Vertical Channel Patents (Class 438/156)
  • Patent number: 7803670
    Abstract: A semiconductor process and apparatus provide a dual or hybrid substrate by forming a second semiconductor layer (214) that is isolated from, and crystallographically rotated with respect to, an underlying first semiconductor layer (212) by a buried insulator layer (213); forming an STI region (218) in the second semiconductor layer (214) and buried insulator layer (213); exposing the first semiconductor layer (212) in a first area (219) of a STI region (218); epitaxially growing a first epitaxial semiconductor layer (220) from the exposed first semiconductor layer (212); and selectively etching the first epitaxial semiconductor layer (220) and the second semiconductor layer (214) to form CMOS FinFET channel regions (e.g., 223) and planar channel regions (e.g., 224) from the first epitaxial semiconductor layer (220) and the second semiconductor layer (214).
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: September 28, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Leo Mathew, Bich-Yen Nguyen, Zhonghai Shi, Voon-Yew Thean, Mariam G. Sadaka
  • Patent number: 7799623
    Abstract: A semiconductor device includes: a semiconductor substrate having a first semiconductor layer, an insulation layer and a second semiconductor layer, which are stacked in this order; a LDMOS transistor disposed on the first semiconductor layer; and a region having a dielectric constant, which is lower than that of the first or second semiconductor layer. The region contacts the insulation layer, and the region is disposed between a source and a drain of the LDMOS transistor. The device has high withstand voltage in a direction perpendicular to the substrate.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: DENSO CORPORATION
    Inventor: Akira Yamada
  • Patent number: 7790551
    Abstract: A transistor having a recess gate structure and a method for fabricating the same. The transistor includes a gate insulating layer formed on the inner walls of first trenches formed in a semiconductor substrate; a gate conductive layer formed on the gate insulating layer for partially filling the first trenches; gate electrodes formed on the gate conductive layer for completely filling the first trenches, and surrounded by the gate conductive layer; channel regions formed in the semiconductor substrate along the first trenches; and source/drain regions formed in a shallow portion of the semiconductor substrate.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kyoung Bong Rouh, Seung Woo Jin, Min Yong Lee, Yong Soo Jung
  • Patent number: 7790527
    Abstract: In a first aspect, a first method of manufacturing a high-voltage transistor is provided. The first method includes the steps of (1) providing a substrate including a bulk silicon layer that is below an insulator layer that is below a silicon-on-insulator (SOI) layer; and (2) forming one or more portions of a transistor node including a diffusion region of the transistor in the SOI layer. A portion of the transistor node is adapted to reduce a voltage greater than about 5 V within the transistor to a voltage less than about 3 V. Numerous other aspects are provided.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: William Hsioh-Lien Ma, Jack Allan Mandelman, Carl John Radens, William Robert Tonti
  • Patent number: 7786021
    Abstract: A thin-film transistor (TFT) with a multilayer gate insulator is provided, along with a method for forming the same. The method comprises: forming a channel, first source/drain (S/D) region, and a second S/D region in a Silicon (Si) active layer; using a high-density plasma (HDP) source, growing a first layer of Silicon oxide (SiOx) from the Si active layer, to a first thickness, where x is less than, or equal to 2; depositing a second layer of SiOx having a second thickness, greater than the first thickness, overlying the first layer of SiOx; using the HDP source, additionally oxidizing the second layer of SiOx, wherein the first and second SiOx layers form a gate insulator; and, forming a gate electrode adjacent the gate insulator. In one aspect, the second Si oxide layer is deposited using a plasma-enhanced chemical vapor deposition (PECVD) process with tetraethylorthosilicate (TEOS) precursors.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: August 31, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas
  • Patent number: 7785943
    Abstract: Method for providing a transistor that includes the steps of providing a silicon on insulator layer, providing a silicon oxide insulation layer, providing a dielectric layer, removing at least a portion of the silicon oxide insulation layer and the dielectric layer to form a gate stack, and forming a gate electrode. The gate electrode covers a portion of the gate stack.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Oleg Gluschenkov, Ying Zhang, Huilong Zhu
  • Publication number: 20100210079
    Abstract: It is intended to provide an SGT production method capable of obtaining a structure for reducing a resistance of a source, drain and gate, a desired gate length, desired source and drain configurations and a desired diameter of a pillar-shaped semiconductor to be obtained.
