Vertical Channel Patents (Class 438/212)
  • Patent number: 8242497
    Abstract: The present invention is related to a depletion or enhancement mode metal transistor in which the channel regions of a transistor device comprises a thin film metal or metal composite layer formed over an insulating substrate.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: August 14, 2012
    Inventor: Dean Z. Tsang
  • Patent number: 8242555
    Abstract: Methods, devices and systems for a FinFET are provided. One method embodiment includes forming a FinFET by forming a relaxed silicon germanium (Si1-XGeX) body region for a fully depleted Fin field effect transistor (FinFET) having a body thickness of at least 10 nanometers (nm) for a process design rule of less than 25 nm. The method also includes forming a source and a drain on opposing ends of the body region, wherein the source and the drain are formed with halo ion implantation and forming a gate opposing the body region and separated therefrom by a gate dielectric.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 14, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Hussein I. Hanafi
  • Patent number: 8236665
    Abstract: A semiconductor device and a method for manufacturing the same are provided. A barrier film is formed in a device separating structure, and the device separating structure is etched at a predetermined thickness to expose a semiconductor substrate. Then, a SEG film is grown to form an active region whose area is increased. As a result, a current driving power of a transistor located at a cell region and peripheral circuit regions is improved.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young Bog Kim
  • Patent number: 8236602
    Abstract: A phase change memory device resistant to stack pattern collapse is presented. The phase change memory device includes a silicon substrate, switching elements, heaters, stack patterns, bit lines and word lines. The silicon substrate has a plurality of active areas. The switching elements are connected to the active areas. The heaters are connected to the switching elements. The stack patterns are connected to the heaters. The bit lines are connected to the stack patterns. The word lines are connected to the active areas of the silicon substrate.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Heon Yong Chang
  • Patent number: 8222110
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of first active pillars by etching a substrate using a hard mask layer as an etching barrier, forming a gate conductive layer surrounding sidewalls of the first active pillars and the hard mask layer, forming a word line conductive layer filling gaps defined by the gate conductive layer, forming word lines and vertical gates by simultaneously removing portions of the word line conductive layer and the gate conductive layer on the sidewalls of the hard mask layer, forming an inter-layer dielectric layer filling gaps formed by removing the word line conductive layer and the gate conductive layer, exposing surfaces of the first active pillars by removing the hard mask layer, and growing second active pillars over the first active pillars.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 17, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Eun-Jeong Kim, Sang-Tae Ahn
  • Publication number: 20120175626
    Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8216894
    Abstract: A finFET structure is made by forming a fin (14), followed by a gate stack of gate dielectric (16), metal gate layer (18), polysilicon layer (20) and silicon-germanium layer (22). The gate stack is then patterned, and source and drain implants formed in the fin (14) away from the gate. The silicon germanium layer (22) is selectively etched away, a metal deposited over the gate, and silicidation carried out to convert the full thickness of the polysilicon layer (20) at the top of the fin. A region of unreacted polysilicon (38) may be left at the base of the fin and across the substrate.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: July 10, 2012
    Assignee: NXP B.V.
    Inventor: Robert J. P. Lander
  • Publication number: 20120171825
    Abstract: In contrast to a conventional planar CMOS technique in design and fabrication for a field-effect transistor (FET), the present invention provides an SGT CMOS device formed on a conventional substrate using various crystal planes in association with a channel type and a pillar shape of an FET, without a need for a complicated device fabrication process. Further, differently from a design technique of changing a surface orientation in each planar FET, the present invention is designed to change a surface orientation in each SGT to achieve improvement in carrier mobility. Thus, a plurality of SGTs having various crystal planes can be formed on a common substrate to achieve a plurality of different carrier mobilities so as to obtain desired performance.
    Type: Application
    Filed: March 6, 2012
    Publication date: July 5, 2012
    Inventors: Fujio Masuoka, Keon Jae LEE
  • Patent number: 8211758
    Abstract: It is an object to provide an SGT production method capable of obtaining a structure for reducing a resistance of a gate, a desired gate length, desired source and drain configurations and a desired diameter of a pillar-shaped semiconductor.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: July 3, 2012
    Assignee: Unisantis Electronics Singapore PTE Ltd.
