Flip-chip-type Assembly Patents (Class 438/108)
  • Patent number: 8697494
    Abstract: A method and apparatus to manufacture a flip chip package includes dotting a flux on a first preliminary bump of a package substrate, attaching a preliminary bump of a first semiconductor chip to the first preliminary bump of the package substrate via the flux, dotting a flux on a second preliminary bump of the package substrate, and attaching a preliminary bump of a second semiconductor chip to the second preliminary bump of the package substrate via the flux. Accordingly, an evaporation of the flux on the preliminary bump of the package substrate may be suppressed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Chang-Seong Jeon, Ho-Geon Song, Mitsuo Umemoto, Sang-Sick Park
  • Patent number: 8698322
    Abstract: A multi-chip module (MCM) is described in which at least two substrates are mechanically coupled by an adhesive layer that maintains alignment and a zero (or near zero) spacing between proximity connectors on surfaces of the substrates, thereby facilitating high signal quality during proximity communication between the substrates. In order to provide sufficient shear strength, the adhesive layer has a thickness that is larger than the spacing. This may be accomplished using one or more positive and/or negative features on the substrates. For example, the adhesive may be bonded to: one of the surfaces and an inner surface of a channel that is recessed below the other surface; inner surfaces of channels that are recessed below both of the surfaces; or both of the surfaces. In this last case, the zero (or near zero) spacing may be achieved by disposing proximity connectors on a mesa that protrudes above at least one of the substrate surfaces.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: April 15, 2014
    Assignee: Oracle International Corporation
    Inventors: Robert J. Drost, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 8691625
    Abstract: The present invention relates to a method for making a chip package. The method includes the following steps: (a) providing a substrate having at least one conductive via; (b) disposing the substrate on a carrier; (c) removing part of the substrate, so as to expose the conductive via, and form at least one through via; (d) disposing a plurality of chips on a surface of the substrate, wherein the chips are electrically connected to the through via of the substrate; (e) forming an encapsulation; (f) removing the carrier; (g) conducting a flip-chip mounting process; (h) removing the encapsulation; and (i) forming a protective material. Whereby, the carrier and the encapsulation can avoid warpage of the substrate during the manufacturing process.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 8, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Meng-Jen Wang
  • Patent number: 8691627
    Abstract: Disclosed are a GaN-based compound power semiconductor device and a manufacturing method thereof, in which on a GaN power semiconductor element, a contact pad is formed for flip-chip bonding, and a bonding pad of a module substrate to be mounted with the GaN power semiconductor element is formed with a bump so as to modularize an individual semiconductor element. In the disclosed GaN-based compound power semiconductor device, an AlGaN HEMT element is flip-chip bonded to the substrate, so that heat generated from the element can be efficiently radiated.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: April 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Ju Chull Won
  • Patent number: 8691624
    Abstract: A die fixing method is disclosed which includes providing a substrate having a metallized surface, forming a joining material on the metallized surface and placing a die alignment member with a plurality of openings on the substrate so that portions of the joining material are exposed through the openings. The method further includes placing a plurality of dies in the openings of the die alignment member with a bottom side of each die in contact with part of the joining material and attaching the plurality of dies to the metallized surface of the substrate at an elevated temperature and pressure, the die alignment member withstanding the elevated temperature and pressure. The die alignment member is removed from the substrate after the plurality of dies are attached to the metallized surface of the substrate.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: April 8, 2014
    Assignee: Infineon Technologies AG
    Inventors: Alexander Ciliox, Georg Borghoff, Torsten Groening, Karsten Guth
  • Patent number: 8692386
    Abstract: A semiconductor device includes a semiconductor element and an electronic element. The semiconductor element has a first protruding electrode, and the electronic element has a second protruding electrode. A substrate is disposed between the semiconductor element and the electronic element. The substrate has a through-hole in which the first and second protruding electrodes are fitted. The first and second protruding electrodes are connected together inside the through-hole of the substrate.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 8, 2014
    Assignee: Fujitsu Limited
    Inventor: Toshiya Akamatsu
  • Patent number: 8691626
    Abstract: A method of manufacturing is provided that includes placing a removable cover on a surface of a substrate. The substrate includes a first semiconductor chip positioned on the surface. The first semiconductor chip includes a first sidewall. The removable cover includes a second sidewall positioned opposite the first sidewall. A first underfill is placed between the first semiconductor chip and the surface wherein the second sidewall provides a barrier to flow of the first underfill. Various apparatus are also disclosed.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 8, 2014
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Michael Z. Su, Lei Fu, Gamal Refai-Ahmed, Bryan Black
  • Publication number: 20140091461
    Abstract: A die cap for use with flip chip packages, flip chip packages using a die cap, and a method for manufacturing flip chip packages with a die cap are provided in the invention. A die cap encases the die of flip chip packages about its top and sides for constraining the thermal deformation of the die during temperature change. The CTE (coefficient of thermal expansion) mismatch between the die and substrate of flip chip packages is the root cause for warpage and reliability issues. The current inventive concept is to reduce the CTE mismatch by using a die cap to constrain the thermal deformation of the die. When a die cap with high CTE and high modulus is used, the die with the die cap has a relatively high overall CTE, reducing the CTE mismatch. As a result, the warpage and reliability of flip chip packages are improved.