    Type: Application
    Filed: February 11, 2010
    Publication date: August 19, 2010
    Inventors: Fujio Masuoka, Tomohiko Kudo, Shintaro Arai, Hiroki Nakamura
  • Patent number: 7777272
    Abstract: A non-volatile memory device which can be highly-integrated without a decrease in reliability, and a method of fabricating the same, are provided. In the non-volatile memory device, a first doped layer of a first conductivity type is disposed on a substrate. A semiconductor pillar of a second conductivity type opposite to the first conductivity type extends upward from the first doped layer. A first control gate electrode substantially surrounds a first sidewall of the semiconductor pillar. A second control gate electrode substantially surrounds a second sidewall of the semiconductor pillar and is separated from the first control gate electrode. A second doped layer of the first conductivity type is disposed on the semiconductor pillar.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 17, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Pil Youn, Hyeong-Jun Kim, Jin-Tae Kang, Young-Jae Joo
  • Patent number: 7772640
    Abstract: This disclosure concerns a semiconductor device comprising a convex-shaped semiconductor layer formed on a semiconductor substrate; an insulation film formed on the semiconductor substrate, the insulation film having a film thickness to the extent that a lower part of the semiconductor layer is buried; a gate electrode formed on a set of both opposed side faces via a gate insulation film; and a source region and a drain region formed on a side face side on which the gate electrode is not formed in the semiconductor layer, wherein the semiconductor layer is formed so as to dispose surfaces of a peripheral part excepting a central part on an outer side than surfaces of the central part covered by at least the gate electrode.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kiyotaka Miyano
  • Patent number: 7772066
    Abstract: In one embodiment, a first transistor is comprised of a first p+ source region doped in an n-well in the substrate and a first n+ drain region doped on one side at the top of the pillar. A second transistor is comprised of a second p+ source region doped into the second side of the top of the pillar and serially coupled to the top drain region for the first transistor. A second n+ drain region is doped into the substrate adjacent the pillar. Ultra-thin body layer run along each pillar sidewall between their respective active regions. A gate structure is formed along the pillar sidewalls and over the body layers. The transistors operate by electron tunneling from the source valence band to the gate bias-induced n-type channels, along the ultra-thin silicon bodies, thus resulting in a drain current.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7772053
    Abstract: After forming a source-drain material film on an insulator layer, an opening portion reaching the insulator layer is formed in the source-drain material film. Then, a channel having desired thickness and a gate insulator are sequentially formed on the insulator layer and the source-drain material film in the opening portion. Thereafter, a gate material film embedding the opening portion is formed on the gate insulator. Subsequently, a cap film is formed on the gate material film, thereby forming the gate made of the gate material film. Then, a mask layer is formed on the source-drain material film. Next, the source-drain material film not protected by the mask layer is removed while protecting the gate by the cap film, thereby leaving the source-drain material film on both sides of the gate. The source-drain material film on one side becomes the source and that on the other side becomes the drain.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: August 10, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Norifumi Kameshiro, Toshiyuki Mine, Tomoyuki Ishii, Toshiaki Sano
  • Patent number: 7763514
    Abstract: A transistor of an integrated circuit includes a first and second source/drain regions, a channel region connecting the first and second source/drain regions, and a gate electrode configured to control an electrical current flowing in the channel. The gate electrode is disposed in a gate groove, that is defined in a top surface of a semiconductor substrate. The first and second source/drain regions extend at least to a depth d1, wherein the depth d1 is measured from the top surface of the substrate. A top surface of the gate electrode is disposed beneath the top surface of the semiconductor substrate in a distance to the top surface that is less than the depth d1.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: July 27, 2010
    Assignee: Qimonda AG
    Inventors: Johannes von Kluge, Stefan Tegen
  • Patent number: 7745289
    Abstract: In accordance with an exemplary embodiment of the invention, a substrate of a first conductivity type silicon is provided. A substrate cap region of the first conductivity type silicon is formed such that a junction is formed between the substrate cap region and the substrate. A body region of a second conductivity type silicon is formed such that a junction is formed between the body region and the substrate cap region. A trench extending through at least the body region is then formed. A source region of the first conductivity type is then formed in an upper portion of the body region. An out-diffusion region of the first conductivity type is formed in a lower portion of the body region as a result of one or more temperature cycles such that a spacing between the source region and the out-diffusion region defines a channel length of the field effect transistor.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: June 29, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Izak Bencuya, Brian Sze-Ki Mo, Ashok Challa
