Substrate Dicing Patents (Class 438/113)
  • Patent number: 8609513
    Abstract: A method for manufacturing a semiconductor device includes the steps of: preparing a combined wafer; obtaining a first intermediate wafer by forming an active layer; obtaining a second intermediate wafer by forming a front-side electrode on the first intermediate wafer; supporting the second intermediate wafer by adhering an adhesive tape at the front-side electrode side; removing the supporting layer while supporting the second intermediate wafer using the adhesive tape; forming a backside electrode on the main surfaces of SiC substrates exposed by the removal of the supporting layer; adhering an adhesive tape at the backside electrode side and removing the adhesive tape at the front-side electrode side so as to support the plurality of SiC substrates using the adhesive tape; and obtaining a plurality of semiconductor devices by cutting the SiC substrates with the SiC substrates being supported by the adhesive tape provided at the backside electrode side.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 17, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Taku Horii
  • Patent number: 8609465
    Abstract: A method for manufacturing a semiconductor device includes: a step of producing a semiconductor package intermediate by injecting a resin into a forming die in which electrodes, a heat dissipating pad, and a semiconductor element are disposed, providing a peel-off film on one side of the resin in the form of a still-uncured resin body opposite from the other side facing the heat dissipating pad and a rigid material on one side of the peel-off film, and curing the uncured resin body to form a sealant resin body; a step of forming a solder layer by reflow soldering between a substrate and the intermediate; and a step of removing the rigid material from the peel-off film, wherein the rigid material is integrated into the intermediate so as to make the thermal expansion coefficient and rigidity of the intermediate approximately equal to those of the substrate.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: December 17, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Nakaya Kawahara
  • Publication number: 20130330880
    Abstract: Solder is simultaneously transferred from a mold to a plurality of 3D assembled modules to provide solder bumps on the modules. The mold includes cavities containing injected molten solder or preformed solder balls. A fixture including resilient pressure pads and vacuum lines extending through the pads applies pressure to the modules when they are positioned on the mold. Following reflow and solder transfer to the modules, the fixture is displaced with respect to the mold. The modules, being attached to the fixture by vacuum pressure through the pads, are displaced from the mold with the fixture.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bing Dang, Jae-Woong Nah
  • Patent number: 8604568
    Abstract: A method for forming a stacked integrated circuit package of primary dies on a carrier die, includes forming electrically conductive pillars at connection pads defined on an active face of a carrier wafer incorporating carrier integrated circuits, the electrically conductive pillars providing electrical connections to said carrier integrated circuits; attaching primary dies to the active face of the carrier wafer, each supporting electrically conductive pillars at connection pads defined on an active face of the primary die; encapsulating the active face of the carrier wafer and the primary dies attached thereto in an insulating material; producing a wafer package by removing a thickness of the insulating layer sufficient to expose the electrically conductive pillars; and singulating the carrier wafer to form stacked integrated circuit packages, each package comprising at least one primary die on a carrier die.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 10, 2013
    Assignee: Cambridge Silicon Radio Limited
    Inventor: Simon Jonathan Stacey
  • Publication number: 20130320530
    Abstract: A surface mount semiconductor device is assembled by positioning an array of semiconductor dies with an array of metallic ground plane members between and beside the semiconductor dies. The arrays of dies and ground plane members are encapsulated in a molding compound. A redistribution layer is formed on the arrays of dies and ground plane members. The redistribution layer has an array of sets of redistribution conductors within a layer of insulating material. The redistribution conductors interconnect electrical contacts of the dies with external electrical contact elements of the device. As multiple devices are formed at the same time, adjacent devices are separated (singulated) by cutting along saw streets between the dies. The molding compound is interposed between tie bars of the ground plane members and the insulating material of the redistribution layer in the saw streets, and at the side surfaces of the singulated devices.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Dominic Poh Meng Koey, Zhiwei Gong
  • Publication number: 20130320551
    Abstract: Disclosed is a discrete semiconductor device package (100) comprising a semiconductor die (110) having a first surface and a second surface opposite said first surface carrying a contact (112); a conductive body (120) on said contact; an encapsulation material (130) laterally encapsulating said conductive body; and a capping member (140, 610) such as a solder cap, a further semiconductor die or a combination thereof in conductive contact with the solder portion, said solder cap extending over the encapsulation material. A further solder cap (150) may be provided over the first surface. A method of manufacturing such a discrete semiconductor device package is also disclosed.