    Type: Application
    Filed: September 30, 2012
    Publication date: April 3, 2014
    Inventor: Yuci Shen
  • Publication number: 20140084489
    Abstract: A contact lens having a thin silicon chip integrated therein is provided along with methods for assembling the silicon chip within the contact lens. In an aspect, a method includes creating a plurality of lens contact pads on a lens substrate and creating a plurality of chip contact pads on a chip. The method further involves applying assembly bonding material to the each of the plurality of lens contact pads or chip contact pads, aligning the plurality of lens contact pads with the plurality of chip contact pads, bonding the chip to the lens substrate via the assembly bonding material using flip chip bonding, and forming a contact lens with the lens substrate.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Inventor: James Etzkorn
  • Publication number: 20140084453
    Abstract: Structures and methods for forming good electrical connections between an integrated circuit (IC) chip and a chip carrier of a flip chip package include forming one of: a tensile layer on a front side of the IC chip, which faces a tops surface of the chip carrier, and a compressive layer on the backside of the IC chip. Addition of one of: a tensile layer to the front side of the IC chip and a compressive layer the backside of the IC chip, may reduce or modulate warpage of the IC chip and enhance wetting of opposing solder surfaces of solder bumps on the IC chip and solder formed on flip chip (FC) attaches of a chip carrier during making of the flip chip package.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International Business Machines Corporation
  • Publication number: 20140087519
    Abstract: A package process is provided. An adhesive layer is disposed on a carrier board and then plural first semiconductor devices are disposed on the adhesive layer. A first molding compound formed on the carrier board covers the sidewalls of the first semiconductor devices and fills the gaps between the first semiconductor devices so as to form a chip array board constructed by the first semiconductor devices and the first molding compound. Next, plural second semiconductor devices are flip-chip bonded to the first semiconductor devices respectively. Then, a second molding compound formed on the chip array board at least covers the sidewalls of the second semiconductor devices and fills the gaps between the second semiconductor devices. Subsequently, the chip array board is separated from the adhesive layer. Then, the first and the second molding compound are cut along the gaps between the second semiconductor devices.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 27, 2014
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chi-Chih Shen, Jen-Chuan Chen, Tommy Pan
  • Publication number: 20140085599
    Abstract: A contact lens having a thin silicon chip integrated therein is provided along with methods for assembling the silicon chip within the contact lens. In an aspect, a method includes creating a plurality of lens contact pads on a lens substrate and creating a plurality of chip contact pads on a chip. The method further involves applying assembly bonding material to the each of the plurality of lens contact pads or chip contact pads, aligning the plurality of lens contact pads with the plurality of chip contact pads, bonding the chip to the lens substrate via the assembly bonding material using flip chip bonding, and forming a contact lens with the lens substrate.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 27, 2014
    Applicant: Google Inc.