  • Publication number: 20100151635
    Abstract: A semiconductor device includes a tube-type channel formed over a semiconductor substrate. The tube-type channel is connected to first and second conductive lines. A bias electrode is formed in the tube-type channel. The bias electrode is connected to the semiconductor substrate. An insulating film is disposed between the tube-type channel and the bias electrode. A surrounding gate electrode is formed over the tube-type channel.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 17, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Sung Woong CHUNG
  • Patent number: 7723789
    Abstract: A nonvolatile memory device with nanowire channel and a method for fabricating the same are proposed, in which side etching is used to shrink side walls of a side-gate to form a nanowire pattern, thereby fabricating a nanowire channel on the dielectric of the side walls of the side-gate. A nonvolatile memory device with nanowire channel and dual-gate control can thus be achieved. This nonvolatile memory device can enhance data writing and erasing efficiency, and also has the capability of low voltage operation. Moreover, through a process of low cost and easy steps, highly reproducible and mass producible fabrication of nanowire devices can be accomplished.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: May 25, 2010
    Assignee: National Chiao Tung University
    Inventors: Horng-Chih Lin, Chun-Jung Su, Hsin-Hwei Hsu
  • Patent number: 7709886
    Abstract: A fabricating method of a TFT includes first forming a source on a substrate. Then, a first insulation pattern layer is formed to cover parts of the source and the substrate. The first insulation pattern layer has an opening exposing a part of the source. Thereafter, a gate pattern layer is formed on the first insulation pattern layer. Then, the gate pattern layer and a second insulation pattern layer formed thereon surround the opening. Moreover, a second lateral protection wall is formed on an edge of the gate pattern layer in the opening. Afterwards, a channel layer is formed in the opening and covers the second lateral protection wall and the source. Then, a passivation layer with a contact window is formed on the channel layer and the second insulation pattern layer to expose a portion of the channel layer. Thereafter, a drain is formed on the exposed channel layer.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: May 4, 2010
    Assignee: Au Optronics Corporation
    Inventors: Wei-Hsiang Lo, Hao-Chieh Lee
  • Patent number: 7696025
    Abstract: A novel transistor structure and method for fabricating the same. First, a substrate, a semiconductor region, a gate dielectric region, and a gate block are provided. The semiconductor region, the gate dielectric region, and the gate block are on the substrate. The gate dielectric region is sandwiched between the semiconductor region and the gate block. The semiconductor region is electrically insulated from the gate block by the gate dielectric region. The semiconductor region and the gate dielectric region share an interface surface which is essentially perpendicular to a top surface of the substrate. The semiconductor region and the gate dielectric region do not share any interface surface that is essentially parallel to a top surface of the substrate. Next, a gate region is formed from the gate block. Then, first and second source/drain regions are formed in the semiconductor region.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Lawrence A. Clevenger, Omer H. Dokumaci, Kaushik A. Kumar, Carl J. Radens, Dureseti Chidambarrao
  • Patent number: 7692243
    Abstract: The present invention aims at offering the semiconductor device which has the structure which are a high speed and a low power, and can be integrated highly. The present invention is a semiconductor device formed in the SOI substrate by which the BOX layer and the SOI layer were laminated on the silicon substrate. And the present invention is provided with the FIN type transistor with which the gate electrode coiled around the body region formed in the SOI layer, and the planar type transistor which was separated using partial isolation and full isolation together to element isolation, and was formed in the SOI layer.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: April 6, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Toshiaki Iwamatsu
  • Patent number: 7682852
    Abstract: Provided is a method of manufacturing a semiconductor laser device having a light shield film comprising: forming a light emission structure by depositing a first clad layer, an active layer and a second clad layer on a substrate; depositing a light shield film and a protection film on the light emission face of the light emission structure; removing the light shield film corresponding to an area of the light emission face of the light emission structure including and above the first clad layer; and removing the protection layer.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung Led Co., Ltd.
