Substrate Dicing Patents (Class 438/113)
  • Patent number: 8883565
    Abstract: In accordance with an embodiment of the present invention, a semiconductor device is manufactured by arranging a plurality of semiconductor devices on a frame with an adhesive foil. The plurality of semiconductor devices is attached to the adhesive foil. The plurality of semiconductor devices is removed from the frame with the adhesive foil using a carbon dioxide snow jet and/or a laser process.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: November 11, 2014
    Assignee: Infineon Technologies AG
    Inventors: Mathias Vaupel, Sebastian Bernrieder, Adolf Koller, Stefan Martens
  • Patent number: 8883615
    Abstract: Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes are described. In an example, a method of dicing a semiconductor wafer having a front surface having a plurality of integrated circuits thereon involves forming an underfill material layer between and covering metal pillar/solder bump pairs of the integrated circuits. The method also involves forming a mask layer on the underfill material layer. The method also involves laser scribing mask layer and the underfill material layer to provide scribe lines exposing portions of the semiconductor wafer between the integrated circuits. The method also involves removing the mask layer. The method also involves, subsequent to removing the mask layer, plasma etching the semiconductor wafer through the scribe lines to singulate the integrated circuits, wherein the second insulating layer protects the integrated circuits during at least a portion of the plasma etching.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: November 11, 2014
    Assignee: Applied Materials, Inc.
    Inventors: James Matthew Holden, Wei-Sheng Lei, James S. Papanu, Ajay Kumar
  • Patent number: 8883564
    Abstract: A process for producing a substrate, which comprises processing an aluminum/graphite composite into plates having a thickness of 0.5-3 mm using a multi-wire saw under the following conditions (1) to (4): (1) the wires have abrasive grains bonded thereto which are one or more substances selected from diamond, C—BN, silicon carbide, and alumina and have an average particle diameter of 10-100 ?m; (2) the wires have a diameter of 0.1-0.3 mm; (3) the wires are run at a rate of 100-700 m/min; and (4) the composite is cut at a rate of 0.1-2 mm/min. The aluminum/graphite composite has a surface roughness (Ra) of 0.1-3 ?m, a thermal conductivity at 25° C. of 150-300 W/mK, a ratio of the maximum to the minimum value of thermal conductivity in three perpendicular directions of 1-1.3, a coefficient of thermal expansion at 25-150° C. of 4×106 to 7.5×10?6/K, a ratio of the maximum to the minimum value of coefficient of thermal expansion in three perpendicular directions of 1-1.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: November 11, 2014
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hideki Hirotsuru, Satoshi Higuma, Shinya Narita, Yoshihiko Tsujimura
  • Patent number: 8884347
    Abstract: The present disclosure provides a method of manufacturing a photoelectric conversion device, including, a first step of forming a plurality of photoelectric conversion regions on a surface on one side of a semiconductor wafer, a second step of preparing a light-blocking wafer having insertion openings, a third step of bonding the one-side surface of the semiconductor wafer and a surface on the opposite side to a surface on the one side of the light-blocking wafer to each other to form a bonded wafer body, and a fourth step of dividing the bonded wafer body in peripheries of the photoelectric conversion regions, to obtain bonded-body chips each having the photoelectric conversion region.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventor: Yasuhide Nihei
  • Patent number: 8881377
    Abstract: A method for determining a critical dimension of a structure along a plane of interest from a measurement along a test plane that is not necessarily located at the plane of interest. The method involves slicing a structure along a test plane and measuring a marker feature in this test plane. A determination of a critical dimension of a feature at the plane of interest is then determined based on the measurement of the marker feature measurement at the test plane. This testing methodology can be useful, for example in the measurement of a critical dimension of a write pole at an air bearing surface plane form a measurement of a test feature at a plane that is not necessarily located at the air bearing surface plane.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: November 11, 2014
    Assignee: HGST Netherlands B.V.