    Inventor: James Etzkorn
  • Patent number: 8679861
    Abstract: In one aspect, a method of enhancing semiconductor chip process variability and lifetime reliability through a three-dimensional (3D) integration applied to electronic packaging is disclosed. Also provided is an arrangement for implementing the inventive method. In another aspect, a method and on-chip controller are disclosed for enhancing semiconductor chip process variability and lifetime reliability through a three-dimensional (3D) integration applied to electronic packaging. Also provided is an on-chip reliability/variability controller arrangement for implementing the inventive method. In yet another aspect, base semiconductor chips, each comprising a plurality of chiplets, are manufactured and tested. For a base semiconductor chip having at least one non-functional chiplet, at least one repair semiconductor chiplet chiplet is vertically stacked. A functional multi-chip assembly is formed, which provides the same functionality as a base semiconductor chip in which all chiplets are functional.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: March 25, 2014
  • Patent number: 8679931
    Abstract: The present invention relates to a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material layer, a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer stacked in this order, and a film for semiconductor back surface stacked on the second pressure-sensitive adhesive layer of the dicing tape, in which a peel strength Y between the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is larger than a peel strength X between the second pressure-sensitive adhesive layer and the film for semiconductor back surface, and in which the peel strength X is from 0.01 to 0.2 N/20 mm, and the peel strength Y is from 0.2 to 10 N/20 mm.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: March 25, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Fumiteru Asai, Goji Shiga, Naohide Takamoto
  • Patent number: 8673688
    Abstract: A semiconductor package includes a circuit substrate, a semiconductor chip on the circuit substrate, an inner solder ball between the circuit substrate and the semiconductor chip, and dummy solder filling a dummy opening in at least one of an substrate insulation layer of the circuit substrate and a chip insulation layer. The dummy solder does not electrically connect the semiconductor chip with the substrate. The circuit substrate may include a base substrate, a substrate connection terminal on the base substrate, and the substrate insulation layer covering the base substrate. The semiconductor chip may include a chip connection terminal and the chip insulation layer exposing the chip connection terminal. The inner solder ball may be interposed between the substrate connection terminal and the chip connection terminal to electrically connect the circuit substrate to the semiconductor chip.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Wonkeun Kim
  • Patent number: 8674496
    Abstract: A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chung Lin, Hsiu-Jen Lin, Cheng-Ting Chen, Chun-Cheng Lin, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8673684
    Abstract: A disclosed semiconductor device includes a wiring board, a semiconductor element mounted on a principal surface of the wiring board with flip chip mounting, a first conductive pattern formed on the principal surface along at least an edge portion of the semiconductor element, a second conductive pattern formed on the principal surface along the first conductive pattern and away from the first conductive pattern, a passive element bridging between the first conductive pattern and the second conductive pattern on the principal surface of the wiring board, and a resin layer filling a space between the wiring board and the semiconductor chip, wherein the resin layer extends between the semiconductor element and the first conductive pattern on the principal surface of the wiring board.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takumi Ihara
  • Patent number: 8671565
    Abstract: A capture pad structure includes a lower dielectric layer, a capture pad embedded within the lower dielectric layer, the capture pad comprising a plurality of linear segments. To form the capture pad, a focused laser beam is moved linearly to form linear channels in the dielectric layer. These channels are filled with an electrically conductive material to form the capture pad.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: March 18, 2014
    Inventor: Bob Shih-Wei Kuo
  • Patent number: 8671560
    Abstract: Low temperature bond balls connect two structures having disparate coefficients of linear thermal expansion. An integrated circuit is made to heat the device such that the low temperature bond balls melt. After melting, the bond balls solidify, and the device is operated with the bond balls solidified. In one example, one of the two structures is a semiconductor substrate, and the other structure is a printed circuit board. The integrated circuit is a die mounted to the semiconductor substrate. The bond balls include at least five percent indium, and the integrated circuit is an FPGA loaded with a bit stream. The bit stream configures the FPGA such that the FPGA has increased power dissipation, which melts the balls. After the melting, a second bit stream is loaded into the FPGA and the FPGA is operated in a normal user-mode using the second bit stream.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 18, 2014