    Inventors: Han-youl Ryu, Kyoung-ho Ha, Youn-joon Sung
  • Patent number: 7682885
    Abstract: A method for fabricating a semiconductor device includes forming a sacrificial layer over a substrate, forming a contact hole in the sacrificial layer, forming a pillar to fill the contact hole. The pillar laterally extends up to a surface of the sacrificial layer and then the sacrificial layer is removed. The method further includes forming a gate dielectric layer over an exposed sidewall of the pillar, and forming a gate electrode over the gate dielectric layer. The gate electrode surrounds the sidewall of the pillar.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jun-Hee Cho, Sang-Hoon Park
  • Patent number: 7679515
    Abstract: A program executed by a computer for measuring an optimum feed amount to an RFID antenna from a print standby position of a printer which reads and writes data from/on an RFID tag by feeding a label or tag containing an RFID tag, and then prints on the label surface by feeding the label or tag in the reverse direction, having step of performing a read/write test to the RFID tag whenever the label or tag is fed by a fixed amount from a print standby position, and a step of outputting the result of the read/write test visibly performed in the steps.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: March 16, 2010
    Assignee: Toshiba Tec Kabushiki Kaisha
    Inventor: Makoto Sugiyama
  • Patent number: 7679121
    Abstract: A method for forming and the structure of a strained vertical channel of a field effect transistor, a field effect transistor and CMOS circuitry is described incorporating a drain, body and source region on a sidewall of a vertical single crystal semiconductor structure wherein a hetero-junction is formed between the source and body of the transistor, wherein the source region and channel are independently lattice strained with respect to the body region and wherein the drain region contains a carbon doped region to prevent the diffusion of dopants (boron) into the body. The invention reduces the problem of leakage current from the source region via the hetero-junction and lattice strain while independently permitting lattice strain in the channel region for increased mobility via choice of the semiconductor materials.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: March 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Qiqing Christine Ouyang, Jack Oon Chu
  • Patent number: 7674661
    Abstract: In a memory device and a method of manufacturing the memory device, a pair of channel layers included in the memory device may be formed on a sidewall of the sacrificial single crystalline layer pattern located on a protrusion of a semiconductor substrate. Accordingly, an etch damage may be reduced at the channel layer. The sacrificial single crystalline layer pattern may be removed to generate a void between the pair of the channel layers. As a result, a generation of a coupling effect may be reduced between the channel layers.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Joon Ahn, Suk-Pil Kim, Jong-Jin Lee
  • Patent number: 7663188
    Abstract: A semiconductor device includes a tube-type channel formed over a semiconductor substrate. The tube-type channel is connected to first and second conductive lines. A bias electrode is formed in the tube-type channel. The bias electrode is connected to the semiconductor substrate. An insulating film is disposed between the tube-type channel and the bias electrode. A surrounding gate electrode is formed over the tube-type channel.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: February 16, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Woong Chung
  • Publication number: 20100032728
    Abstract: Analog ICs frequently include circuits which operate over a wide current range. At low currents, low noise is important, while IC space efficiency is important at high currents. A vertically integrated transistor made of a JFET in parallel with an MOS transistor, sharing source and drain diffused regions, and with independent gate control, is disclosed. N-channel and p-channel versions may be integrated into common analog IC flows with no extra process steps, on either monolithic substrates or SOI wafers. pinchoff voltage in the JFET is controlled by photolithographically defined spacing of the gate well regions, and hence exhibits low variability.