    Inventor: Chester X. Chien
  • Patent number: 8883566
    Abstract: Grooves are formed on the front surfaces of first and second semiconductor wafers each including an aggregate of a plurality of semiconductor chips. The grooves each extend on a dicing line set between the semiconductor chips and to have a larger width than the dicing line. Thereafter the first and second semiconductor wafers are arranged so that the front surfaces thereof are opposed to each other, and the space between the first semiconductor wafer and the second semiconductor wafer is sealed with underfill. Thereafter the rear surfaces of the first and second semiconductor wafers are polished until at least the grooves are exposed, and a structure including the first and second semiconductor wafers and the underfill is cut on the dicing line.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 11, 2014
    Assignees: Rohm Co., Ltd., Renesas Electronics Corporation
    Inventors: Tadahiro Morifuji, Haruo Shimamoto, Chuichi Miyazaki, Toshihide Uematsu, Yoshiyuki Abe
  • Patent number: 8877555
    Abstract: Preparation methods of forming packaged semiconductor device, specifically for flip-chip vertical power device, are disclosed. In these methods, a vertical semiconductor chip is flip-chip attached to a lead frame and then encapsulated with plastic packing materials. Encapsulated chip is then thinned to a predetermined thickness. Contact terminals connecting the chip with external circuit are formed by etching at least a bottom portion of the lead frame connected.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 4, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Lei Shi, Yan Xun Xue, Yuping Gong
  • Patent number: 8877613
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 4, 2014
    Assignees: Renesas Electronics Corporation, Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Patent number: 8876312
    Abstract: In one embodiment, a light-emitting device having a substrate, a casing, a plurality of light source dies, a plurality of spectral converters and a plurality of optical structures is disclosed. The spectral converters may be configured to spectrally adjust a portion of the light output of the light source die into a first and second converted spectral output that is substantially different from one another. In another embodiment, a system for illumination having a plurality of lighting assemblies has been disclosed. Each of the lighting assemblies comprises a light source die and a spectral converter. The spectral converter is configured to spectrally adjust the light output of the light source die so that the plurality of lighting assemblies are configured to emit substantially different spectral output. In yet another embodiment, a lighting apparatus having a primary spectral converter and a secondary spectral converter is disclosed.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: November 4, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Kheng Leng Tan, Ju Chin Poh, Keat Chuan Ng, Chuan Hoe Chan, Kwok Yuen Ng, Kum Soon Wong
  • Publication number: 20140319680
    Abstract: A semiconductor wafer has a plurality of semiconductor die with contact pads for electrical interconnect. An insulating layer is formed over the semiconductor wafer. A bump structure is formed over the contact pads. The bump structure has a buffer layer formed over the insulating layer and contact pad. A portion of the buffer layer is removed to expose the contact pad and an outer portion of the insulating layer. A UBM layer is formed over the buffer layer and contact pad. The UBM layer follows a contour of the buffer layer and contact pad. A ring-shaped conductive pillar is formed over the UBM layer using a patterned photoresist layer filled with electrically conductive material. A conductive barrier layer is formed over the ring-shaped conductive pillar. A bump is formed over the conductive barrier layer. The buffer layer reduces thermal and mechanical stress on the bump and contact pad.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: JoonYoung Choi, YoungJoon Kim, SungWon Cho
  • Publication number: 20140322867
    Abstract: An integrated circuit structure includes a first conductive layer (MET4) including a first forked conductive structure (310), an insulating layer (320, ILD45) substantially disposed over the first forked conductive structure (310), a plurality of conductive vias (331-334) through the insulating layer (ILD45) and electrically connecting with the first forked conductive structure (310), and a second conductive layer (MET5) including a second forked conductive structure (340) substantially disposed over at least a portion of the insulating layer (ILD45) and generally perpendicular to the first forked conductive structure (310), the plurality of conductive vias (331-334) electrically connecting with the second forked conductive structure (340). Other structures, devices, and processes are also disclosed.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventor: Hugh Thomas MAIR
  • Patent number: 8871568
    Abstract: A method includes forming a dielectric layer over a substrate, forming an interconnect structure over the dielectric layer, and bonding a die to the interconnect structure. The substrate is then removed, and the dielectric layer is patterned. Connectors are formed at a surface of the dielectric layer, wherein the connectors are electrically coupled to the die.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Ching Shih, Szu Wei Lu, Jing-Cheng Lin
  • Patent number: 8871570
    Abstract: A method for fabricating an optical interconnect includes producing a semiconductor wafer that includes multiple first dies. Each first die includes circuitry disposed over a surface of the wafer and connected to conductive vias arranged in rows. The multiple first dies are diced by cutting the wafer across the rows of the vias, such that, in each first die, the cut vias form respective contact pads on a side face of the first die that is perpendicular to the surface. A second semiconductor die including one or more optoelectronic transducers is attached to the contact pads, so as to connect the transducers to the circuitry.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: October 28, 2014
    Assignee: Mellanox Technologies Ltd.