    Assignee: Research Triangle Institute
    Inventors: Robert O. Conn, Daniel S. Stevenson
  • Patent number: 8673685
    Abstract: Disclosed is an electronic component mounting line on which a substrate undergoes solder paste printing, electronic component placements, and then reflow, while being moved from upstream to downstream. The line includes: a substrate feeding machine; a printing machine for applying solder paste to a first placement area of the substrate; a first electronic component placement machine for placing a first electronic component on the first placement area; a second electronic component placement machine for dispensing a thermosetting resin onto a reinforcement position on a peripheral edge portion of a second placement area of the substrate, and for placing on the area the second electronic component having solder bumps; and a reflow machine for bonding the electronic components to the substrate, by heating and cooling the resultant. The second electronic component is placed after the resin is dispensed, such that a peripheral edge portion thereof comes in contact with the resin.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Tadashi Maeda, Hiroki Maruo, Tsubasa Saeki
  • Publication number: 20140070392
    Abstract: A first embodiment is a common drain+clip 20. It has a conventional drain contact on its bottom surface and is flip chip mounted on a half-etched leadframe 40 which has external source, gate and drain contacts connected to the sources, gate and common drain of the die 20. Common drain clip 50 connects the drain 30 to external contacts between opposite gate contacts. A second embodiment is a direct drain embodiment+heatslug. The device 80 has a top drain contact 36 that extends to the common drain 30 across the bottom of the die which is flip chip mounted to a half-etched leadframe having external source, gate and drain contacts connected to the sources, gates and common drain of the die 80.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 13, 2014
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Chung-Lin Wu, Steven Sapp, Bigildis Dosdos, Suresh Belani, Sunggeun Yoon
  • Patent number: 8669664
    Abstract: A stacked die package for an electromechanical resonator system includes an electromechanical resonator die bonded or fixed to a control IC die for the electromechanical resonator by, for example, a thermally and/or electrically conductive epoxy. In various embodiments, the electromechanical resonator can be a micro-electromechanical system (MEMS) resonator or a nano-electromechanical system (NEMS) resonator. Certain packaging configurations that may include the chip that contains the electromechanical resonator and the control chip include chip-on-lead (COL), chip-on-paddle (COP), and chip-on-tape (COT) packages. The stacked die package may provide small package footprint and/or low package thickness, and low thermal resistance and a robust conductive path between the dice.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: March 11, 2014
    Assignee: SiTime Corporation
    Inventors: Pavan Gupta, Aaron Partridge, Markus Lutz
  • Patent number: 8669174
    Abstract: A device includes a first die having a first side and a second side opposite to first side, the first side includes a first region and a second region, and a first metal bump of a first horizontal size formed on the first region of the first side of the first die. A second die is bonded to the first metal bump at the first side of the first die. A dielectric layer is formed over the first side of the first die and includes a first portion directly over the second die, a second portion covering the second die. A second metal bump of a second horizontal size greater than the first horizontal size is formed on the second region of the first side of the first die. An electrical component is bonded to the first side of the first die through the second metal bump.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: March 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Weng-Jin Wu, Ying-Ching Shih, Wen-Chih Chiou, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 8669137
    Abstract: A method comprises forming semiconductor flip chip interconnects where the flip chip comprises a wafer and a substrate having electrical connecting pads and electrically conductive posts operatively associated with the pads and extending away from the pads to terminate in distal ends. Solder bumping the distal ends by injection molding solder onto the distal ends produces a solder bumped substrate. Another embodiment comprises providing the substrate having the posts on the pads with a mask having a plurality of through hole reservoirs and aligning the reservoirs in the mask to be substantially concentric with the distal ends. This is followed by injecting liquid solder into the reservoirs to provide a volume of liquid solder on the distal ends, cooling the liquid solder in the reservoirs to solidify the solder, removing the mask to expose the solidified solder after the cooling and thereby provide a solder bumped substrate.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: March 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 8669138