    Type: Application
    Filed: May 8, 2013
    Publication date: December 5, 2013
    Applicant: NXP B.V
    Inventors: Tim BOETTCHER, Sven WALCZYK, Roelf Anco Jacob GROENHUIS, Rolf BRENNER, Emiel DE BRUIN
  • Publication number: 20130323884
    Abstract: Aspects and examples include electrical components and methods of forming electrical components. In one example, a method includes selecting a substrate, forming a pattern of a first conductive material on a top surface of the substrate, forming a pattern of a second conductive material on a bottom surface of the substrate, dicing the substrate into one or more die having a first diced surface and a second diced surface, securing the first diced surface of each of the one or more die to a retaining material, encapsulating the one or more die in an encapsulent to form a reconstituted wafer, and forming a pattern of a third conductive material on the second diced surface by metalizing a surface of the reconstituted wafer.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: THE CHARLES STARK DRAPER LABORATORY
    Inventor: Maurice Samuel Karpman
  • Publication number: 20130320515
    Abstract: A packaged semiconductor device may include a termination surface having terminations configured as leadless interconnects to be surface mounted to a printed circuit board. A first flange has a first surface and a second surface. The first surface provides a first one of the terminations, and the second surface is opposite to the first surface. A second flange also has a first surface and a second surface, with the first surface providing a second one of the terminations, and the second surface is opposite to the first surface. A die is mounted to the second surface of the first flange with a material having a melting point in excess of 240° C. An electrical interconnect extends between the die and the second surface of the second flange opposite the termination surface, such that the electrical interconnect, first flange and second flange are substantially housed within a body.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Lakshminarayan Viswanathan, Lakshmi N. Ramanathan, Audel A. Sanchez, Fernando A. Santos
  • Patent number: 8598720
    Abstract: A semiconductor device and its manufacturing method are offered to increase the number of semiconductor devices obtained from a semiconductor wafer while simplifying a manufacturing process. After forming a plurality of pad electrodes in a predetermined region on a top surface of a semiconductor substrate, a supporter is bonded to the top surface of the semiconductor substrate through an adhesive layer. Next, an opening is formed in the semiconductor substrate in a region overlapping the predetermined region. A wiring layer electrically connected with each of the pad electrodes is formed in the opening. After that, a stacked layer structure including the semiconductor substrate and the supporter is cut by dicing along a dicing line that is outside the opening.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: December 3, 2013
    Assignees: SANYO Semiconductor Co., Ltd., SANYO Semiconductor Manufacturing Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Hiroaki Tomita, Kazuyuki Sutou
  • Patent number: 8598690
    Abstract: A semiconductor device is made by mounting a plurality of semiconductor die to a substrate, depositing an encapsulant over the substrate and semiconductor die, forming a shielding layer over the semiconductor die, creating a channel in a peripheral region around the semiconductor die through the shielding layer, encapsulant and substrate at least to a ground plane within the substrate, depositing a conductive material in the channel, and removing a portion of the conductive material in the channel to create conductive vias in the channel which provide electrical connection between the shielding layer and ground plane. An interconnect structure is formed on the substrate and are electrically connected to the ground plane. Solder bumps are formed on a backside of the substrate opposite the semiconductor die. The shielding layer is connected to a ground point through the conductive via, ground plane, interconnect structure, and solder bumps of the substrate.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 3, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Harry Chandra, Flynn Carson
  • Patent number: 8597074
    Abstract: Methods and systems for imaging and cutting semiconductor wafers and other microelectronic device substrates are disclosed herein. In one embodiment, a system for singulating microelectronic devices from a substrate includes an X-ray imaging system having an X-ray source spaced apart from an X-ray detector. The X-ray source can emit a beam of X-rays through the substrate and onto the X-ray detector, and X-ray detector can generate an X-ray image of at least a portion of the substrate. A method in accordance with another embodiment includes detecting spacing information for irregularly spaced dies of a semiconductor workpiece. The method can further include automatically controlling a process for singulating the dies of the semiconductor workpiece, based at least in part on the spacing information. For example, individual dies can be singulated from a workpiece via non-straight line cuts and/or multiple cutter passes.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 3, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Tom A. Muntifering, Paul J. Clawson
  • Publication number: 20130316497
    Abstract: Aspects and examples include electrical components and methods of forming electrical components. In one example, a method includes selecting a substrate, forming a pattern of a first conductive material on a top surface of the substrate, forming a pattern of a second conductive material on a bottom surface of the substrate, dicing the substrate into one or more die having a first diced surface and a second diced surface, securing the first diced surface of each of the one or more die to a retaining material, encapsulating the one or more die in an encapsulent to form a reconstituted wafer, and forming a pattern of a third conductive material on the second diced surface by metalizing a surface of the reconstituted wafer.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: THE CHARLES STARK DRAPER LABORATORY
    Inventor: Maurice Samuel Karpman
  • Publication number: 20130316498
    Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.
