Substrate Dicing Patents (Class 438/113)
  • Patent number: 8569086
    Abstract: A method and apparatus for separating a substrate into individual dies and the resulting structure is provided. A modification layer, such as an amorphous layer, is formed within the substrate. A laser focused within the substrate may be used to create the modification layer. The modification layer creates a relatively weaker region that is more prone to cracking than the surrounding substrate material. As a result, the substrate may be pulled apart into separate sections, causing cracks the substrate along the modification layers. Dice or other components may be attached to the substrate before or after separation.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Chih-Wei Wu, Szu Wei Lu, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 8563359
    Abstract: A method for manufacturing a semiconductor device includes forming at least one stripe-shaped protection film over a multilayer film in a scribe region of a semiconductor substrate having a plurality of semiconductor element regions formed therein, the protection film having a thickness larger in a center portion thereof than at an end surface thereof and being made of a member which transmits a laser beam, and removing the multilayer film in the scribe region by irradiating the protection film with a laser beam.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: October 22, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyuki Watanabe
  • Patent number: 8564100
    Abstract: A semiconductor device in which it is possible to suppress short-circuiting between pads for chip arising from dicing processing is provided. The semiconductor device includes a semiconductor substrate, multiple first pads, and multiple second pads. The first pads are formed in an element formation region and the second pads are formed in a dicing line region surrounding the element formation region. The dicing line region includes a first region for which second pads are prone to electrically short-circuit to each other and a second region for which second pads are less prone to electrically short-circuit to each other. Some first pads arranged in positions opposite the first region are arranged farther away from one side of the outer edge of the element formation region than the remaining first pads arranged in positions opposite the second region are.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: October 22, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Masahiro Ishida, Toshinori Nishimura
  • Patent number: 8563343
    Abstract: A method of manufacturing a laser diode device includes: forming, in a semiconductor laser bar, separation trenches extending across all of a transverse dimension of the semiconductor laser bar and defining a mesa stripe, each of the separation trenches having wide portions located at longitudinal edge portions of the semiconductor laser bar and a narrow portion located in a longitudinal central portion of the semiconductor laser bar; scribing, in the semiconductor laser bar, grooves extending parallel to the separation trenches and terminating before reaching longitudinal edge portions of the semiconductor laser bar; and splitting the semiconductor laser bar along the grooves to form cleaved surfaces extending from a bottom surface of the semiconductor laser bar to bottom surfaces of the separation trenches.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takashi Motoda
  • Patent number: 8563360
    Abstract: A power semiconductor device package includes a conductive assembly including a connecting structure and a semiconductor die having an aperture formed therethrough, the aperture being sized and configured to spacedly receive the connecting structure. In an alternative embodiment, a power semiconductor device package includes a conductive assembly including a connecting structure and a pair of semiconductor die disposed on either side of the connecting structure in spaced relationship thereto.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 22, 2013
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventors: Jun Lu, François Hébert, Kai Liu, Xiaotian Zhang
  • Patent number: 8563357
    Abstract: A method of attaching a die to a substrate is disclosed. A major surface of the die has an array of electrical contacts, and is covered with a tape segment having an array of apertures in register with the contacts. Solder balls are inserted into the apertures. The die is positioned against a substrate with the solder balls in register with the die pads on the surface of the substrate, and a heat treatment process is performed to bond the conductive elements to the corresponding bond pads.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: October 22, 2013
    Assignee: Infineon Technologies AG
    Inventor: Chee Chian Lim
  • Publication number: 20130273694
    Abstract: A method includes attaching a wafer on a carrier through an adhesive, and forming trenches in the carrier to convert the carrier into a heat sink. The heat sink, the carrier, and the adhesive are sawed into a plurality of packages.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chieh Hsieh, Shang-Yun Hou, Shin-Pun Jeng
  • Publication number: 20130270700
    Abstract: The described embodiments of mechanisms of forming a package on package (PoP) structure involve bonding with connectors with non-solder metal balls to a packaging substrate. The non-solder metal balls may include a solder coating layer. The connectors with non-solder metal balls can maintain substantially the shape of the connectors and control the height of the bonding structures between upper and lower packages. The connectors with non-solder metal balls are also less likely to result in bridging between connectors or disconnection (or cold joint) of bonded connectors. As a result, the pitch of the connectors with non-solder metal balls can be kept small.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 17, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua YU, Mirng-Ji LII, Chung-Shi LIU, Meng-Tse CHEN, Wei-Hung LIN, Ming-Da CHENG