    Abstract: A substrate and a semiconductor chip are connected by means of flip-chip interconnection. Around connecting pads of the substrate and input/output terminals of the semiconductor chip, an underfill material is injected. The underfill material is a composite material of filler and resin. Also, a first main surface of the substrate, which is not covered with the underfill material, and the side surfaces of the semiconductor chip are encapsulated with a molding material. The molding material is a composite material of filler and resin. An integrated body of the substrate and the semiconductor chip, which are covered with the molding material, is thinned from above and below.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 11, 2014
    Assignee: NEC Corporation
    Inventors: Akinobu Shibuya, Koichi Takemura, Akira Ouchi, Tomoo Murakami
  • Publication number: 20140061950
    Abstract: In one embodiment, an electronic memory module may be provided to couple two or more stacked memory dies. The memory module may include a first substrate that couples the first memory die in a flip chip configuration. The substrate also includes connectors to couple to a second substrate, which has a flip chip connection to a second memory die. A surface of the first substrate opposite the flip chip connection of the first memory die may include connectors to couple to the first memory die (through the first substrate) and may include connectors to couple to the second memory die (through the connectors that couple to the second substrate, and through the first substrate.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Inventor: Jun Zhai
  • Patent number: 8664540
    Abstract: An interconnection component includes a substrate, and an active through-substrate via (TSV) penetrating through the substrate. Active metal connections are formed over the substrate and electrically connected to the active TSV. At least one of a dummy pad and a dummy solder bump are formed at surfaces of the interconnection component. The dummy pad is over the substrate and electrically connected to the active TSV and the active metal connections. The dummy solder bump is under the substrate and electrically connected to the active metal connections. The dummy pad and the dummy solder bump are open ended.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Tai Lu, Chih-Hsien Lin, Wei-Sho Hung
  • Patent number: 8664039
    Abstract: Methods and apparatus for alignment in a flip chip bonding. A method includes attaching an integrated circuit having connector terminals to a bonding arm, the bonding arm having a chuck for attaching the integrated circuit at the backside surface, the bonding arm having a plurality of CCD imagers mounted thereon; receiving a substrate having pads corresponding to the connector terminals; using the bonding arm, positioning the integrated circuit proximal to the substrate; aligning the integrated circuit connector terminals with the pads on the substrate using the CCD imagers on the bonding arm; positioning the connector terminals in contact with the pads on the substrate; and performing a solder reflow to attach the integrated circuit to the substrate. An apparatus includes a bonding arm with a chuck for carrying a component and CCD imagers mounted on the arm for alignment.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chung Sung, Yu-Chih Liu, Wei-Ting Lin, Chien-Hsiun Lee
  • Publication number: 20140057392
    Abstract: A method comprises forming semiconductor flip chip interconnects having electrical connecting pads and electrically conductive posts terminating in distal ends operatively associated with the pads. We solder bump the distal ends by injection molding, mask the posts on the pads with a mask having a plurality of through hole reservoirs and align the reservoirs in the mask to be substantially concentric with the distal ends. Injecting liquid solder into the reservoirs and allowing it to cool provides solidified solder on the distal ends, which after mask removal produces a solder bumped substrate which we position on a wafer to leave a gap between the wafer and the substrate. The wafer has electrically conductive sites on the surface for soldering to the posts. Abutting the sites and the solder bumped posts followed by heating joins the wafer and substrate. The gap is optionally filled with a material comprising an underfill.
    Type: Application
    Filed: August 31, 2013
    Publication date: February 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: Jae-Woong Nah, Da-Yuan Shih
  • Publication number: 20140054772
    Abstract: A semiconductor package includes a substrate and a plurality of semiconductor chips stacked on the substrate. Each of the semiconductor chips has a front surface, a rear surface opposite to the front surface, a sidewall surface connecting the front surface to the rear surface, a vertical through electrode extending from the front surface toward the rear surface with a predetermined depth, and a horizontal through electrode laterally extending from the sidewall surface to be connected to the vertical through electrode. At least one connection member is disposed on the sidewall surfaces of the semiconductor chips to connect the horizontal through electrodes of the semiconductor chips to each other. Related methods are also provided.
    Type: Application
    Filed: December 18, 2012
    Publication date: February 27, 2014
    Applicant: SK HYNIX INC.