    Inventors: Shmuel Levy, Shai Rephaeli
  • Patent number: 8871540
    Abstract: A laser dicing method includes: placing a workpiece substrate on a stage; generating a clock signal; emitting a pulse laser beam synchronous with the clock signal; switching irradiation and non-irradiation of the workpiece substrate with the pulse laser beam in a unit of light pulse in synchronization with the clock signal to perform first irradiation of the pulse laser beam on a first straight line by controlling the pulse laser beam using a pulse picker; performing second irradiation of the pulse laser beam on a second straight line, which is adjacent to the first straight line in a substantially parallel fashion, after the first irradiation; and forming a crack reaching a workpiece substrate surface on the workpiece substrate by the first irradiation and the second irradiation.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 28, 2014
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Shoichi Sato
  • Patent number: 8871614
    Abstract: A semiconductor die and a related method of processing a semiconductor wafer are disclosed in which a first interlayer insulator having a recess region of varying configuration and defining a scribe line is associated with at least one protective layer formed with a characterizing inclined side surface.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-joon Kim, Hyeoung-won Seo
  • Publication number: 20140315351
    Abstract: A semiconductor package without a chip carrier formed thereon and a fabrication method thereof. A metallic carrier is half-etched to form a plurality of grooves and metal studs corresponding to the grooves. The grooves are filled with a first encapsulant and a plurality of bonding pads are formed on the metal studs. The first encapsulant is bonded with the metal studs directly. Each of the bonding pads and one of the metal studs corresponding to the bonding pad form a T-shaped structure. Therefore, bonding force between the metal studs and the first encapsulant is enhanced such that delamination is avoided. Die mounting, wire-bonding and molding processes are performed subsequently. Since the half-etched grooves are filled with the first encapsulant, the drawback of having pliable metallic carrier that makes transportation difficult to carry out as encountered in prior techniques is overcome, and the manufacturing cost is educed by not requiring the use of costly metals as an etching resist layer.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 8865568
    Abstract: Fractures (17a, 17b) are generated from modified regions (7a, 7b) to front and rear faces (12a, 12b) of a object to be processed (1), respectively, while an unmodified region (2) is interposed between the modified regions (7a, 7b). This can prevent fractures from continuously advancing in the thickness direction of a silicon substrate (12) when forming a plurality of rows of modified regions (7). By generating a stress in the object (1), the fractures (17a, 17b) are connected to each other in the unmodified region (2), so as to cut the object (1). This can prevent fractures from meandering in the rear face (12b) of the object (1) and so forth, whereby the object (1) can be cut accurately along a line to cut the object (5).
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: October 21, 2014
    Assignee: Hamamatsu Photonics K.K
    Inventors: Takeshi Sakamoto, Aiko Nakagawa
  • Publication number: 20140308778
    Abstract: An embodiment of a method for making semiconductor device packages includes a heat sink matrix and a substrate. A plurality of semiconductor devices is attached to the substrate. Then, a package body is formed between the heat sink matrix and the substrate, wherein the package body encapsulates the semiconductor devices. Then, a plurality of first cutting slots is formed, wherein the first cutting slots extend through the heat sink matrix and partially extend into the package body. Then, a plurality of second cutting slots is formed, wherein the second cutting slots extend through the substrate and through the package body to the first cutting slot, thereby singulating the heat sink matrix and substrate into a plurality of individual semiconductor device packages.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Inventors: Kuang-Hsiung Chen, Sheng-Ming Wang, Yu-Ying Lee, Hsiang-Ming Feng, Bing-Yun Cheng
  • Publication number: 20140306327
    Abstract: A semiconductor device includes a device carrier and a semiconductor chip attached to the device carrier. Further, the semiconductor device includes a lid having a recess. The lid includes a semiconductor material and is attached to the device carrier such that the semiconductor chip is accommodated in the recess.