    Inventors: Fujio Masuoka, Shintaro Arai, Hiroki Nakamura, Tomohiko Kudo
  • Patent number: 8211770
    Abstract: A transistor structure optimizes current along the A-face of a silicon carbide body to form an AMOSFET that minimizes the JFET effect in the drift region during forward conduction in the on-state. The AMOSFET further shows high voltage blocking ability due to the addition of a highly doped well region that protects the gate corner region in a trench-gated device. The AMOSFET uses the A-face conduction along a trench sidewall in addition to a buried channel layer extending across portions of the semiconductor mesas defining the trench. A doped well extends from at least one of the mesas to a depth within the current spreading layer that is greater than the depth of the trench. A current spreading layer extends between the semiconductor mesas beneath the bottom of the trench to reduce junction resistance in the on-state. A buffer layer between the trench and the deep well further provides protection from field crowding at the trench corner.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: July 3, 2012
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Anant Agarwal, Charlotte Jonas
  • Patent number: 8207566
    Abstract: A vertical channel transistor includes a plurality of active pillar patterns extending perpendicularly from the top surface of the substrate toward an upper part. A gate insulating layer is deposited on the side wall of the active pillar pattern and serves as an ion diffusion barrier between the pillar patterns and surrounding lower gate electrodes. The resultant pillar pattern structure is encapsulated with a metal. The resultant pillar pattern is surrounded on all sides by a specified height by a sacrificial layer of Spin-On Dielectric (SOD). The metal layer is etched-back to the height of the sacrificial layer, thus forming the lower gate electrodes. A spacer layer of an insulating mater is deposited surrounding the upper part of the pillar patterns and the sacrificial layer is removed exposing a part of the lower gate electrodes. The exposed gate electrode is etched to facilitate semiconductor integration.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: June 26, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chun-Hee Lee
  • Patent number: 8202772
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs). The devices have raised regions with sloped sidewalls which taper inward. The sidewalls can form an angle of 5° or more from vertical to the substrate surface. The devices can have dual-sloped sidewalls in which a lower portion of the sidewalls forms an angle of 5° or more from vertical and an upper portion of the sidewalls forms an angle of <5° from vertical. The devices can be made using normal (i.e., 0°) or near normal incident ion implantation. The devices have relatively uniform sidewall doping and can be made without angled implantation.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 19, 2012
    Assignee: SS SC IP, LLC
    Inventors: David C. Sheridan, Andrew P. Ritenour
  • Patent number: 8202775
    Abstract: A process of forming an electronic device can include providing a workpiece comprising a substrate, including an underlying doped region, and a semiconductor portion overlying the underlying doped region, wherein the semiconductor portion has a primary surface spaced apart from the underlying doped region. The process can further include forming a vertically-oriented conductive region extending from the primary surface towards the underlying doped region, forming a horizontally-oriented doped region adjacent to the primary surface, and forming a conductive electrode over, spaced-apart from, and electrically insulated from the vertically-oriented doped region. The process can still further include forming a gate electrode after forming the conductive electrode. The electronic device can include a transistor that includes the underlying doped region, the vertically-oriented conductive region, the horizontally-oriented doped region, and the gate electrode.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: June 19, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 8202780
    Abstract: A method for manufacturing a FinFET device includes: providing a substrate having a mask disposed thereon; covering portions of the mask to define a perimeter of a gate region; removing uncovered portions of the mask to expose the substrate; covering a part of the exposed substrate with another mask to define at least one fin region; forming the at least one fin and the gate region through both masks and the substrate, the gate region having side walls; disposing insulating layers around the at least one fin and onto the side walls; disposing a conductive material into the gate region and onto the insulating layers to form a gate electrode, and then forming source and drain regions.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: June 19, 2012
    Assignee: International Business Machines Corporation
    Inventors: Zhibin Ren, Xinhui Wang, Kevin K. Chan, Ying Zhang
  • Patent number: 8198154
    Abstract: Lateral DMOS devices having improved drain contact structures and methods for making the devices are disclosed. A semiconductor device comprises a semiconductor substrate; an epitaxial layer on top of the substrate; a drift region at a top surface of the epitaxial layer; a source region at a top surface of the epitaxial layer; a channel region between the source and drift regions; a gate positioned over a gate dielectric on top of the channel region; and a drain contact trench that electrically connects the drift layer and substrate. The contact trench includes a trench formed vertically from the drift region, through the epitaxial layer to the substrate and filled with an electrically conductive drain plug; electrically insulating spacers along sidewalls of the trench; and an electrically conductive drain strap on top of the drain contact trench that electrically connects the drain contact trench to the drift region.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: June 12, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Patent number: 8193583
    Abstract: A voltage converter can include an output circuit having a vertical high-side device and a vertical low-side device which can be formed on a single die (i.e. a “PowerDie”). The high side device can be a PMOS transistor, while the low side device can be an NMOS transistor. The source of the PMOS transistor and the source of the NMOS transistor can be formed from the same metal structure, with the source of the high side device electrically connected to VIN and the source of the low side device electrically connected to ground. A drain of the high side PMOS transistor can be electrically shorted to the drain of the low side NMOS transistor during device operation using a metal layer which is interposed between the transistors and a semiconductor substrate.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 5, 2012
    Assignee: Intersil Americas, Inc.