    Inventors: Jung Tae Jeong, Il Hwan Cho
  • Patent number: 8658465
    Abstract: The method of the preferred embodiments includes the steps of providing a base having a frame portion and a center portion; building a preliminary structure coupled to the base; removing a portion of the preliminary structure to define a series of devices and a plurality of bridges; removing the center portion of the base such that the frame portion defines an open region, wherein the plurality of bridges suspend the series of devices in the open region defined by the frame; and encapsulating the series of devices. The method is preferably designed for the manufacture of semiconductor devices, and more specifically for the manufacture of encapsulated implantable electrodes. The method, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: February 25, 2014
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: David S. Pellinen, Jamille Farraye Hetke, Daryl R. Kipke, Kc Kong, Rio J. Vetter, Mayurachat Gulari
  • Patent number: 8658466
    Abstract: A semiconductor package structure includes a first substrate, a second substrate and an encapsulant. The first substrate comprises a plurality of first bumps and a plurality of first solder layers. Each of the first solder layers is formed on each of the first bumps and comprises a cone-shaped slot having an inner surface. The second substrate comprises a plurality of second bumps and a plurality of second solder layers. Each of the second solder layers is formed on each of the second bumps and comprises an outer surface. Each of the second solder layers is a cone-shaped body. The second solder layer couples to the first solder layer and is accommodated within the first solder layer. The inner surface of the cone-shaped slot contacts with the outer surface of the second solder layer. The encapsulant is formed between the first substrate and the second substrate.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: February 25, 2014
    Assignee: Chipbond Technology Corporation
    Inventors: Chin-Tang Hsieh, Chih-Ming Kuo, Chia-Jung Tu, Shih-Chieh Chang, Chih-Hsien Ni, Lung-Hua Ho, Chaun-Yu Wu, Kung-An Lin
  • Patent number: 8658472
    Abstract: A module including a carrier and a semiconductor chip applied to the carrier. An external contact element is provided having a first portion and a second portion extending perpendicular to the first portion, wherein a thickness of the second portion is smaller than a thickness of the carrier.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 25, 2014
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Patent number: 8658467
    Abstract: A method of manufacturing a stacked wafer level package includes: preparing a substrate; forming a conductive layer on the substrate; forming chip connection pads and internal connection pads on the conductive layer; forming solder balls connected to the internal connection pads; mounting a semiconductor chip on the conductive layer to be connected to the chip connection pads; forming a sealing member to seal the solder balls and the semiconductor chip; separating the substrate from the conductive layer; forming a rearrangement wiring layer by etching the conductive layer; forming an external connection on the rearrangement wiring layer; forming contact holes in the sealing member to expose the solder balls; and stacking an electronic component to be electrically connected to the solder balls exposed through the contact holes.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 25, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Wook Park, Young Do Kweon, Jin Gu Kim, Ju Pyo Hong, Hee Kon Lee, Hyung Jin Jeon, Yuan Jing Li, Jong Yun Lee
  • Patent number: 8658437
    Abstract: Disclosed is a package method for electronic components by a thin substrate, comprising: providing a carrier; forming at least one metal layer and at least one dielectric layer on the carrier for manufacturing the thin substrate, and the thin substrate comprises at least one package unit for connecting at least one chip; forming at least one pad layer on a surface of the thin substrate; parting the thin substrate from the carrier; performing test to the thin substrate to weed out the package unit with defects in the at least one package unit and select the package units for connecting the chips; connecting the chips with the selected package units by flip chip bonding respectively. Accordingly, the yield of the entire package process can be improved and the pointless manufacture material cost can be reduced.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: February 25, 2014
    Assignee: Princo Middle East FZE
    Inventors: Yeong-yan Guu, Ying-jer Shih
  • Patent number: 8654540
    Abstract: A first step of the method for assembling a wire element with an electronic chip comprises arranging the wire element in a groove of the chip delineated by a first element and a second element, joined by a link element comprising a plastically deformable material, and a second step then comprises clamping the first and second elements to deform the link element until the wire element is secured in the groove.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: February 18, 2014
    Assignee: Commisariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Jean Brun, Dominique Vicard
  • Publication number: 20140045301
    Abstract: A method for preparing a die for packaging is disclosed. A die having first and second major surfaces is provided. Vias and a mask layer are formed on the first major surface of the die. The mask includes mask openings that expose the vias. The mask openings are filled with a conductive material. The method includes reflowing to at least partially fill the vias and contact openings to form via contacts in the vias and surface contacts in the mask openings.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Applicant: United Test and Assembly Center Ltd.