    Type: Application
    Filed: April 13, 2013
    Publication date: October 16, 2014
    Applicant: Infineon Technologies AG
    Inventors: Hans-Joachim SCHULZE, Johannes BAUMGARTL, Gerald LACKNER, Anton MAUDER, Francisco Javier SANTOS RODRIGUEZ
  • Patent number: 8860071
    Abstract: In one embodiment, a semiconductor module includes a leadframe having a first side and an opposite second side. A semiconductor chip is disposed over the first side of the leadframe. A switching element is disposed under the second side of the leadframe. In another embodiment, a method of forming a semiconductor module includes providing a semiconductor device having a leadframe. A semiconductor chip is disposed over a first side of the leadframe. A switching element is attached at an opposite second side of the leadframe.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Patent number: 8860185
    Abstract: The subject matter disclosed herein relates to structures formed on semiconductor chips that are used for at least partially addressing the thermally induced stresses and metallization system cracking problems in a semiconductor chip that may be caused by the presence of through-silicon vias (TSV's), and which may be due primarily to the significant differences in thermal expansion between the materials of the TSV's and the semiconductor-based materials that generally make up the remainder of the semiconductor chip. One device disclosed herein includes a substrate and a crack-arresting structure positioned above the substrate, the crack-arresting structure comprising a plurality of crack-arresting elements and having a perimeter when viewed from above.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 14, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte Ltd
    Inventors: Shaoning Yuan, Yue Kang Lu, Yeow Kheng Lim, Juan Boon Tan
  • Patent number: 8859394
    Abstract: A method of fabricating a composite semiconductor structure includes providing an SOI substrate including a plurality of silicon-based devices, providing a compound semiconductor substrate including a plurality of photonic devices, and dicing the compound semiconductor substrate to provide a plurality of photonic dies. Each die includes one or more of the plurality of photonics devices. The method also includes providing an assembly substrate having a base layer and a device layer including a plurality of CMOS devices, mounting the plurality of photonic dies on predetermined portions of the assembly substrate, and aligning the SOI substrate and the assembly substrate. The method further includes joining the SOI substrate and the assembly substrate to form a composite substrate structure and removing at least the base layer of the assembly substrate from the composite substrate structure.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick, Timothy Creazzo, Elton Marchena
  • Publication number: 20140302641
    Abstract: A stiffened semiconductor die package has a semiconductor die including an integrated circuit. The die has an active side with die bonding pads and an opposite inactive side. A conductive frame that acts as a ground plane surrounds all edges of the die and a mold compound covers the conductive frame and the edges of the die. A thermally conductive sheet is attached to the inactive side of the die. A dielectric support structure with external connector pads with solder deposits is attached to the active side of the die. The external connector pads are selectively electrically coupled to the die bonding pads.
    Type: Application
    Filed: June 1, 2014
    Publication date: October 9, 2014
    Applicant: Freescale Semiconductor, Inc
    Inventors: Kesvakumar V.C. Muniandy, Navas Khan Oratti Kalandar
  • Publication number: 20140291844
    Abstract: Provided are a semiconductor device having a stably formed structure capable of being electrically connected to a second electronic device without causing damage to the semiconductor device, and a manufacturing method thereof. In one embodiment, the semiconductor device may comprise a semiconductor die, an encapsulation part formed on lateral surfaces of the semiconductor die, a dielectric layer formed on the semiconductor die and the encapsulation part, a redistribution layer passing through a part of the dielectric layer and electrically connected to the semiconductor die, a plurality of conductive balls extending through other parts of the dielectric layer and electrically connected to the redistribution layer where the conductive balls are exposed to an environment outside of the semiconductor device, and conductive vias extending through the encapsulation part and electrically connected to the redistribution layer.