    Type: Application
    Filed: August 7, 2009
    Publication date: February 11, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Pinghai HAO, Marie DENISON
  • Patent number: 7658860
    Abstract: A metal pattern of the present invention is a metal pattern (13?) formed on a surface of a substrate by etching, and a monomolecular film containing fluorinated alkyl chains (CF3(CF2)n—, where n represents an integer) is formed on a surface of a metal film composing the metal pattern (13?), and a masking film (18) is formed by penetration of a molecule having a mercapto group (—SH) or a disulfide (—SS—) group into interstices between molecules composing the monomolecular film.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: February 9, 2010
    Assignee: Panasonic Corporation
    Inventor: Tohru Nakagawa
  • Patent number: 7642180
    Abstract: A process for conformally doping through the vertical and horizontal surfaces of a 3-dimensional vertical transistor in a semiconductor-on-insulator structure employs an RF oscillating torroidal plasma current to perform either conformal ion implantation, or conformal deposition of a dopant-containing film which can then be heated to drive the dopants into the transistor. Some embodiments employ both conformal ion implantation and conformal deposition of dopant containing films, and in those embodiments in which the dopant containing film is a pure dopant, the ion implantation and film deposition can be performed simultaneously.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: January 5, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Amir Al-Bayati, Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Biagio Gallo, Andrew Nguyen
  • Patent number: 7638374
    Abstract: A method of fabricating a vertical thin film transistor (vertical TFT) is disclosed, wherein a shadow mask is used to fabricate the TFT device in vertical structure. First, a metal layer is formed, which serves as ribs and a gate layer. Next, a shadow mask is disposed on the gate layer. Afterwards, the shadow mask is used as a mask to form a source layer, an organic semiconductor layer and a drain layer. Thus, the process is simplified. Since no photolithography process is required, and therefore damage of the organic semiconductor layer is avoided and a vertical TFT with desired electrical characteristics may be obtained.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: December 29, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Kai Wang, Tsung-Hsien Lin, Tarng-Shiang Hu, Yu-Yuan Shen
  • Publication number: 20090298241
    Abstract: A method of fabricating a vertical thin film transistor (vertical TFT) is disclosed, wherein a shadow mask is used to fabricate the TFT device in vertical structure. First, a metal layer is formed, which serves as ribs and a gate layer. Next, a shadow mask is disposed on the gate layer. Afterwards, the shadow mask is used as a mask to form a source layer, an organic semiconductor layer and a drain layer. Thus, the process is simplified. Since no photolithography process is required, and therefore damage of the organic semiconductor layer is avoided and a vertical TFT with desired electrical characteristics may be obtained.
    Type: Application
    Filed: August 6, 2009
    Publication date: December 3, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yi-Kai Wang, Tsung-Hsien Lin, Tarng-Shiang Hu, Yu-Yuan Shen
  • Patent number: 7618865
    Abstract: A method in the fabrication of a monolithically integrated vertical device on an SOI substrate comprises the steps of providing an SOI substrate including, from bottom to top, a silicon bulk material, an insulating layer, and an monocrystalline silicon layer; forming an opening in the substrate, which extends into the bulk-material, forming silicon oxide on exposed silicon surfaces in the opening and subsequently removing the formed oxide, whereby steps in the opening are formed; forming a region of epitaxial silicon in the opening; and forming a deep trench in an area around the opening, whereby the steps in the opening are removed.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: November 17, 2009
    Assignee: Infineon Technologies AG
    Inventors: Ted Johansson, Hans Norstroem
  • Patent number: 7615421
    Abstract: The present invention relates to a method for fabricating thin film transistor, more particularly, to a method for fabricating thin film transistor which not only manufactures a polycrystalline silicon layer having large grain size and containing a trace of residual metal catalyst by heat treating thereby crystallizing the metal catalyst layer after forming an amorphous silicon layer on a substrate, forming a capping layer formed of nitride film having 1.78 to 1.90 of the refraction index when crystallizing the amorphous silicon layer and forming a metal catalyst layer on the capping layer, but also controls characteristics of the polycrystalline silicon layer by controlling the refraction index of the capping layer.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: November 10, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Sang-Woong Lee, Jae-Young Oh, Tae-Hoon Yang, Jin-Wook Seo, Ki-Yong Lee, Cheol-Ho Yu
  • Patent number: 7605034
    Abstract: An integrated circuit memory cell includes a combined first capacitor electrode and first transistor source/drain, a second capacitor electrode, a capacitor dielectric between the first and second electrodes, and a vertical transistor above and including the first source/drain. The second source/drain may be included in a digit line inner conductor connecting a digit line to a transistor channel of the vertical transistor. The channel may include a semiconductive upward extension of the combined first electrode and first source/drain. The memory cell may be included in an array of a plurality of such memory cells wherein the second electrode is a common electrode among the plurality. The memory cell may provide a straight-line conductive path between the first electrode and a digit line, the path extending through the vertical transistor.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: October 20, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Alex Paterson