    Inventors: Hao LIU, Yi Sheng Anthony SUN, Ravi Kanth KOLAN, Chin Hock TOH
  • Publication number: 20140045300
    Abstract: The present disclosure relates to a tool arrangement and method to reduce warpage within a package-on-package semiconductor structure, while minimizing void formation within an electrically-insulating adhesive which couples the packages. A pressure generator and a variable frequency microwave source are coupled to a process chamber which encapsulates a package-on-package semiconductor structure. The package-on-package semiconductor structure is simultaneously heated by the variable frequency microwave source at variable frequency, variable temperature, and variable duration and exposed to an elevated pressure by the pressure generator. This combination for microwave heating and elevated pressure limits the amount of warpage introduced while preventing void formation within an electrically-insulating adhesive which couples the substrates of the package-on-package semiconductor structure.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Tse Chen, Wei-Hung Lin, Kuei-Wei Huang, Tsai-Tsung Tsai, Ai-Tee Ang, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8647923
    Abstract: A method of manufacturing a semiconductor device includes the steps of forming a plurality of first integrated circuits on the surface side of a first semiconductor substrate; forming a plurality of second integrated circuits in a semiconductor layer that is formed on a release layer provided on a second semiconductor substrate; bonding the two semiconductor substrates so that electrically bonding portions are bonded to each other to form a bonded structure; separating the second semiconductor substrate from the bonded structure at the release layer to transfer, to the first semiconductor substrate, the semiconductor layer in which the plurality of second integrated circuits are formed; and dicing the first semiconductor substrate to obtain stacked chips each including the first integrated circuit and the second integrated circuit.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: February 11, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kiyofumi Sakaguchi, Takao Yonehara, Nobuo Kawase, Kenji Nakagawa
  • Patent number: 8647926
    Abstract: A method of fabricating a semiconductor plastic package can include: providing a core board, which includes at least one pad, and which has a coefficient of thermal expansion of 9 ppm/° C. or lower; stacking a build-up insulation layer over the core board; forming an opening by removing a portion of the build-up insulation layer such that the pad is exposed to the exterior; and placing a semiconductor chip in the opening and electrically connecting the semiconductor chip with the pad. This method can be utilized to provide higher reliability in the connection between the semiconductor chip and the circuit board.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: February 11, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Joon-Sik Shin, Nobuyuki Ikeguchi, Keungjin Sohn, Joung Gul Ryu, Sang-Youp Lee, Jung-Hwan Park, Ho-Sik Park
  • Patent number: 8647922
    Abstract: The present invention relates to a method of forming a wire bond-free conductive interconnect area on a semiconductor substrate. A semiconductor substrate with an electrically conductive protrusion, defining a bond pad, is provided as well as a plurality of carbon nanotubes. The plurality of carbon nanotubes is immobilized on the bond pad by allowing at least one random portion along the length of the carbon nanotubes to attach to the surface of the bond pad. Thus an aggregate of loops of carbon nanotubes is formed on the surface of the bond pad. Thereby a conductive interconnect area is formed on the electrically conductive protrusion without heat treatment.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: February 11, 2014
    Assignee: Nanyang Technological University
    Inventors: Jijie Zhou, Zhong Chen
  • Patent number: 8647956
    Abstract: The present invention relates to a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material layer, a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer stacked in this order, and a film for semiconductor back surface stacked on the second pressure-sensitive adhesive layer of the dicing tape, in which a peel strength Y between the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is larger than a peel strength X between the second pressure-sensitive adhesive layer and the film for semiconductor back surface, and in which the peel strength X is from 0.01 to 0.2 N/20 mm, and the peel strength Y is from 0.2 to 10 N/20 mm.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: February 11, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Fumiteru Asai, Goji Shiga, Naohide Takamoto
  • Publication number: 20140035114
    Abstract: In one embodiment, a semiconductor package structure includes a substrate having a well region extending from a major surface. An interposer structure is attached to the substrate within the well region. The interposer structure has a major surface that is substantially co-planar with the major surface of the substrate. An electrical device is directly attached to the substrate and the interposer structure. The interposer structure can be an active device, such as a gate driver integrated circuit, or passive device structure, such as an impedance matching network.