    Type: Application
    Filed: March 18, 2014
    Publication date: October 2, 2014
    Applicant: Amkor Technology, Inc
    Inventors: Ji Yeon Ryu, Byong Jin Kim, Jae Beum Shim
  • Patent number: 8846420
    Abstract: A surface-mount light emitting device is provided comprising a light emitting element (2), a reflector (1) which is molded integral with a leadframe (11, 12) having the light emitting element mounted thereon, and an encapsulating resin composition (4). The reflector is molded from a heat curable resin composition to define a recess with bottom and side walls. The resin side wall has a thickness of 50-500 ?m. The encapsulating resin composition is a heat curable resin composition having a hardness of 30-70 Shore D units in the cured state.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 30, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Toshio Shiobara, Yusuke Taguchi, Tsutomu Kashiwagi
  • Patent number: 8844123
    Abstract: A method of manufacturing a hollow surface mount type electronic component has a preparing step, a gluing step and a cutting step. The preparing step includes preparing a baseboard, a clapboard and a cover board, mounting multiple circuit segments and conducting points on two opposite faces of the baseboard at intervals and boring multiple through holes on the clapboard corresponding to the circuit segments. The gluing step includes mounting multiple electronic elements on the baseboard to connected with the circuit segments, gelatinizing glue on the boards to mount the clapboard between the baseboard and the cover board and pressing the boards by a pressing machine. The cutting step includes cutting the boards by a cutting machine to produce multiple single SDM electronic components.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 30, 2014
    Inventor: Chin-Chi Yang
  • Patent number: 8847410
    Abstract: A semiconductor device includes a semiconductor chip, a die pad including an obverse surface on which the semiconductor chip is bonded, a lead spaced apart from the die pad, a bonding wire electrically connecting the semiconductor chip and the lead to each other, and a resin package that seals the semiconductor chip and the bonding wire. The bonding wire includes a first bond portion press-bonded to the semiconductor chip by ball bonding, a second bond portion press bonded to the lead by stitch bonding, a landing portion extending from the second bond portion toward the die pad and formed in contact with an obverse surface of the lead, and a loop extending obliquely upward from the landing portion toward the semiconductor chip.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Kosuke Miyoshi, Kinya Sakoda, Toshikuni Shinohara
  • Patent number: 8846452
    Abstract: In one embodiment of the present invention, a method of forming a semiconductor device includes forming a device region in a first region of a semiconductor substrate, and forming an opening in a second region of the semiconductor substrate. The method further includes placing a semiconductor die within the opening, and forming a first metallization level over the semiconductor die and the device region.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Infineon Technologies AG
    Inventor: Dietrich Bonart
  • Patent number: 8846172
    Abstract: Disclosed herein are a laminated composite and process for making the same. The laminated composite includes at least one wavelength-converting layer and at least one non-emissive layer, wherein a vertical relief gap pattern defines the composite into a plurality of discrete separable portions, and the discrete separable portions are breakably joined by a non-emissive layer. Separation along the relief gap pattern reduces color variation amongst the discrete portions and processes.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: September 30, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Toshitaka Nakamura, Hironaka Fujii, Amane Mochizuki
  • Patent number: 8846453
    Abstract: A semiconductor package structure includes a chip unit, a package unit and an electrode unit. The chip unit includes at least one semiconductor chip. The semiconductor chip has an upper surface, a lower surface, and a surrounding peripheral surface connected between the upper and the lower surfaces, and the semiconductor chip has a first conductive pad and a second conductive pad disposed on the lower surface thereof. The package unit includes a package body covering the upper surface and the surrounding peripheral surface of the semiconductor chip. The package body has a first lateral portion and a second lateral portion respectively formed on two opposite lateral sides thereof. The electrode unit includes a first electrode structure covering the first lateral portion and a second electrode structure covering the second lateral portion. The first and the second electrode structures respectively electrically contact the first and the second conductive pads.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 30, 2014
    Assignee: Inpaq Technology Co., Ltd.