  • Patent number: 8558371
    Abstract: Provided is a wafer level packaging method and a semiconductor device fabricated using the same. In the method, a substrate comprising a plurality of chips is provided. An adhesive layer is formed on the substrate corresponding to boundaries of the plurality of chips. A cover plate covering an upper portion of the substrate and having at least one opening exposing the adhesive layer or the substrate at the boundaries among the plurality of chips is attached to the adhesive layer.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: JiSun Hong, Taeje Cho, Un-Byoung Kang, Hyuekjae Lee, Youngbok Kim, Hyung-sun Jang
  • Patent number: 8557637
    Abstract: The disclosure provides a method for fabricating the flexible electronic devices, including: providing a first rigid carrier substrate and a second rigid carrier substrate, wherein at least one flexible electronic device is formed between the first rigid carrier substrate and the second rigid carrier substrate, and a plurality of first de-bonding areas, a first flexible substrate, the flexible electronic device, a second flexible substrate, a plurality of second de-bonding areas and the second rigid carrier substrate are formed on the first rigid carrier substrate; performing a first cutting step to cut through the first de-bonding areas; separating the first rigid carrier substrate from the first de-bonding areas; removing the first rigid carrier substrate from the first de-bonding areas; and performing a second cutting step to cut through the second de-bonding areas; separating and removing the second rigid carrier substrate from the second de-bonding areas.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 15, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Kuang-Jung Chen, Isaac Wing-Tak Chan
  • Patent number: 8555492
    Abstract: A conductive substrate structure includes a substrate unit, a conductive pad unit, and a conductive layer unit. The substrate unit has a top surface, a bottom surface, two opposite lateral surfaces, and a front surface. The conductive pad unit has at least two first conductive pads separated from each other and disposed on the top surface, and at least two second conductive pads separated from each other and disposed on the bottom surface. The conductive layer unit has at least two first conductive layers formed on the front surface and respectively electrically connected to two front sides of the two first conductive pads, and at least two second conductive layers respectively formed on the two opposite lateral surfaces and respectively electrically connected to two opposite lateral sides of the two second conductive pads. The two first conductive layers are respectively electrically connected with the two second conductive layers.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: October 15, 2013
    Assignee: Harvatek Corporation
    Inventors: Bily Wang, Sung-Yi Hsiao, Jack Chen
  • Publication number: 20130264714
    Abstract: A semiconductor die has interface electrodes on an interface surface and an electrically conductive layer on a mounting surface that is opposite to the interface surface. The electrically conductive layer extends onto side regions of the semiconductor die. Electrical conductors couple the interface electrodes to external connector pads. A solder alloy joins the semiconductor die to a flag. The solder alloy is disposed between the flag and the electrically conductive layer and provides a joint between the flag and both the mounting surface and the side regions.
    Type: Application
    Filed: September 9, 2012
    Publication date: October 10, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Guo Liang Gong, Shunan Qiu, Xuesong Xu
  • Patent number: 8551792
    Abstract: A method of dicing a semiconductor wafer comprises scribing at least one dielectric layer along dice lanes to remove material from a surface of the wafer using a laser with a pulse-width between 1 picosecond and 1000 picoseconds and with a repetition frequency corresponding to times between pulses shorter than a thermal relaxation time of the material to be scribed. The wafer is then diced through a metal layer and at least partially through a substrate of the semiconductor wafer.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: October 8, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Adrian Boyle, Joseph Callaghan, Fintan McKiernan
  • Patent number: 8551815
    Abstract: A stacked microelectronic unit is provided which has a top surface and a bottom surface remote from the top surface and a plurality of vertically stacked microelectronic elements therein, including at least one microelectronic element having a front face adjacent to the top surface and a rear face oriented towards the bottom surface. Each of the microelectronic elements has traces extending from contacts at the front face beyond edges of the microelectronic element. A dielectric layer contacts edges of the microelectronic elements and underlies the rear face of the at least one microelectronic element. Leads are connected to the traces extending along the dielectric layer. Unit contacts, exposed at the top surface, are connected to the leads.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: October 8, 2013
    Assignee: Tessera, Inc.