    Type: Application
    Filed: January 18, 2013
    Publication date: February 6, 2014
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Bishnu Prasanna Gogoi, Phuong Le, Alexander J. Elliott
  • Publication number: 20140038354
    Abstract: Disclosed are semiconductor packages and methods of fabricating the same. A method may include preparing a wiring board including a mounting region and a molding region surrounding the mounting region; forming a through-hole penetrating through the wiring board at the mounting region; mounting a semiconductor chip on the mounting region of the wiring board by a flip chip bonding method; and forming a molding covering the molding region of the wiring board and the semiconductor chip and filling the through-hole and a space between the semiconductor chip and the wiring board. The wiring board may have a first surface on which the semiconductor chip is mounted, and a second surface opposite to the first surface. A portion of the molding filling the through-hole has a surface coplanar with the second surface of the wiring board.
    Type: Application
    Filed: July 25, 2013
    Publication date: February 6, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Min gi HONG
  • Publication number: 20140038355
    Abstract: The invention relates to a flip-chip assembly process for connecting two microelectronic components (1, 2) to each other. According to the invention, it is possible either to proportion the spacers (24) so that they are smaller than the interconnect bumps (22) or to oversize the latter so that their deformation, after having been plastic during the insertion of connective inserts (12), returns to the elastic regime once assembly contact between components (1,2) has been reached. Thanks to the invention, it is possible to control with great precision the gap between the two components during their assembly, and this without adding any additional steps to their manufacturing or to the assembly process.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 6, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Baptiste Goubault de Brugiere, Alexis Bedoin
  • Patent number: 8643161
    Abstract: A semiconductor device includes a package substrate having a front surface and a backside surface; an electrode pad formed on the front surface; an outer connection pad formed on the backside surface and electrically connected to the electrode pad; a semiconductor chip mounted on the front surface and having an electrode electrically connected to the electrode pad; a sealing resin layer having a through hole formed with a die-molding and reaching the electrode pad for sealing the semiconductor chip; and a through electrode filled in the through hole with a conductive material and having one end portion electrically connected to the electrode pad and the other end portion exposed from the sealing resin layer.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 4, 2014
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Hidenori Hasegawa
  • Patent number: 8643150
    Abstract: Wafer-level package (semiconductor) devices are described that have a pillar structure that extends at least partially into a solder bump to mitigate thermal stresses to the solder bump. In implementations, the wafer-level package device may comprise an integrated circuit chip having a surface and a solder bump disposed over the surface. The wafer-level package device may also include a pillar structure disposed over the surface that extends at least partially into the solder bump.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: February 4, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Yong L. Xu, Viren Khandekar, Yi-Sheng A. Sun, Arkadii Samoilov
  • Publication number: 20140027867
    Abstract: Packages and methods for 3D integration are disclosed. In various embodiments, a first integrated device die having a hole is attached to a package substrate. A second integrated device die can be stacked on top of the first integrated device die. At least a portion of the second integrated device die can extend into the hole of the first integrated device die. By stacking the two dies such that the portion of the second integrated device die extends into the hole, the overall package height can advantageously be reduced.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: ANALOG DEVICES, INC.
    Inventor: Thomas Goida
  • Publication number: 20140030849
    Abstract: An apparatus includes a guide ring, and a bond head installed on the guide ring. The bond head is configured to move in loops along the guide ring.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Ling Hwang, Ying-Jui Huang, Yi-Li Hsiao
  • Patent number: 8637349
    Abstract: A combined battery and device apparatus and associated method. This apparatus includes a first conductive layer, a battery comprising a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, and an electrical circuit adjacent face-to-face to and electrically connected to the battery. Some embodiments further include a photovoltaic cell and/or thin-film capacitor. In some embodiments, the substrate includes a polymer having a melting point substantially below 700 degrees centigrade. In some embodiments, the substrate includes a glass. For example, some embodiments include a battery deposited directly on the back of a liquid-crystal display (LCD) device.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: January 28, 2014
    Assignee: Cymbet Corporation
    Inventors: Mark L. Jenson, Jody J. Klaassen