    Type: Application
    Filed: June 18, 2013
    Publication date: November 28, 2013
    Applicant: DENSO CORPORATION
    Inventors: Masaki KOYAMA, Yutaka FUKUDA
  • Publication number: 20130313716
    Abstract: A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are uncovered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Applicant: INVENSAS CORPORATION
    Inventor: Ilyas Mohammed
  • Patent number: 8592252
    Abstract: A semiconductor wafer contains a plurality of semiconductor die. The semiconductor wafer is diced to separate the semiconductor die. The semiconductor die are transferred onto a carrier. A die extension region is formed around a periphery of the semiconductor die on the carrier. The carrier is removed. A plurality of through hole vias (THV) is formed in first and second offset rows in the die extension region. A conductive material is deposited in the THVs. A first RDL is formed between contact pads on the semiconductor die and the THVs. A second RDL is formed on a backside of the semiconductor die in electrical contact with the THVs. An under bump metallization is formed in electrical contact with the second RDL. Solder bumps are formed on the under bump metallization. The die extension region is singulated to separate the semiconductor die.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: November 26, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Henry Descalzo Bathan, Zigmund Ramirez Camacho, Lionel Chien Hui Tay, Arnel Senosa Trasporto
  • Patent number: 8592950
    Abstract: A semiconductor device is made by providing a first semiconductor wafer having semiconductor die. A gap is made between the semiconductor die. An insulating material is deposited in the gap. A portion of the insulating material is removed to form a first through hole via (THV). A conductive lining is conformally deposited in the first THV. A solder material is disposed above the conductive lining of the first THV. A second semiconductor wafer having semiconductor die is disposed over the first wafer. A second THV is formed in a gap between the die of the second wafer. A conductive lining is conformally deposited in the second THV. A solder material is disposed above the second THV. The second THV is aligned to the first THV. The solder material is reflowed to form the conductive vias within the gap. The gap is singulated to separate the semiconductor die.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: November 26, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Linda Pei Ee Chua, Byung Tai Do
  • Patent number: 8592257
    Abstract: A method for fabricating a semiconductor module includes: bonding a semiconductor substrate onto a first insulating resin layer; dicing the semiconductor substrate into a plurality of individual semiconductor devices; widening the spacings between the adjacent semiconductor devices by expanding the first insulating resin layer in a biaxially stretched manner; fixing the plurality of semiconductor devices to a flat sheet, with a second insulating resin layer held between the plurality of semiconductor devices and the flat sheet, and removing the first insulating resin layer; stacking the plurality of semiconductor devices, a third insulating resin layer, and a metallic plate, in this order, so as to form a laminated body having electrodes by which to electrically connect the device electrodes to the metallic plate; forming a wiring layer by selectively removing the metallic plate and forming a plurality of semiconductor modules; and separating the semiconductor modules into individual units.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: November 26, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Mayumi Nakasato, Kouichi Saitou
  • Patent number: 8592993
    Abstract: A monolithic integrated electronic device includes a substrate having a surface region and one or more integrated micro electro-mechanical systems and electronic devices provided on a first region overlying the surface region. Each of the integrated micro electro-mechanical systems and electronic devices has one or more contact regions. The first region has a first surface region. One or more trench structures are disposed within one or more portions of the first region. A passivation material overlies the first region and the one or more trench structures. A conduction material overlies the passivation material, the one or more trench structures, and one or more of the contact regions. The device also has one or more edge bond pad structures within a vicinity of the one or more bond pad structures, which are formed by a singulation process within a vicinity of the one or more bond pad structures.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 26, 2013
    Assignee: mCube Inc.