    Inventors: Osher Avsian, Andrey Grinman, Giles Humpston, Moti Margalit
  • Patent number: 8552544
    Abstract: A package structure includes first and second substrates, a sealant and a filler. The first substrate has a surface including an active region and a bonding region. The first substrate has a component in the active region and a pad in bonding region. The pad is electrically connected to the component. The sealant is disposed on the surface surrounding the active region. The sealant has a breach at a side of the active region. The second substrate is bonded to the first substrate via the sealant. The second substrate has a first opening corresponding to the pad, and a second opening corresponding to the breach. The filler fills the second opening, covers the breach such that the first substrate, the second substrate, the sealant and the filler together form a sealed space for accommodating the component.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: October 8, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Ching-Hong Chuang
  • Publication number: 20130256885
    Abstract: Presented is a method for fabricating a semiconductor package, and the associated semiconductor package. The method includes providing a compliant coverlay having a resin film disposed thereon. A plurality of metallic spheres may be placed at predetermined positions in the resin film. A top surface and a bottom surface of the metallic spheres may be flattened. Tamp blocks on opposing sides of the metallic spheres may be used. The resin film may then be cured to permanently set the metallic spheres in the resin film, and the compliant overlay may then be removed. A semiconductor die may then be placed on the plurality of metallic spheres. An encapsulating layer may then be deposited over the semiconductor die, the plurality of metallic spheres, and the resin film. The semiconductor package may then be diced. The method does not include fabricating a metal leadframe for the semiconductor die.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 3, 2013
    Applicant: Conexant Systems, Inc.
    Inventors: Robert W. Warren, Hyun J. Lee, Nic Rossi
  • Publication number: 20130256919
    Abstract: A method for producing a component with at least one micro-structured or nano-structured element includes applying at least one micro-structured or nano-structured element to a carrier. The element has at least one area configure to make contact and the element is applied to the carrier such that the at least one area adjoins the carrier. The element is enveloped in an enveloping compound and the element-enveloping compound composite is detached from the carrier. A first layer comprising electrically conductive areas is applied to the side of the element-enveloping compound composite that previously adjoined the carrier. At least one passage is introduced into the enveloping compound. A conductor layer is applied to the surface of the passage and at least to a section of the layer comprising the first electrically conductive areas to generate a through contact, which enables space-saving contacting. A component is formed from the method.
    Type: Application
    Filed: July 29, 2011
    Publication date: October 3, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Ulrike Scholz, Ralf Reichenbach
  • Publication number: 20130256922
    Abstract: In a method for fabricating a semiconductor device, a carrier and at least one semiconductor chip are provided.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: Infineon Technologies AG
    Inventors: Michael Bauer, Daniel Porwol, Ulrich Wachter
  • Publication number: 20130256864
    Abstract: A semiconductor package according to embodiments includes: a semiconductor chip including a front electrode on a front surface thereof and a back electrode on a back surface thereof; a front-side cap portion including an air gap in a portion between the semiconductor chip and the front-side cap portion and a front-side penetrating electrode, and is positioned to face the front surface of the semiconductor chip; a back-side cap portion bonded with a first cap portion to hermetically seal the semiconductor chip, includes an air gap at least in a portion between the semiconductor chip and the back-side cap portion and a back-side penetrating electrode, and is positioned to face the back surface of the semiconductor chip; a front-side connecting portion which electrically connects the front electrode and the front-side penetrating electrode; and a back-side connecting portion which electrically connects the back electrode and the back-side penetrating electrode.