    Inventor: François Hébert
  • Publication number: 20120132986
    Abstract: A semiconductor device includes a substrate having a plurality of horizontal channel transistors formed thereon, an insulation layer structure on the substrate and covering the horizontal transistors, and a plurality of vertical channel transistors on the insulation layer structure.
    Type: Application
    Filed: October 3, 2011
    Publication date: May 31, 2012
    Inventors: Pil-Kyu Kang, Dae-Lok Bae, Gil-Heyun Choi, Suk-Chul Bang, Byung-Lyul Park, Kwang-Jin Moon, Dong-Chan Lim, Deok-Young Jung
  • Patent number: 8187928
    Abstract: A method of forming an integrated circuit includes forming a gate structure over a substrate. A plasma doping (PLAD) process is performed to at least a portion of the substrate that is adjacent to the gate structure. The doped portion of the substrate is annealed in an ambient with an oxygen-containing chemical.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: May 29, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: De-Wei Yu, Chun Hsiung Tsai, Yu-Lien Huang, Chien-Tai Chan, Wen-Sheh Huang
  • Patent number: 8187962
    Abstract: Structures and methods of forming self aligned silicided contacts are disclosed. The structure includes a gate electrode disposed over an active area, a liner disposed over the gate electrode and at least a portion of the active area, an insulating layer disposed over the liner. A first contact plug is disposed in the insulating layer and the liner, the first contact plug disposed above and in contact with a portion of the active area, the first contact plug including a first conductive material. A second contact plug is disposed in the insulating layer and the liner, the second contact plug disposed above and in contact with a portion of the gate electrode, the second contact plug includes the first conductive material. A contact material layer is disposed in the active region, the contact material layer disposed under the first contact plug and includes the first conductive material.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 29, 2012
    Assignee: Infineon Technologies AG
    Inventor: Roland Hampp
  • Patent number: 8183628
    Abstract: In contrast to a conventional planar CMOS technique in design and fabrication for a field-effect transistor (FET), the present invention provides an SGT CMOS device formed on a conventional substrate using various crystal planes in association with a channel type and a pillar shape of an FET, without a need for a complicated device fabrication process. Further, differently from a design technique of changing a surface orientation in each planar FET, the present invention is designed to change a surface orientation in each SGT to achieve improvement in carrier mobility. Thus, a plurality of SGTs having various crystal planes can be formed on a common substrate to achieve a plurality of different carrier mobilities so as to obtain desired performance.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 22, 2012
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Keon Jae Lee
  • Patent number: 8178403
    Abstract: The present invention relates to providing layers of different thickness on vertical and horizontal surfaces (15, 20) of a vertical semiconductor device (1). In particular the invention relates to gate electrodes and the formation of precision layers (28) in semiconductor structures comprising a substrate (10) and an elongated structure (5) essentially standing up from the substrate. According to the method of the invention the vertical geometry of the device (1) is utilized in combination with either anisotropic deposition or anisotropic removal of deposited material to form vertical or horizontal layers of very high precision.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: May 15, 2012
    Assignee: QuNano AB
    Inventors: Jonas Ohlsson, Lars Samuelson, Erik Lind, Lars-Erik Wernersson, Truls Löwgren
  • Patent number: 8178409
    Abstract: The invention is related to a semiconductor device with alternately arranged P-type and N-type thin semiconductor layers and method for manufacturing the same. For P-type device, the method includes trench formation, thermal oxide formation on trench sidewalls, N-type silicon formation in trenches, N-type impurity diffusion through thermal oxide into P-type epitaxial layer, oxidation of N-type silicon in trenches and oxide removal. In the semiconductor device, N-type thin semiconductor layers are formed by N-type impurity diffusion through oxide to P-type epitaxial layers, and trenches are filled with oxide. With this method, relatively low concentration impurity in high voltage device can be realized by current mass production process, and the device development cost and manufacturing cost are decreased.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: May 15, 2012
    Assignee: Shanghai Hua Hong Nec Electronics Company, Limited
    Inventors: Shengan Xiao, Feng Han
  • Patent number: 8178399
    Abstract: An SGT production method includes forming a pillar-shaped first-conductive-type semiconductor layer and forming a second-conductive-type semiconductor layer underneath the first-conductive-type semiconductor layer. A dummy gate dielectric film and a dummy gate electrode are formed around the first-conductive-type semiconductor layer and a first dielectric film is formed on an upper region of a sidewall of the first-conductive-type semiconductor layer in contact with a top of the gate electrode. A first dielectric film is formed on a sidewall of the gate electrode and a second-conductive-type semiconductor layer is formed in an upper portion of the first-conductive-type semiconductor layer. A second-conductive-type semiconductor layer is formed in an upper portion of the first-conductive-type semiconductor layer and a metal-semiconductor compound is formed on each of the second-conductive-type semiconductor layers.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: May 15, 2012