    Inventor: Xiao (Charles) Yang
  • Publication number: 20130307137
    Abstract: Embodiments of the present invention provide a chip package including: a semiconductor substrate having a first surface and a second surface; a device region formed in the semiconductor substrate; a dielectric layer disposed on the first surface; and a conducting pad structure disposed in the dielectric layer and electrically connected to the device region; a cover substrate disposed between the chip and the cover substrate, wherein the spacer layer, a cavity is created an surrounded by the chip and the cover substrate on the device region, and the spacer layer is in direct contact with the chip without any adhesion glue disposed between the chip and the spacer layer.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 21, 2013
    Applicant: XINTEC INC.
    Inventors: Po-Shen LIN, Tsang-Yu LIU, Yen-Shih HO, Chih-Wei HO, Yu-Min LIANG
  • Publication number: 20130307161
    Abstract: An embodiment of the invention provides a chip package which includes: a first substrate; a second substrate disposed thereon, wherein the second substrate includes a lower semiconductor layer, an upper semiconductor layer, and an insulating layer therebetween, and a portion of the lower semiconductor layer electrically contacts with at least one pad on the first substrate; a conducting layer disposed on the upper semiconductor layer of the second substrate and electrically connected to the portion of the lower semiconductor layer electrically contacting with the at least one pad; an opening extending from the upper semiconductor layer towards the lower semiconductor layer and extending into the lower semiconductor layer; and a protection layer disposed on the upper semiconductor layer and the conducting layer, wherein the protection layer extends onto a portion of a sidewall of the opening, and does not cover the lower semiconductor layer in the opening.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 21, 2013
    Applicant: XINTEC INC.
    Inventors: Shu-Ming CHANG, Yu-Ting HUANG, Tsang-Yu LIU, Yen-Shih HO
  • Publication number: 20130307124
    Abstract: A method for manufacturing an electronic component includes mounting a vibrating element on each singulation region of a base substrate, joining the surface of a lid substrate where grooves are arranged to the base substrate via low-melting glass so as to cover a functional element in each singulation region, thereby obtaining a laminate, and performing singulation in each singulation region by breaking the laminate along grooves.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 21, 2013
    Applicant: Seiko Epson Corporation
    Inventor: Kenji WADA
  • Publication number: 20130307141
    Abstract: A packaged semiconductor device (100) comprising a semiconductor chip (101) of an area having a first surface (101a) including a plurality of bond pads (102) linearly arrayed, adjacent pads having a first pitch (103) center-to-center; an insulating layer (110) on the first chip surface covering the chip area, the layer having a height (116) and a second surface (110a) parallel to the first surface; the second surface including contact nodes (120) in staggered array, the nodes having the same plurality as the pads, adjacent nodes having a second pitch (121) center-to-center greater than the first pitch; and metal wires through the layer height connecting the pads to respective nodes.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Charles Anthony Odegard, Marvin Wayne Cowens, Jaimal Mallory Williamson
  • Publication number: 20130307125
    Abstract: An embodiment of the invention provides a chip package which includes: a semiconductor substrate having an upper surface and a lower surface; a device region or sensing region defined in the semiconductor substrate; a conducting pad located on the upper surface of the semiconductor substrate; at least two recesses extending from the upper surface towards the lower surface of the semiconductor substrate, wherein sidewalls and bottoms of the recesses together form a sidewall of the semiconductor substrate; a conducting layer electrically connected to the conducting pad and extending from the upper surface of the semiconductor substrate to the sidewall of the semiconductor substrate; and an insulating layer located between the conducting layer and the semiconductor substrate.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Applicant: XINTEC INC.
    Inventors: Yu-Lung HUANG, Chao-Yen LIN, Wei-Luen SUEN, Chien-Hui CHEN
  • Patent number: 8587019
    Abstract: A metal plate on a multi-die LED emitter substrate or a metal plate on a metal-core printed circuit board (MCPCB) that attaches to the emitter substrate (or both plates) can be fabricated with a number of generally radial grooves, at least some of which extend to the peripheral edge of the plate. These grooves can provide channels that allow air to escape during solder-bonding processes, reducing the size and/or total area of solder voids and thereby improving thermal transfer between the emitter and the MCPCB.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: November 19, 2013
    Assignee: LedEngin, Inc.