    Type: Application
    Filed: November 29, 2012
    Publication date: October 3, 2013
    Inventors: Toshihiko NAGANO, Kazuhide ABE, Hiroshi YAMADA, Kazuhiko ITAYA, Taihei NAKADA
  • Publication number: 20130256866
    Abstract: A semiconductor device is made by mounting a prefabricated heat spreader frame over a temporary substrate. The heat spreader frame includes vertical bodies over a flat plate. A semiconductor die is mounted to the heat spreader frame for thermal dissipation. An encapsulant is deposited around the vertical bodies and semiconductor die while leaving contact pads on the semiconductor die exposed. The encapsulant can be deposited using a wafer level direct/top gate molding process or wafer level film assist molding process. An interconnect structure is formed over the semiconductor die. The interconnect structure includes a first conductive layer formed over the semiconductor die, an insulating layer formed over the first conductive layer, and a second conductive layer formed over the first conductive layer and insulating layer. The temporary substrate is removed, dicing tape is applied to the heat spreader frame, and the semiconductor die is singulated.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Inventors: Frederick R. Dahilig, Zigmund R. Camacho, Lionel Chien Hui Tay, Dioscoro A. Merilo
  • Patent number: 8546170
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane (5) on a substrate (3), and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion (7a) and a second back-volume portion (7b), the first back-volume portion (7a) being separated from the second back-volume portion (7b) by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion (7b) can be made greater than the cross-sectional area of the membrane (5), thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane (5). The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: October 1, 2013
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk Hans Hoekstra
  • Publication number: 20130249064
    Abstract: According to an embodiment, there are provided a semiconductor chip having a semiconductor element formed thereon, a pad electrode formed on the semiconductor chip and connected to the semiconductor element, a resin layer formed on the semiconductor chip, a foundation insulating layer on which an electronic element and an internal electrode are formed, a hollow body formed on the foundation insulating layer to cover the electronic element and having a top surface side embedded in the resin layer, an opening portion formed on the foundation insulating layer and configured to expose a back surface of the internal electrode, and a conductive layer configured to connect the pad electrode and the internal electrode through the opening portion.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 26, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroaki YAMAZAKI, Yoshiaki Sugizaki, Kazuyuki Higashi, Yoshiaki Shimooka
  • Publication number: 20130249079
    Abstract: A semiconductor device has a semiconductor wafer with a plurality of semiconductor die separated by a non-active region. The semiconductor die can be circular or polygonal with three or more sides. A plurality of bumps is formed over the semiconductor die. A portion of semiconductor wafer is removed to thin the semiconductor wafer. A wafer ring is mounted to mounting tape. The semiconductor wafer is mounted to the mounting tape within the wafer ring. The mounting tape includes translucent or transparent material. A penetrable layer is applied over the bumps formed over the semiconductor wafer. An irradiated energy from a laser is applied through the mounting tape to the non-active region to form a modified region within the non-active region. The semiconductor wafer is singulated along the modified region to separate the semiconductor die.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 26, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Hunteak Lee, Daewook Yang, Yeongbeom Ko
  • Patent number: 8541251
    Abstract: A light-emitting device manufacturing method comprises the steps of irradiating a substrate 2 having a III-V compound semiconductor layer 17 formed on a front face 2a with laser light L1 along lines to cut 5a, 5b, while locating a converging point P1 within the sapphire substrate 2 and using a rear face 2b thereof as a laser light entrance surface, and thereby forming modified regions 7a, 7b along the lines 5a, 5b within the substrate 2; then forming a light-reflecting layer on the rear face 2b of the substrate 2; and thereafter extending fractures generated from the modified regions 7a, 7b acting as a start point in the thickness direction of the substrate 2, and thereby cutting the substrate 2, the semiconductor layer 17 and the light-reflecting layer along the lines 5a, 5b, and manufacturing a light-emitting device.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: September 24, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Naoki Uchiyama
  • Patent number: 8541262
    Abstract: A semiconductor device utilizing die edge contacts is provided. An integrated circuit die has a post-passivation layer with a trench filled with a conductive material extending from a contact to a die edge, thereby forming a die edge contact. Optionally, a through substrate via may be positioned along the die edge such that the conductive material in the trench is electrically coupled to the through-substrate via, thereby forming a larger die edge contact. The integrated circuit die may be placed in a multi-die package wherein the multi-die package includes walls having a major surface perpendicular to a major surface of the integrated circuit die. The die edge contacts are electrically coupled to contacts on the walls of the multi-die package. The multi-die package may include edge contacts for connecting to another substrate, such as a printed circuit board, a packaging substrate, a high-density interconnect, or the like.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 24, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jen Lai, You-Hua Chou, Hon-Lin Huang, Huai-Tei Yang
