doping layer pattern. The upper electrode is disposed on the phase-change layer pattern.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-Hwan Park, Gyu-Hwan Oh, Jeong-Min Park, Kyung-Min Chung
  • Patent number: 8871628
    Abstract: An electrode structure comprises a semiconductor junction comprising an n-type semiconductor layer and a p-type semiconductor layer; a hole exnihilation layer on the p-type semiconductor layer; and a transparent electrode layer on the hole exnihilation layer. The electrode structure further comprises a conductive layer between the hole exnihilation layer and the transparent electrode layer. In the electrode structure, one or more of the hole exnihilation layer, the conductive layer and the transparent electrode layer may be formed by an atomic layer deposition. In the electrode structure, a transparent electrode formed of a degenerated n-type oxide semiconductor does not come in direct contact with a p-type semiconductor, and thus, annihilation or recombination of holes generated in the p-type semiconductor can be reduced, which increases the carrier generation efficiency.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 28, 2014
    Assignee: Veeco ALD Inc.
    Inventor: Sang In Lee
  • Patent number: 8872147
    Abstract: A method for manufacturing a nonvolatile semiconductor storage device according to an embodiment includes laminating a first wire extending in a first direction, and a film made into a variable resistance element made of a metallic material, which are laminated in order on a semiconductor substrate, dividing, into a plurality of pieces, the film made into the variable resistance element, in the first direction and a second direction, forming an interlayer insulating film between the plurality of pieces formed by dividing the film made into the variable resistance element in the second direction, and oxidizing the metallic material of the film made into the variable resistance element, and laminating an upper electrode and a second wire extending in the second direction, which are laminated in order on the film made into the variable resistance element and the interlayer insulating film.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshiharu Tanaka
  • Patent number: 8871564
    Abstract: Provided are resistive random access memory (ReRAM) cells having diffusion barrier layers formed from various materials, such as beryllium oxide or titanium silicon nitrides. Resistive switching layers used in ReRAM cells often need to have at least one inert interface such that substantially no materials pass through this interface. The other (reactive) interface may be used to introduce and remove defects from the resistive switching layers causing the switching. While some electrode materials, such as platinum and doped polysilicon, may form inert interfaces, these materials are often difficult to integrate. To expand electrode material options, a diffusion barrier layer is disposed between an electrode and a resistive switching layer and forms the inert interface with the resistive switching layer. In some embodiments, tantalum nitride and titanium nitride may be used for electrodes separated by such diffusion barrier layers.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 28, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Imran Hashim
  • Publication number: 20140312320
    Abstract: A method of manufacturing a thin-film transistor includes: forming an oxide semiconductor pattern including a first region and a second region on a substrate; forming an insulation film on the substrate to cover the oxide semiconductor pattern; removing the insulation film on the second region through patterning; increasing carrier density of the first region of the oxide semiconductor pattern through an annealing process; forming a gate electrode on the insulation film so that the gate electrode is insulated from the oxide semiconductor pattern and overlaps the second region; and forming a source electrode and a drain electrode to be insulated from the gate electrode and contact the first region.
    Type: Application
    Filed: September 23, 2013
    Publication date: October 23, 2014
    Applicant: Samsung Display Co., LTD.