    Inventors: Xiantao Yan, Debo A. Adebiyi, Zequn Mei
  • Patent number: 8587125
    Abstract: A layered chip package includes a main body, and wiring including a plurality of wires disposed on a side surface of the main body. The main body includes a plurality of semiconductor chips stacked, and a plurality of electrodes that electrically connect the semiconductor chips to the wires. A method of manufacturing the layered chip package includes the steps of: fabricating a substructure that includes an array of a plurality of pre-separation main bodies and a plurality of holes for accommodating a plurality of preliminary wires, the holes being formed between two adjacent pre-separation main bodies; forming the preliminary wires in the plurality of holes by plating; and cutting the substructure so that the plurality of pre-separation main bodies are separated from each other and the preliminary wires are split into two sets of wires of two separate main bodies, whereby a plurality of layered chip packages are formed.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Publication number: 20130302946
    Abstract: The present invention features a method for fabricating a lead-frame package, having a first, second, third and fourth electrically conductive structures with a pair of semiconductor dies disposed therebetween defining a stacked structure. The first and second structures are spaced-apart from and in superimposition with the first structure. A semiconductor die is disposed between the first and second structures. The semiconductor die has contacts electrically connected to the first and second structures. A part of the third structure lies in a common plane with a portion of the second structure. The third structure is coupled to the semiconductor die.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Jun Lu, Ming Sun, Yueh-Se Ho, Kai Liu, Lei Shi
  • Publication number: 20130299956
    Abstract: There is provided a technology by which the position of 1 pin in a tabless package can be recognized easily. The rear surfaces of plural leads are exposed on a rear surface of a resin-sealed body which seals a semiconductor chip etc., a image recognition area is further provided adjacent to 1 pin (lead with index 1), and a rear surface of an identification mark is exposed from the rear surface of the resin-sealed body of the image recognition area. This identification mark is made of the same conductive member as the plural leads.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: Renesas Electronics Corporation
    Inventor: Hiroaki NARITA
  • Publication number: 20130299955
    Abstract: Film-on-wire (FOW) based IC devices and FOW based methods for IC packaging are described. In an embodiment, a method for packaging an IC dies involves applying a film layer to IC dies and bond wires that are attached to a substrate or a leadframe to form a film-on-wire layer, where the IC dies and the bond wires are enclosed by the film-on-wire layer, and cutting the substrate or the leadframe into IC devices. Other embodiments are also described. The FOW based method for IC packaging can eliminate the need for molding in the IC packaging process and consequently, can reduce the cost of IC packaging and the dimensions of packaged IC devices.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Applicant: NXP B.V.
    Inventors: Ching Hui Chang, Li Ching Wang, Wen Hung Huang, Pao Tung Pan, Chih Li Huang, I Pin Chen, Chia Han Lin, Chung Hsiung Ho
  • Publication number: 20130302945
    Abstract: A method of dividing a two dimensional array of encapsulated integrated circuits into individual integrated circuit packages uses a first series of parallel cuts (32) extending fully through the leadframe (16) and encapsulation layer (14), and defining rows of the array. The cuts terminate before the beginning and end of the rows such that the integrity of the array is maintained by edge portions (34) at the ends of the rows. After plating contact pads (18), a second series of parallel cuts (36) is made extending fully through the leadframe (16) and encapsulation layer (14). This separates the array into columns thereby providing singulation of packages between the edge portions (34).
    Type: Application
    Filed: September 29, 2010
    Publication date: November 14, 2013
    Applicant: NXP B.V.
    Inventors: Martin Ka Shing Li, Max Leung, Pompeo Umali
  • Publication number: 20130302944
    Abstract: A method of fabricating a semiconductor package includes forming a plurality of terminals on a sheet carrier, molding the sheet carrier with a first molding compound, creating electrical paths for a first routing layer, plating the first routing layer, placing dice on the first routing layer, encapsulating the dice with a second molding compound, removing at least a portion of the sheet carrier, and singulating the package from other packages.