  • Publication number: 20130241076
    Abstract: A first product may be provided that comprises a substrate having a first surface, a first side, and a first edge where the first surface meets the first side; and a device disposed over the substrate, the device having a second side, where at least a first portion of the second side is disposed within 3 mm from the first edge of the substrate. The first product may further comprise a first barrier film that covers at least a portion of the first edge of the substrate, at least a portion of the first side of the substrate, and at least the first portion of the second side of the device.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: Universal Display Corporation
    Inventors: Prashant Mandlik, Ruiqing Ma, Jeff Silvernail, Julie J. Brown, Lin Han, Sigurd Wagner, Luke Walski
  • Publication number: 20130244376
    Abstract: A method for manufacturing a device package may include constructing a spacer element coupled with a surface of a semiconductor die unit, where the spacer element is configured to create a gap between the semiconductor die unit and a surface of a carrier, and encapsulating the semiconductor die unit within a mold compound, where the encapsulating includes introducing the mold compound into the gap.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 19, 2013
    Applicant: DECA Technologies Inc.
    Inventor: Christopher M. Scanlan
  • Publication number: 20130241087
    Abstract: A method for producing a semiconductor apparatus with a mold including an upper mold half and a lower mold half, includes: an arranging step of arranging on one of the upper mold half and the lower mold half of the mold a substrate on which a semiconductor device is mounted, the mold being kept at a room temperature or heated to a temperature up to 200° C., and arranging on the other of the upper mold half and the lower mold half a substrate on which no semiconductor device is mounted; an integrating step of integrating the substrate on which the semiconductor device is mounted and the substrate on which no semiconductor device is mounted by molding a thermosetting resin with the mold on which the substrates are arranged; and a step of dicing the integrated substrates taken out of the mold to obtain an individualized semiconductor apparatus.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 19, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Toshio SHIOBARA, Susumu SEKIGUCHI, Hideki AKIBA
  • Publication number: 20130241041
    Abstract: A semiconductor package with a die pad, a die disposed on the die pad, and a first lead disposed about the die pad. The first lead includes a contact element, an extension element extending substantially in the direction of the die pad, and a concave surface disposed between the contact element and the extension element. A second lead having a concave surface is also disposed about the die pad. The first lead concave surface is opposite in direction to the second lead concave surface.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Inventors: Lin-Wang Yu, Ping-Cheng Hu, Che-Chin Chang, Yu-Fang Tsai
  • Patent number: 8535979
    Abstract: A manufacturing method of a semiconductor element substrate including: forming a first photoresist pattern on a first surface of a metallic plate, to form a semiconductor element mounting part, a semiconductor element electrode connection terminal, a wiring, an outer frame part, and a slit; forming a second photoresist pattern on the second surface of the metallic plate; forming the slit by half etching to connect the metallic chip with a four corners of the outer frame part; forming a plurality of concaved parts on the second surface of the metallic plate; forming a resin layer by injecting a resin to the plurality of concaved parts; and etching the first surface of the metallic plate and forming the semiconductor element electrode connection terminal and the outer frame.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 17, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Junko Toda, Susumu Maniwa, Takehito Tsukamoto
  • Patent number: 8535983
    Abstract: In one embodiment a method for manufacturing a semiconductor device comprises arranging a wafer on a carrier, the wafer comprising singulated chips; bonding the singulated chips to a support wafer, and removing the carrier.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Tze Yang Hin, Stefan Martens, Werner Simbuerger, Helmut Wietschorke, Horst Theuss, Beng Keh See, Ulrich Krumbein
  • Patent number: 8535976
    Abstract: An integrated chip package structure and method of manufacturing the same is by adhering dies on a ceramic substrate and forming a thin-film circuit layer on top of the dies and the ceramic substrate. Wherein the thin-film circuit layer has an external circuitry, which is electrically connected to the metal pads of the dies, that extends to a region outside the active surface of the dies for fanning out the metal pads of the dies. Furthermore, a plurality of active devices and an internal circuitry is located on the active surface of the dies. Signal for the active devices are transmitted through the internal circuitry to the external circuitry and from the external circuitry through the internal circuitry back to other active devices. Moreover, the chip package structure allows multiple dies with different functions to be packaged into an integrated package and electrically connecting the dies by the external circuitry.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: September 17, 2013
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin, Ching-Cheng Huang
  • Publication number: 20130237015
    Abstract: An electrical package with improved thermal management. The electrical package includes a die having an exposed back surface. The package further includes a plurality of fins extending outwardly from the back surface for dissipating heat from the package. The die can be arranged in a multi-die stacking configuration. In another embodiment, a method of forming a die for improved thermal management of an electrical package is provided.