    Inventors: Chu-Chun Hsu, Wei-Luen Hsu, Hong-Sheng Ke, Yao-Ming Yang, Yu-Chia Chang
  • Publication number: 20140287553
    Abstract: A device includes a bottom chip and an active top die bonded to the bottom chip. A dummy die is attached to the bottom chip. The dummy die is electrically insulated from the bottom chip.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Jing-Cheng Lin, Cheng-Lin Huang, Szu Wei Lu, Jui-Pin Hung, Shin-Puu Jeng, Chen-Hua Yu
  • Publication number: 20140287554
    Abstract: A method of forming a packaged semiconductor device includes loading an array of package sites in position for saw singulation, saw singulating the array of package sites, and performing a non-electrolytic plating operation on exposed lead tips of individual packages from the array of package sites as the array of package sites is saw singulated.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 25, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventor: LEO M. HIGGINS, III
  • Publication number: 20140284775
    Abstract: According to one embodiment, there is disclosed a semiconductor device which has a wiring substrate, a semiconductor element mounted on the wiring substrate, a molding resin which seals the semiconductor element, and a shield layer provided on the molding resin, wherein the molding resin has a marking portion by laser irradiation on a surface, and the shield layer is provided on the molding resin having the marking portion.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Taizo NOMURA
  • Publication number: 20140287555
    Abstract: A semiconductor device includes a semiconductor construct including a semiconductor substrate and an external connection electrode provided to protrude on a surface of the semiconductor substrate, a base plate on which the semiconductor construct is installed, and a sealing layer stacked on the semiconductor substrate except for the external connection electrode and on the base plate including a side surface of the semiconductor substrate.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventor: Shinji Wakisaka
  • Patent number: 8841169
    Abstract: Methods and devices for multi-chip stacks are shown. A method is shown that assembles multiple chips into stacks by stacking wafers prior to dicing into individual chips. Methods shown provide removal of defective chips and their replacement during the assembly process to improve manufacturing yield.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 23, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Patent number: 8841141
    Abstract: A method for separating a multiple number of semiconductor devices or semiconductor integrated circuits from a wafer on which the multiple number of semiconductor devices or semiconductor integrated circuits are formed is provided. The method includes: forming, on a surface of the wafer, a mask layer through which a line-shaped pattern to be removed for separating the semiconductor devices or semiconductor integrated circuits is exposed; and etching the exposed pattern to a depth equal to or larger than about ? of a thickness of the wafer. The line-shaped pattern is formed so as to prevent a test device formed on a gap between the semiconductor devices or semiconductor integrated circuits from remaining on separated semiconductor devices or semiconductor integrated circuits.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: September 23, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masahiro Yamada, Kenya Iwasaki, Hiroshi Nishikawa
  • Patent number: 8841752
    Abstract: In one or more embodiments, a semiconductor structure is provided that includes a plurality of interposer dice on an un-singulated segment of a semiconductor wafer. Scribe lanes circumscribing each of the plurality of interposer dice have widths of at least 2.5% of the width of each interposer die. Each interposer die includes a first contact array formed on a first side of the interposer die, a plurality of vias formed through the interposer die, one or more wiring layers formed on the first side of the interposer die and electrically coupling the first contact array to the plurality of vias, and a second contact array formed on a second side of the interposer die and electrically coupled to the plurality of vias.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: September 23, 2014
    Assignee: Xilinx, Inc.
    Inventors: Raghunandan Chaware, Kumar Nagarajan
  • Publication number: 20140264827
    Abstract: Methods of forming microelectronic packaging structures and associated structures formed thereby are described. Those methods and structures may include forming a wafer level underfill (WLUF) material comprising a resin material, and adding at least one of a UV absorber, a sterically hindered amine light stabilizer (HALS), an organic surface protectant (OSP), and a fluxing agent to form the WLUF material. The WLUF is then applied to a top surface of a wafer comprising a plurality of die.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Anna M. Prakash, James C. Matayabas, Arjun Krishnan, Nisha Ananthakrishnan
  • Publication number: 20140264859
    Abstract: Packaging devices and methods of manufacture thereof for semiconductor devices are disclosed. In some embodiments, a method of manufacturing a packaging device includes forming an interconnect wiring over a substrate, and forming conductive balls over portions of the interconnect wiring. A molding material is deposited over the conductive balls and the substrate, and a portion of the molding material is removed from over scribe line regions of the substrate.