  • Patent number: 7592643
    Abstract: A semiconductor device having a vertical transistor comprises a silicon substrate; a drain region, a channel region and a source region vertically stacked on the silicon substrate; a buried type bit line formed under the drain region in the silicon substrate to contact with the drain region and to extend in one direction; and gates respectively formed on both side walls of the stacked drain region, channel region and source region.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 22, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Woo Kyung Sun
  • Patent number: 7592210
    Abstract: The semiconductor device includes an active region, a recess channel region including vertical channel structures, a gate insulating film, and a gate structure. The active region is defined by a device isolation structure formed in a semiconductor substrate. The recess channel region is formed in the active region. The vertical silicon-on-insulator (SOI) channel structures are disposed at sidewalls of both device isolation structures in a longitudinal direction of a gate region. The gate insulating film is disposed over the active region including the recess channel region. The gate structure is disposed over the recess channel region of the gate region.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: September 22, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Woong Chung, Sang Don Lee
  • Patent number: 7588971
    Abstract: A method of fabricating a vertical thin film transistor (vertical TFT) is disclosed, wherein a shadow mask is used to fabricate the TFT device in vertical structure. First, a metal layer is formed, which serves as ribs and a gate layer. Next, a shadow mask is disposed on the gate layer. Afterwards, the shadow mask is used as a mask to form a source layer, an organic semiconductor layer and a drain layer. Thus, the process is simplified. Since no photolithography process is required, and therefore damage of the organic semiconductor layer is avoided and a vertical TFT with desired electrical characteristics may be obtained.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: September 15, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Kai Wang, Tsung-Hsien Lin, Tarng-Shiang Hu, Yu-Yuan Shen
  • Patent number: 7579281
    Abstract: A transistor assembly with semiconductor material vertically introduced into micro holes (4) in a pliable a film laminate consisting of two plastic films (1, 3) with a metal layer (2) located therebetween. Said semiconductor material is provided with contacts (6, 7) by metalizing the top side and bottom side of the film laminate. The assembly is very strong by virtue of the fact that the film can be bent and stretched.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: August 25, 2009
    Assignee: Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH
    Inventors: Rolf Koenenkamp, Jie Chen
  • Patent number: 7572699
    Abstract: An electronic device can include a substrate including a fin lying between a first trench and a second trench, wherein the fin is no more than approximately 90 nm wide. The electronic device can also include a first gate electrode within the first trench and adjacent to the fin, and a second gate electrode within the second trench and adjacent to the fin. The electronic device can further include discontinuous storage elements including a first set of discontinuous storage elements and a second set of discontinuous storage elements, wherein the first set of the discontinuous storage elements lies between the first gate electrode and the fin, and the second set of the discontinuous storage elements lies between the second gate electrode and the fin. Processes of forming and using the electronic device are also described.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: August 11, 2009
    Assignee: Freescale Semiconductor, Inc
    Inventors: Cheong Min Hong, Chi-Nan Li
  • Patent number: 7566619
    Abstract: A method of forming an integrated circuit device includes forming a non-planar field-effect transistor in a cell array portion of a semiconductor substrate and forming a planar field-effect transistor in a peripheral circuit portion of the semiconductor substrate. The non-planar field-effect transistor may be selected from the group of a FinFET and a recessed gate FET. Dopants may be implanted into a channel region of the non-planar field-effect transistor, and a cell protection layer may be formed on the non-planar field-effect transistor. Then, dopants may be selectively implanted into a channel region of the planar field-effect transistor using the cell protection layer as a mask to block implanting of the dopants into the channel region of the non-planar field-effect transistor.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Joon Ahn, Dong-Gun Park, Choong-Ho Lee, Hee-Soo Kang
  • Patent number: 7556994
    Abstract: Wide bandgap semiconductor devices including normally-off VJFET integrated power switches are described. The power switches can be implemented monolithically or hybridly, and may be integrated with a control circuit built in a single-or multi-chip wide bandgap power semiconductor module. The devices can be used in high-power, temperature-tolerant and radiation-resistant electronics components. Methods of making the devices are also described.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: July 7, 2009
    Assignee: SemiSouth Laboratories, Inc.