    Type: Application
    Filed: September 6, 2012
    Publication date: September 12, 2013
    Applicant: QUALCOMM Incorporated
    Inventor: Arvind Chandrasekaran
  • Publication number: 20130234308
    Abstract: A reconfigured wafer of resin-encapsulated semiconductor packages is obtained by supporting with a resin, thereafter, a grinding process is performed on top and backside surfaces to expose only a bump interconnection electrode on a surface of a semiconductor chip. Further, a chip-scale package is obtained by a dicing process along a periphery of the chip.
    Type: Application
    Filed: February 13, 2013
    Publication date: September 12, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Yamada, Yutaka Onozuka, Atsuko Iida, Kazuhiko Itaya
  • Publication number: 20130237016
    Abstract: A semiconductor device and manufacturing method are disclosed which prevent breakage and chipping of a semiconductor chip and improve device characteristics. A separation layer is in a side surface of an element end portion of the chip. An eave portion is formed by a depressed portion in the element end portion. A collector layer on the rear surface of the chip extends to a side wall and bottom surface of the depressed portion, and is connected to the separation layer. A collector electrode is over the whole surface of the collector layer, and is on the side wall of the depressed portion. The thickness of an outermost electrode film is 0.05 ?m or less. The collector electrode on the rear surface of the chip is joined onto an insulating substrate via a solder layer, which covers the collector electrode on a flat portion of the rear surface of the semiconductor chip.
    Type: Application
    Filed: April 10, 2013
    Publication date: September 12, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Kyohei FUKUDA, Eiji MOCHIZUKI, Mitsutoshi SAWANO, Takaaki SUZAWA
  • Publication number: 20130234283
    Abstract: In one embodiment, a method of fabricating a semiconductor package includes forming a first plurality of die openings on a laminate substrate. The laminate substrate has a front side and an opposite back side. A plurality of first dies is placed within the first plurality of die openings. An integrated spacer is formed around each die of the plurality of first dies. The integrated spacer is disposed in gaps between the laminate substrate and an outer sidewall of each die of the plurality of first dies. The integrated spacer holds the die within the laminate substrate by partially extending over a portion of a top surface of each die of the plurality of first dies. Front side contacts are formed over the front side of the laminate substrate.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Infineon Technologies AG
    Inventors: Martin Standing, Andrew Roberts
  • Publication number: 20130234297
    Abstract: A cavity is formed in a working surface of a substrate in which a semiconductor element is formed. A glass piece formed from a glass material is bonded to the substrate, and the cavity is filled with the glass material. For example, a pre-patterned glass piece is used which includes a protrusion fitting into the cavity. Cavities with widths of more than 10 micrometers are filled fast and reliably. The cavities may have inclined sidewalls.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Alexander Breymesser, Andre Brockmeier, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze, Carsten von Koblinski, Gerhard Schmidt
  • Publication number: 20130234193
    Abstract: Etched trenches in a bond material for die singulation, and associated systems and methods are disclosed. A method for solid state transducer device singulation in accordance with one embodiment includes forming a plurality of trenches by etching through a metallic bond material forming a bond between a carrier substrate and a plurality of the dies and singulating the carrier substrate along the trenches to separate the dies. In particular embodiments, the trenches extend into the carrier substrate. In further particular embodiments, the dies are at least partially encapsulated in a dielectric material.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Scott D. Schellhammer, Jeremy S. Frei