    Type: Application
    Filed: March 26, 2013
    Publication date: November 14, 2013
    Applicant: UTAC Thai Limited
    Inventors: Saravuth Sirinorakul, Suebphong Yenrudee
  • Publication number: 20130299974
    Abstract: A semiconductor device is made by mounting a semiconductor wafer to a temporary carrier. A plurality of TSV is formed through the wafer. A cavity is formed partially through the wafer. A first semiconductor die is mounted to a second semiconductor die. The first and second die are mounted to the wafer such that the first die is disposed over the wafer and electrically connected to the TSV and the second die is disposed within the cavity. An encapsulant is deposited over the wafer and first and second die. A portion of the encapsulant is removed to expose a first surface of the first die. A portion of the wafer is removed to expose the TSV and a surface of the second die. The remaining portion of the wafer operates as a TSV interposer for the first and second die. An interconnect structure is formed over the TSV interposer.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: HeeJo Chi, NamJu Cho, HanGil Shin
  • Publication number: 20130299848
    Abstract: In one embodiment, a semiconductor package includes a vertical semiconductor chip having a first major surface on one side of the vertical semiconductor chip and a second major surface on an opposite side of the vertical semiconductor chip. The first major surface includes a first contact region and the second major surface includes a second contact region. The vertical semiconductor chip is configured to regulate flow of current from the first contact region to the second contact region along a current flow direction. A back side conductor is disposed at the second contact region of the second major surface. The semiconductor package further includes a first encapsulant in which the vertical semiconductor chip and the back side conductor are disposed.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Edward Fuergut, Joachim Mahler, Khalil Hosseini, Hans-Joerg Timme
  • Patent number: 8580616
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 12, 2013
    Assignee: Intel Corporation
    Inventors: Ravi K. Nalla, Mathew J. Manusharow, Pramod Malatkar
  • Patent number: 8580615
    Abstract: A method of singulating a plurality of semiconductor dies includes providing a carrier substrate and joining a semiconductor substrate to the carrier substrate. The semiconductor substrate includes a plurality of devices. The method also includes forming a mask layer on the semiconductor substrate, exposing a predetermined portion of the mask layer to light, and processing the predetermined portion of the mask layer to form a predetermined mask pattern on the semiconductor substrate. The method further includes forming the plurality of semiconductor dies, each of the plurality of semiconductor dies being associated with the predetermined mask pattern and including one or more of the plurality of devices and separating the plurality of semiconductor dies from the carrier substrate.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Klaus Schuegraf, Seshadri Ramaswami, Michael R. Rice, Mohsen S. Salek, Claes H. Bjorkman
  • Patent number: 8580656
    Abstract: Adherence of contaminant residues or particles is suppressed, corrosion of exposed surfaces is substantially reduced or eliminated during the process of dicing a wafer by sawing. A fluoride-free aqueous composition comprising a dicarboxylic acid and/or salt thereof; a hydroxycarboxylic acid and/or salt thereof or amine group containing acid, a surfactant and deionized water is employed.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: November 12, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Terence Quintin Collier, Charles A. Lhota, David Barry Rennie, Rajkumar Ramamurthi, Madhukar Bhaskara Rao, Dnyanesh Chandrakant Tamboli
  • Patent number: 8580589
    Abstract: A wafer-level process for fabricating a plurality of photoelectric modules is provided. The wafer-level process includes at least following procedures. Firstly, a wafer including a plurality of chips arranged in an array is provided. Next, a plurality of photoelectric devices are mounted on the chips. Next, a cover plate including a plurality of covering units arranged in an array is provided. Next, a plurality of light guiding mediums are formed over the cover plate. Next, the cover plate is bonded with the wafer by an adhesive, wherein each of the covering units covers and bonds with one of the chips, and the light guiding mediums are sandwiched between the cover plate and the wafer. Then, the wafer and the cover plate are diced to obtain the plurality of photoelectric modules.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: November 12, 2013
    Assignee: Centera Photonics Inc.