    Inventors: Igor Sankin, Joseph N. Merrett
  • Patent number: 7550352
    Abstract: A MOS transistor having a recessed gate electrode and a fabrication method thereof are provided. The MOS transistor includes an isolation layer formed at a predetermined region of a semiconductor substrate to define an active region and double trench regions formed in the active region. The double trench region is composed of an upper trench region crossing the active region and a lower trench region located under the upper trench region. Thus, the active region is divided into two sub-active regions. Sidewalls of the upper trench region are covered with a spacer, which is used as an etching mask to form the lower trench region in the semiconductor substrate of the upper trench region. The upper and lower trench regions are then filled with a gate electrode. Also, high concentration source/drain regions are formed at the top surfaces of the sub-active regions respectively. Therefore, an effective channel length of the MOS transistor is determined according to the dimension of the lower trench region.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: June 23, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hun Kim, Kyu-Whan Chong
  • Patent number: 7531395
    Abstract: Methods of forming layers comprising epitaxial silicon, and methods of forming field effect transistors are disclosed. A method of forming a layer comprising epitaxial silicon includes etching an opening into a silicate glass-comprising material received over a monocrystalline material. The etching is conducted to the monocrystalline material effective to expose the monocrystalline material at a base of the opening. A silicon-comprising layer is epitaxially grown within the opening from the monocrystalline material exposed at the base of the opening. The silicate glass-comprising material is etched from the substrate effective to leave a free-standing projection of the epitaxially grown silicon-comprising layer projecting from the monocrystalline material which was at the base of the opening. Other implementations and aspects are contemplated.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: May 12, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Eric R. Blomiley, Gurtej S. Sandhu, Cem Basceri, Nirmal Ramaswamy
  • Patent number: 7528022
    Abstract: A method of forming a fin transistor using a damascene process is provided. A filling mold insulation pattern is recessed to expose an upper portion of a fin, and a mold layer is formed. The mold layer is patterned to form a groove crossing the fin and exposing a part of the upper portion of the fin. A gate electrode is formed to fill the groove with a gate insulation layer interposed between the fin and the gate electrode, and the mold layer is removed. Impurities are implanted through both sidewalls and a top surface of the upper portion of the fin disposed at opposite sides of a gate electrode to form a source/drain region.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: May 5, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Joon Ahn, Dong-Gun Park, Choong-Ho Lee, Hee-Soo Kang
  • Patent number: 7507614
    Abstract: The present invention relates to an image sensor applied with a device isolation technique for reducing dark signals and a fabrication method thereof. The image sensor includes: a logic unit; and a light collection unit in which a plurality of photodiodes is formed, wherein the photodiodes are isolated from each other by a field ion-implantation region formed under a surface of a substrate and an insulation layer formed on the surface of the substrate.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 24, 2009
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Jae-Young Rim, Ho-Soon Ko
  • Publication number: 20090057780
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure include a first semiconductor fin and a second semiconductor fin of the same overall height over a substrate. Due to the presence of a channel stop layer at the base of one of the first semiconductor fin and the second semiconductor fin, but not the other of the first semiconductor fin and the second semiconductor fin, the first semiconductor fin and the second semiconductor fin have different channel heights. The semiconductor fins may be used to fabricating a corresponding first finFET and a corresponding second finFET with differing performance characteristics due to the different channel heights of the first semiconductor fin and the second semiconductor fin.