  • Patent number: 8530346
    Abstract: An electronic device can include an interconnect level including a bonding pad region. An insulating layer can overlie the interconnect level and include an opening over the bonding pad region. In one embodiment, a conductive stud can lie within the opening and can be substantially encapsulated. In another embodiment, the electronic device can include a barrier layer lying along a side and a bottom of the opening and a conductive stud lying within the opening. The conductive stud can substantially fill the opening. A majority of the conductive stud can lie within the opening. In still another embodiment, a process for forming an electronic device can include forming a conductive stud within the opening wherein from a top view, the conductive stud lies substantially completely within the opening. The process can also include forming a second barrier layer overlying the conductive stud.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: September 10, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lakshmi N. Ramanathan, Tien Yu T. Lee, Jinbang Tang
  • Publication number: 20130228905
    Abstract: A method for connecting a semiconductor chip to a metal layer of a carrier substrate is disclosed. A semiconductor chip is provided which has a first side, a second side opposite the first side, a glass substrate bonded to the second side of the semiconductor chip and including at least one opening leaving an area of the second side of the semiconductor chip uncovered by the glass substrate, and a metallisation region arranged in the opening of the glass substrate and electrically contacting the second side of the semiconductor chip. The semiconductor chip with the bonded glass substrate is brought onto a metal layer of a carrier substrate. A firm mechanical and electrical connection is formed between the metal layer of the carrier substrate and the metallisation region.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Carsten von Koblinski, Gerald Lackner, Karin Schrettlinger, Markus Ottowitz
  • Publication number: 20130228915
    Abstract: A fabrication method of a semiconductor package includes the steps of: forming a release layer on a carrier having concave portions; disposing chips on the release layer in the concave portions of the carrier; forming an encapsulant on the chips and the release layer; forming a bonding layer on the encapsulant; removing the release layer and the carrier so as to expose the active surfaces of the chips; and forming a circuit structure on the encapsulant and the chips. Since the release layer is only slightly adhesive to the chips and the encapsulant, the present invention avoids warpage of the overall structure during a thermal cycle caused by incompatible CTEs.
    Type: Application
    Filed: June 27, 2012
    Publication date: September 5, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Meng-Tsung Lee, Jung-Pang Huang, Shih-Kuang Chiu
  • Publication number: 20130228930
    Abstract: To provide a semiconductor device having a reduced size and thickness while suppressing deterioration in reliability. After a semiconductor wafer is ground at a back surface thereof with a grinding material into a predetermined thickness, the resulting semiconductor wafer is diced along a cutting region to obtain a plurality of semiconductor chips. While leaving grinding grooves on the back surface of each of the semiconductor chips, the semiconductor chip is placed on the upper surface of a die island via a conductive resin paste so as to face the back surface of the semiconductor chip and the upper surface of the die island each other. The die island has, on the upper surface thereof, a concave having a depth of from 3 ?m to 10 ?m from the edge of the concave to the bottom of the concave.