    Type: Application
    Filed: February 13, 2014
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsien-Wei Chen, Tsung-Yuan Yu, Ming-Da Cheng, Wen-Hsiung Lu
  • Publication number: 20140264885
    Abstract: A plurality of macro and micro alignment marks may be formed on a wafer. The macro alignment marks may be formed in pairs at opposite edges of the wafer. The micro alignment marks may be formed to align to streets on the wafer along a first and second direction. A molding compound may be formed on the wafer. The macro alignment marks may be exposed from the molding compound. A pair of the micro alignment marks may be exposed from the molding compound at opposite ends of the streets along the first and the second direction. The wafer may be aligned to a dicing tool using pairs of the macro alignment marks. The dicing tool may be aligned to the streets using pairs of the micro alignment marks. The wafer may be diced using successive pairs of micro alignment marks along the first and second direction.
    Type: Application
    Filed: April 23, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Peng Tsai, Wen-Hsiung Lu, Cheng-Ting Chen, Hsien-Wei Chen, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20140264956
    Abstract: Disclosed is a sealant laminated composite for collectively sealing a semiconductor devices mounting surface of a substrate on which semiconductor devices may be mounted or a semiconductor devices forming surface of a wafer on which semiconductor devices may be formed, including a support wafer that may be composed of silicon and an uncured resin layer that may be constituted of an uncured thermosetting resin formed on one side of the support wafer.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Toshio SHIOBARA, Hideki AKIBA, Susumu SEKIGUCHI
  • Publication number: 20140264805
    Abstract: A method of making a semiconductor packaged device comprises mounting onto a lead frame a bottom of a molded semiconductor chip having a first plastic package body covering a top face of a semiconductor chip, encapsulating the lead frame and the semiconductor chip with a second plastic package body with top surfaces of conductive contact bodies electrically connected to electrodes on the top surface of the semiconductor chip exposed and plating conductive pads on a top surface of the assembly structure to provide external electrical connections to the electrodes through the conductive contact bodies.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Yueh-Se Ho, Yan Xun Xue, Jun Lu, Lei Shi, Liang Zhao, Ping Huang
  • Publication number: 20140264888
    Abstract: A semiconductor package structure includes a chip unit, a package unit and an electrode unit. The chip unit includes at least one semiconductor chip. The semiconductor chip has an upper surface, a lower surface, and a surrounding peripheral surface connected between the upper and the lower surfaces, and the semiconductor chip has a first conductive pad and a second conductive pad disposed on the lower surface thereof. The package unit includes a package body covering the upper surface and the surrounding peripheral surface of the semiconductor chip. The package body has a first lateral portion and a second lateral portion respectively formed on two opposite lateral sides thereof. The electrode unit includes a first electrode structure covering the first lateral portion and a second electrode structure covering the second lateral portion. The first and the second electrode structures respectively electrically contact the first and the second conductive pads.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: INPAQ TECHNOLOGY CO., LTD.
    Inventors: CHU-CHUN HSU, WEI-LUEN HSU, HONG-SHENG KE, YAO-MING YANG, YU-CHIA CHANG
  • Publication number: 20140264839
    Abstract: Packaged semiconductor devices, methods of packaging semiconductor devices, and package-on-package (PoP) devices are disclosed. In some embodiments, a method of packaging a semiconductor device includes forming through-package vias (TPVs) over a carrier, and coupling a semiconductor device to the carrier. The semiconductor device includes contact pads disposed on a surface thereof and an insulating material disposed over the contact pads. A molding material is formed over the carrier between the TPVs and the semiconductor device. Openings are formed in the insulating material using a laser drilling process over the contact pads, and a redistribution layer (RDL) is formed over the insulating material and the openings in the insulating material. A portion of the RDL is coupled to a top surface of each of the contact pads.