    Type: Application
    Filed: August 27, 2007
    Publication date: March 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert C. Wong, Haining Yang
  • Patent number: 7494876
    Abstract: In a trench-gated MIS semiconductor device, a slug of undoped polysilicon is deposited at the bottom of the trench to protect the gate oxide in this area against the high electric fields that can occur in this area. The slug is formed over a thick oxide layer at the bottom of the trench. A process of fabricating the MOSFET includes the steps of growing a thick oxide layer on the sidewalls and bottom of the trench, depositing a polysilicon layer which remains undoped, etching the polysilicon layer to form the plug, etching the exposed portion of the thick oxide layer, growing a gate oxide layer and an oxide layer over the plug, and depositing and doping a polysilicon layer which serves as the gate electrode. In an alternative embodiment, the oxide layer overlying the plug is etched before the gate polysilicon is deposited such that the dopant introduced into the gate polysilicon migrates into the polysilicon plug.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: February 24, 2009
    Assignee: Vishay Siliconix
    Inventors: Frederick Perry Giles, Kam Hong Lui
  • Publication number: 20090045458
    Abstract: MOS transistors for thin SOI integration and methods for fabricating such MOS transistors are provided. One exemplary method includes the steps of providing a silicon layer overlying a buried insulating layer and epitaxially growing a silicon-comprising material layer overlying the silicon layer. A trench is etched within the silicon-comprising material layer and exposing the silicon layer. An MOS transistor gate stack is formed within the trench. The MOS transistor gate stack comprises a gate insulator and a gate electrode. Ions of a conductivity-determining type are implanted within the silicon-comprising material layer using the gate stack as an implantation mask.
    Type: Application
    Filed: August 15, 2007
    Publication date: February 19, 2009
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: John A. IACOPONI, Kingsuk MAITRA
  • Patent number: 7488651
    Abstract: The present inventions include a vertical transistor formed by defining a channel length of the vertical-surrounding-gate field effect transistor with self-aligning features. The method provides process steps to define the transistor channel length and recess silicon pillars used to form the vertical-surrounding gate field effect transistor structure for use in the manufacture of semiconductor devices.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: February 10, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Grant S. Huglin
  • Publication number: 20090032803
    Abstract: A method of fabricating a nanotube field-effect transistor having unipolar characteristics and a small inverse sub-threshold slope includes forming a local gate electrode beneath the nanotube between drain and source electrodes of the transistor and doping portions of the nanotube. In a further embodiment, the method includes forming at least one trench in the gate dielectric (e.g., a back gate dielectric) and back gate adjacent to the local gate electrode. Another aspect of the invention is a nanotube field-effect transistor fabricated using such a method.
    Type: Application
    Filed: June 30, 2008
    Publication date: February 5, 2009
    Inventors: Joerg Appenzeller, Phaedon Avouris, Yu-Ming Lin
  • Patent number: 7485509
    Abstract: A semiconductor device includes a first field effect transistor including a source and a gate and disposed in a silicon carbide substrate; and a second field effect transistor including a drain and a gate and disposed in the substrate. The drain of the second field effect transistor connects to the source of the first field effect transistor. The gate of the second field effect transistor connects to the gate of the first field effect transistor.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: February 3, 2009
    Assignee: DENSO CORPORATION
    Inventors: Rajesh Kumar, Florin Udrea, Andrei Mihaila
  • Publication number: 20090026541
    Abstract: A semiconductor device includes a tube-type channel formed over a semiconductor substrate. The tube-type channel is connected to first and second conductive lines. A bias electrode is formed in the tube-type channel. The bias electrode is connected to the semiconductor substrate. An insulating film is disposed between the tube-type channel and the bias electrode. A surrounding gate electrode is formed over the tube-type channel.
    Type: Application
    Filed: October 3, 2007
    Publication date: January 29, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventor: Sung Woong CHUNG