    Type: Application
    Filed: February 14, 2013
    Publication date: September 5, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Eiji Ono, Eiji Osugi
  • Patent number: 8524537
    Abstract: A semiconductor device has a build-up interconnect structure formed over an active surface of a semiconductor wafer containing a plurality of semiconductor die separated by a saw street. An insulating layer is formed over the interconnect structure. Bumps are formed over the interconnect structure. A protective coating material is deposited over the insulating layer and saw street. A lamination tape is applied over the coating material. A portion of a back surface of the semiconductor wafer is removed. A mounting tape is applied over the back surface. The lamination tape is removed while leaving the coating material over the insulating layer and saw street. A first channel is formed through the saw street extending partially through the semiconductor wafer. The coating material is removed after forming the first channel. A second channel is formed through the saw street and the mounting tape is removed to singulate the semiconductor wafer.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: September 3, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: JaEun Yun, HunTeak Lee, SeungYong Chai, WonJun Ko
  • Patent number: 8524536
    Abstract: Nip rollers 11 and 12 each including a pair of upper and lower rollers are disposed on an upstream side and a downstream side with a portion to be cut of an optical film F located therebetween. In the nip roller 12, a center axis C of the upper roller 12b is displaced relative to a center axis L of the drive roller 12a in a direction away from the portion to be cut. Upon cutting of the polarizing film F, the upper rollers 11b and 12b are simultaneously moved downward, so that a timing at which the downstream nip roller 12 nips the polarizing film F is delayed. Further, the nip roller 12 pulls the polarizing film F in the direction away from the portion to be cut, so that tension is applied to the polarizing film F. In this state, the polarizing film F is cut by a laser device 10.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: September 3, 2013
    Assignees: Nitto Denko Corporation, Akebono Machine Industries Co., Ltd.
    Inventors: Kouta Nakai, Junpei Kozasa, Yoshio Takahashi, Masahiro Hosoi
  • Patent number: 8525347
    Abstract: The present disclosures relates to a method for producing ultrathin chip stacks and chip stacks. Generally, a plurality of first semiconductor chips is formed in a wafer. A second semiconductor chip is applied to each of the plurality of first semiconductor chips via a connection layer and a stabilization layer is applied to fill in the interspace between each of the second semiconductor chips. The wafer, semiconductor chip, and stabilization layer are thinned and the wafer is sawed to produce a plurality of singulated chip stacks.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: September 3, 2013
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Harald Seidl
  • Publication number: 20130224910
    Abstract: Provided is a method for chip packaging, including the steps of: providing a semi-packaged wafer which has a cutting trail and a metal bonding pad of the chip; forming on the metal bonding pad a sub-ball metal electrode, using a selective formation process; forming a protective layer on the wafer in a region not including the sub-ball metal electrode, with the protective layer covering the cutting trail; forming a solder ball on the sub-ball metal electrode; dicing the wafer along the cutting trail. The present invention can prevent metal in the cutting trail from being affected during the production of the sub-ball metal electrode, and protect the lateral sides of a discrete chip after cutting. The process flow thereof is simple, and enhances the efficiency of the packaging as well as its yield.
    Type: Application
    Filed: October 18, 2011
    Publication date: August 29, 2013
    Applicant: NANTONG FUJITSU MOCROELECTRONICS CO., LTD.
    Inventors: Lei Shi, Yujuan Tao, Guohua Gao, Naomi Masuda, Koichi Meguro
  • Publication number: 20130221510
    Abstract: Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 29, 2013
    Applicant: CORNING INCORPORATED
    Inventor: CORNING INCORPORATED
  • Patent number: 8518741
    Abstract: A method for fabricating a multi-chip stacked structure includes joining multiple wafers with interconnect structures interposed between each set of adjacent wafers. As each wafer is added to the stack, the new wafer is thinned to expose a through silicon via and back side metallization is performed. After the last wafer has been so joined, the wafer stack is diced and then joined to a substrate with a final interconnect structure interposed between the final wafer and the substrate.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: Minhua Lu, Eric Daniel Perfecto
  • Patent number: 8518745
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes the steps of pasting a film for forming a protective layer in which a support base, an adhesive layer, and a thermosetting resin layer are laminated, in that order, onto a bumped wafer in which a low dielectric material layer is formed, with the thermosetting resin layer serving as a pasting surface, and further, peeling the support base and the adhesive layer from the thermosetting resin layer, forming a protective layer by thermally curing the thermosetting resin layer, and dicing the bumped wafer and the protective layer together.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Takashi Oda, Naohide Takamoto, Takeshi Matsumura
  • Publication number: 20130214399
    Abstract: Methods and systems are described for enabling the efficient fabrication of small form factor power converters and also the small form factor power converter devices.
    Type: Application
    Filed: April 2, 2013
    Publication date: August 22, 2013
    Applicant: National Semiconductor Corporation
    Inventor: National Semiconductor Corporation