    Type: Application
    Filed: May 8, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Hao Tsai, Jui-Pin Hung, Jing-Cheng Lin
  • Patent number: 8835223
    Abstract: An assembly and method of making same are provided. The assembly can be formed by juxtaposing a first electrically conductive element overlying a major surface of a first semiconductor element with an electrically conductive pad exposed at a front surface of a second semiconductor element. An opening can be formed extending through the conductive pad of the second semiconductor element and exposing a surface of the first conductive element. The opening may alternatively be formed extending through the first conductive element. A second electrically conductive element can be formed extending at least within the opening and electrically contacting the conductive pad and the first conductive element. A third semiconductor element can be positioned in a similar manner with respect to the second semiconductor element.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: September 16, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8836134
    Abstract: A method of fabricating a semiconductor stacked package is provided. A singulation process is performed on a wafer and a substrate, on which the wafer is stacked. A portion of the wafer on a cutting region is removed, to form a stress concentrated region on an edge of a chip of the wafer. The wafer and the substrate are then cut, and a stress is forced to be concentrated on the edge of the chip of the wafer. As a result, the edge of the chip is warpaged. Therefore, the stress is prevented from extending to the inside of the chip. A semiconductor stacked package is also provided.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 16, 2014
    Assignee: Xintec Inc.
    Inventors: Po-Shen Lin, Chuan-Jin Shiu, Bing-Siang Chen, Chen-Han Chiang, Chien-Hui Chen, Hsi-Chien Lin, Yen-Shih Ho
  • Patent number: 8835228
    Abstract: A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are uncovered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: September 16, 2014
    Assignee: Invensas Corporation
    Inventor: Ilyas Mohammed
  • Patent number: 8835283
    Abstract: A fabrication method for producing semiconductor chips with enhanced die strength comprises following steps: forming a semiconductor wafer with enhanced die strength by comprising the substrate, the active layer on the front side of the substrate and the backside metal layer on the backside of the substrate, wherein at least one integrated circuit forms in the active layer; forming a protection layer on a front side of the semiconductor wafer; dicing the semiconductor wafer by at least one laser dicing process and removing the laser dicing residues and removing said protection layer by at least one etching process, whereby plural semiconductor chips with enhanced die strength are produced, and wherein the backside metal layer of said semiconductor chip fully covers the backside of said semiconductor chip after dicing.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 16, 2014
    Assignee: WIN Semiconductors Corp.
    Inventor: Chang-Hwang Hua
  • Patent number: 8835221
    Abstract: An integrated chip package structure and method of manufacturing the same is by adhering dies on a ceramic substrate and forming a thin-film circuit layer on top of the dies and the ceramic substrate. Wherein the thin-film circuit layer has an external circuitry, which is electrically connected to the metal pads of the dies, that extends to a region outside the active surface of the dies for fanning out the metal pads of the dies. Furthermore, a plurality of active devices and an internal circuitry is located on the active surface of the dies. Signal for the active devices are transmitted through the internal circuitry to the external circuitry and from the external circuitry through the internal circuitry back to other active devices. Moreover, the chip package structure allows multiple dies with different functions to be packaged into an integrated package and electrically connecting the dies by the external circuitry.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: September 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Jin-Yaun Lee, Mou-Shiung Lin, Ching-Cheng Huang
  • Publication number: 20140252579
    Abstract: A package includes an interposer, which includes a first substrate free from through-vias therein, redistribution lines over the first substrate, and a first plurality of connectors over and electrically coupled to the redistribution lines. A first die is over and bonded to the first plurality of connectors. The first die includes a second substrate, and through-vias in the second substrate. A second die is over and bonded to the plurality of connectors. The first die and the second die are electrically coupled to each other through the redistribution lines. A second plurality of connectors is over the first die and the second die. The second plurality of connectors is electrically coupled to the first plurality of connectors through the through-vias in the second substrate.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Chen-Hua Yu