    Inventors: Hsu-Liang Hsiao, Chun-Chiang Yen, Guan-Fu Lu
  • Publication number: 20130292852
    Abstract: A chip embedded package is provided, the chip embedded package including: a plurality of dies; wherein a first die of the plurality of dies is a chip implementing a first sensor technology, and wherein a second die of the plurality of dies is a chip implementing a second sensor technology; and wherein the plurality of dies are molded with an encapsulation material; wherein at least one of the first die and the second die includes a film interconnect.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Edward FUERGUT, Horst THEUSS
  • Publication number: 20130292845
    Abstract: A stacked semiconductor package includes a first semiconductor chip having a first surface and a second surface which faces away from the first surface and including first bonding pads which are formed on the first surface and first through electrodes which pass through the first surface and the second surface; a second semiconductor chip stacked over the second surface of the first semiconductor chip, and including second bonding pads which are formed on a third surface facing the first semiconductor chip and second through electrodes which pass through the third surface and a fourth surface facing away from the third surface and are electrically connected with the first through electrodes; and a molding part formed to substantially cover the stacked first and second semiconductor chips and having openings which expose one end of the first through electrodes disposed on the first surface of the first semiconductor chip.
    Type: Application
    Filed: December 4, 2012
    Publication date: November 7, 2013
    Applicant: SK HYNIX INC.
    Inventor: Hyeong Seok CHOI
  • Publication number: 20130292837
    Abstract: Aspects of the disclosure are directed towards an efficient wafer level chip-scale package, and methods or producing the packages. Various aspects are directed to protecting against humidity, contamination, mechanical damage, and current leakage while maintaining isolation and manufacturability of the plastic package and a ratio of active die size to package size.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Inventors: Olaf Pfennigstorf, Wolfgang Schnitt
  • Publication number: 20130292684
    Abstract: In one embodiment, a semiconductor package includes a semiconductor chip having a first contact region on a first major surface and a second contact region on an opposite second major surface. The semiconductor chip is configured to regulate flow of a current from the first contact region to the second contact region. An encapsulant is disposed at the semiconductor chip. A first contact plug is disposed within the encapsulant and coupled to the first contact region. A second side conductive layer is disposed under the second major surface and coupled to the second contact region. A through via is disposed within the encapsulant and coupled to the second side conductive layer. The first contact plug and the through via form terminals above the first major surface for contacting the semiconductor package.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Ivan Nikitin, Edward Fuergut
  • Patent number: 8575758
    Abstract: A method of forming stacked die devices includes attaching first semiconductor die onto a wafer to form a reconstituted wafer, and then bonding second semiconductor die onto the first semiconductor die to form a plurality of singulated stacked die devices on the wafer. A support tape is attached to a bottomside of the second semiconductor die. A dicing tape is attached to the wafer. The wafer is laser irradiated before or after attachment of the dicing tape at intended dicing lanes that align with gaps between the first semiconductor die to mechanically weaken the wafer at the intended dicing lanes, but not cut through the wafer. The dicing tape is pulled to cleave the wafer into a plurality of singulated portions to form a plurality of singulated stacked die devices attached to the singulated wafer portions by the dicing tape. The support tape is removed prior to cleaving.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 5, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey Alan West, Margaret Simmons-Matthews, Raymundo M. Camenforte
  • Patent number: 8574962
    Abstract: A method of manufacturing a semiconductor device comprises the steps of (a) applying a resin member onto a front surface of a semiconductor wafer having an uneven structure on the front surface thereof, and (b) flattening a surface of the resin member by heating the resin member, and in the method, the resin member is formed also on a side surface of the semiconductor wafer. The method further comprises the steps of (c) performing a thinning process for the semiconductor wafer on a back surface thereof after the step (b), and (d) removing the resin member from the semiconductor wafer after the step (c). By the method, it is possible to uniformize the thickness of a semiconductor wafer which is thinned and reduce the number of foreign matters remaining on a surface of the semiconductor wafer.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: November 5, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazunari Nakata, Yoshiaki Terasaki
  • Publication number: 20130286614
    Abstract: A composite wafer includes a molded wafer and a second wafer. The molded wafer includes a plurality of first components, and the second wafer includes a plurality of second components. The second wafer is combined with the molded wafer to form the composite wafer. At least one of the first components is aligned with at least one of the second components to form a multi-component element. The multi-component element is singulatable from the composite wafer.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventors: Michael Renne Ty Tan, Georgios Panotopoulos, Paul Kessler Rosenberg, Sagi Varghese Mathai, Wayne Victor Sorin, Susant K. Patra
  • Publication number: 20130285262
    Abstract: The present invention provides a dicing tape-integrated wafer back surface protective film including: a dicing tape including a base material and a pressure-sensitive adhesive layer formed on the base material; and a wafer back surface protective film formed on the pressure-sensitive adhesive layer of the dicing tape, in which the wafer back surface protective film is colored. It is preferable that the colored wafer back surface protective film has a laser marking ability. The dicing tape-integrated wafer back surface protective film can be suitably used for a flip chip-mounted semiconductor device.