    Inventors: Hui-Won Yang, Chaun-Gi Choi
  • Publication number: 20140315349
    Abstract: A semiconductor device in which fluctuation in electric characteristics due to miniaturization is less likely to be caused is provided. The semiconductor device includes an oxide semiconductor film including a first region, a pair of second regions in contact with side surfaces of the first region, and a pair of third regions in contact with side surfaces of the pair of second regions; a gate insulating film provided over the oxide semiconductor film; and a first electrode that is over the gate insulating film and overlaps with the first region. The first region is a CAAC oxide semiconductor region. The pair of second regions and the pair of third regions are each an amorphous oxide semiconductor region containing a dopant. The dopant concentration of the pair of third regions is higher than the dopant concentration of the pair of second regions.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20140313443
    Abstract: A display panel, a transistor and the manufacturing method thereof are disclosed. The manufacturing method includes: forming a first electrode, a first insulation layer, a sacrificial layer, and a second/third electrode metal layer on a substrate in turn; etching the second/third electrode metal layer to expose at least portions of the sacrificial layer; and dry-etching the at least portions of the exposed sacrificial layer to expose at least portions of the first insulation layer. The etching selectivity ratio of the sacrificial layer to the first insulation layer is larger than a first value when the conditions of the etching process are the same. The first value is larger than one, in this way, the stability and the electron mobility of the transistor are enhanced.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 23, 2014
    Applicant: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Cheng-Lung Chiang, Po-Lin Chen
  • Patent number: 8865480
    Abstract: The present invention relates to a circuit protection device and a method of manufacturing the same. The circuit protection device includes a common mode noise filter having a plurality of sheets, each of the sheets being formed to optionally include a coil pattern, an internal electrode, a hole filled with a conductive material, and a hole filled with a magnetic material; and an electrostatic discharge (ESD) protection device having a plurality of sheets, each of the sheets being formed to optionally include an internal electrode and a hole filled with an ESD protection material.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: October 21, 2014
    Assignee: Innochips Technology Co., Ltd.
    Inventors: In-Kil Park, Tae-Hyung Noh, Kyu Cheol Jang, Myung Ho Lee, Gyeong Tae Kim, Sang Hwan Lee
  • Patent number: 8865517
    Abstract: The present invention provides a method for manufacturing thin-film transistor active device and a thin-film transistor active device manufactured with the method.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: October 21, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Chenglung Chiang, Polin Chen
  • Patent number: 8866136
    Abstract: Provided are a transistor, a method of manufacturing the transistor, and an electronic device including the transistor. The transistor may include a passivation layer on a channel layer, a source, a drain, and a gate, wherein the component of the passivation layer is varied in a height direction. The passivation layer may have a multi-layer structure including a silicon oxide layer, a silicon oxynitride layer, and a silicon nitride layer sequentially stacked. The channel layer may include an oxide semiconductor.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: October 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-sim Jung, Chang-seung Lee, Jae-cheol Lee, Sang-yoon Lee, Jang-yeon Kwon, Kwang-hee Lee, Kyoung-seok Son
  • Patent number: 8865516
    Abstract: The present invention provides an oxide semiconductor capable of achieving a thin film transistor having stable transistor characteristics, a thin film transistor having a channel layer formed of the oxide semiconductor and a production method thereof, and a display device equipped with the thin film transistor. The oxide semiconductor of the present invention is an oxide semiconductor for a thin film transistor. The oxide semiconductor includes indium, gallium, zinc, and oxygen as constituent atoms, and the oxygen content of the oxide semiconductor is 87% to 95% of the stoichiometric condition set as 100%, in terms of atomic units.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 21, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshifumi Ohta, Go Mori, Hirohiko Nishiki, Yoshimasa Chikama, Tetsuya Aita, Masahiko Suzuki, Okifumi Nakagawa, Michiko Takei, Yoshiyuki Harumoto, Takeshi Hara
  • Patent number: 8866118
    Abstract: A nonvolatile memory device contains a resistive switching memory element with improved device switching performance and life and methods for forming the same. The nonvolatile memory device has a first layer on a substrate, a resistive switching layer on the first layer, and a second layer. The resistive switching layer is disposed between the first layer and the second layer and the resistive switching layer comprises a material having the same morphology as the top surface of the first layer. A method of forming a nonvolatile memory element in a ReRAM device includes forming a resistive switching layer on a first layer and forming a second layer, so that the resistive switching layer is disposed between the first layer and the second layer. The resistive switching layer comprises a material formed with the same morphology as the top surface of the first layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 21, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Federico Nardi, Yun Wang
  • Patent number: 8865518
    Abstract: Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: October 21, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Nitin Kumar, Tony P. Chiang, Chi-I Lang, Zhi-Wen Wen Sun, Jihong Tong
  • Publication number: 20140306215
    Abstract: A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3% oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO2 composition.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 16, 2014
    Applicant: The Regents of the Unviersity of California
    Inventors: L. Robert Baker, Hyungtak Seo, Antoine Hervier, Gabor A. Somorjai