    Type: Application
    Filed: June 26, 2013
    Publication date: October 31, 2013
    Inventors: Naohide TAKAMOTO, Takeshi MATSUMURA
  • Publication number: 20130288433
    Abstract: Methods and devices for multi-chip stacks are shown. A method is shown that assembles multiple chips into stacks by stacking wafers prior to dicing into individual chips. Methods shown provide removal of defective chips and their replacement during the assembly process to improve manufacturing yield.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 31, 2013
    Inventor: Paul A. Farrar
  • Publication number: 20130288429
    Abstract: A method for encapsulating a microcomponent positioned on a substrate, including: a) production of an electrical contact pad on the substrate; b) production of a portion of sacrificial material covering the microcomponent and the electrical contact pad; c) production of an encapsulation layer covering the sacrificial material and a first face of the substrate; d) production, through the substrate, of a hole aligned with the electrical contact pad and emerging at the portion of sacrificial material; e) elimination of the portion of sacrificial material through the hole; f) production, in the hole, of a conductive portion electrically connected to the electrical contact pad, forming a conductive via.
    Type: Application
    Filed: January 2, 2012
    Publication date: October 31, 2013
    Applicant: Commissariat a L'Energie Atomique et aux Ene Alt
    Inventors: Fabrice Jacquet, David Henry
  • Publication number: 20130285259
    Abstract: A method and system is provided by which multiple semiconductor die stacks can be assembled in a batch manner, and which also provides for die alignment tolerances required by microelectromechanical systems and other system-in-package applications. The batch process and accuracy is provided, in part, by an intermediate die attach carrier that has multiple die pockets fabricated to hold a set of die with an alignment required for the application. Die are placed in each pocket using a die sorting process. Then a batch process operation is performed in which wafer or strip-level alignment and bonding tools are used to join the die in the intermediate die attach carrier in stacks with a second set of die.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventor: Caleb C. Han
  • Patent number: 8569108
    Abstract: A coating for a microelectronic device comprises a polymer film (131) containing a filler material (232). The polymer film has a thermal conductivity greater than 3 W/m·K and a thickness (133) that does not exceed 10 micrometers. The polymer film may be combined with a dicing tape (310) to form a treatment (300) that simplifies a manufacturing process for a microelectronic package (100) and may be used in order to manage a thermal profile of the microelectronic device.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 29, 2013
    Assignee: Intel Corporation
    Inventors: Dingying Xu, Leonel R. Arana, Nachiket R. Raravikar, Mohit Mamodia, Rajasekaran Swaminathan, Rahul Manepalli
  • Patent number: 8569876
    Abstract: A chip-sized, wafer level packaged device including a portion of a semiconductor wafer including a device, at least one packaging layer containing silicon and formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device and a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: October 29, 2013
    Assignee: Tessera, Inc.
    Inventors: Andrey Grinman, David Ovrutsky, Charles Rosenstein, Vage Oganesian
  • Patent number: 8569107
    Abstract: A semiconductor IC includes grooves formed in a substrate to define a first dummy region and second dummy regions formed at a scribing area, and third dummy regions and a fourth dummy region formed at a product area. A width of the first dummy region is greater than widths of each of the second and third dummy regions and a width of the fourth dummy region is greater than widths of each of the third dummy regions. A conductor pattern is formed over the first dummy region for optical pattern recognition. The first dummy region is formed under the conductor pattern so the grooves are not formed under the conductor pattern. The second dummy regions are spaced from one another by a predetermined spacing at the scribing area, and the third dummy regions are spaced from one another by a predetermined spacing at the product area.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: October 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroyuki Uchiyama, Hiraku Chakihara, Teruhisa Ichise, Michimoto Kaminaga