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Tomohiko Kudo, Shintaro Arai, Hiroki Nakamura
  • Patent number: 8168492
    Abstract: In semiconductor devices, and methods of formation thereof, both planar-type memory devices and vertically oriented thin body devices are formed on a common semiconductor layer. In a memory device, for example, it is desirable to have planar-type transistors in a peripheral region of the device, and vertically oriented thin body transistor devices in a cell region of the device. In this manner, the advantageous characteristics of each type of device can be applied to appropriate functions of the memory device.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 1, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Dong-Gun Park, Dong-Won Kim, Min-Sang Kim, Eun-jung Yun
  • Patent number: 8169019
    Abstract: A metal-oxide-semiconductor chip having a semiconductor substrate, an epitaxial layer, at least a MOS cell, and a metal pattern layer is provided. The epitaxial layer is located on the semiconductor substrate and has an active region, a termination region, and a scribe line preserving region defined on an upper surface thereof. An etched sidewall of the epitaxial layer is located in the scribe line preserving region. The boundary portion of the upper surface of the semiconductor substrate is thus exposed. The MOS cell is located in the active region. The metal pattern layer is located on the epitaxial layer and has a gate pad coupled to the gate of the MOS cell, a source pad coupled to the source of the MOS cell, and a drain pattern, which is partly located on the upper surface of the semiconductor substrate.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: May 1, 2012
    Assignee: Niko Semiconductor Co., Ltd.
    Inventors: Kuo-Chang Tsen, Kao-Way Tu
  • Patent number: 8163605
    Abstract: It is intended to provide an SGT production method capable of obtaining a structure for reducing a resistance of a source, drain and gate, a desired gate length, desired source and drain configurations and a desired diameter of a pillar-shaped semiconductor to be obtained.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: April 24, 2012
    Assignee: Unisantis Electronics Singapore PTE Ltd.
    Inventors: Fujio Masuoka, Tomohiko Kudo, Shintaro Arai, Hiroki Nakamura
  • Patent number: 8154076
    Abstract: A semiconductor device includes low voltage and high voltage transistors over a substrate. The low voltage transistor is configured by at least one unit transistor. The high voltage transistor is configured by a greater number of the unit transistors than the at least one unit transistor that configures the low voltage transistor. Each of the unit transistors may include a vertically extending portion of semiconductor providing a channel region and having a uniform height, a gate insulating film extending along a side surface of the vertically extending portion of semiconductor, a gate electrode separated by the gate insulating film from the vertically extending portion of semiconductor, and upper and lower diffusion regions being respectively disposed near the top and bottom of the vertically extending portion of semiconductor. The greater number of the unit transistors are connected in series to each other and have gate electrodes eclectically connected to each other.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: April 10, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Yoshihiro Takaishi
  • Patent number: 8148222
    Abstract: Methods of forming an array of memory cells and memory cells that have pillars. Individual pillars can have a semiconductor post formed of a bulk semiconductor material and a sacrificial cap on the semiconductor post. Source regions can be between columns of the pillars, and gate lines extend along a column of pillars and are spaced apart from corresponding source regions. Each gate line surrounds a portion of the semiconductor posts along a column of pillars. The sacrificial cap structure can be selectively removed to thereby form self-aligned openings that expose a top portion of corresponding semiconductor posts. Individual drain contacts formed in the self-aligned openings are electrically connected to corresponding semiconductor posts.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: April 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: John Zahurak, Sanh D. Tang, Gurtej S. Sandhu
  • Patent number: 8148774
    Abstract: To provide a semiconductor device in which an interval between first wells can be shortened by improving a separation breakdown voltage between the first wells and a method for manufacturing the same.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: April 3, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Hidemitsu Mori, Kazuhiro Takimoto, Toshiyuki Shou, Kenji Sasaki, Yutaka Akiyama
  • Publication number: 20120068261
    Abstract: A stack of a barrier metal layer and a first-type work function metal layer is deposited in replacement metal gate schemes. The barrier metal layer can be deposited directly on the gate dielectric layer. The first-type work function metal layer is patterned to be present only in regions of a first type field effect transistor. A second-type work function metal layer is deposited directly on the barrier metal layer in the regions of a second type field effect transistor. Alternately, the first-type work function layer can be deposited directly on the gate dielectric layer. The barrier metal layer is patterned to be present only in regions of a first type field effect transistor. A second-type work function metal layer is deposited directly on the gate dielectric layer in the regions of the second type field effect transistor. A conductive material fill and planarization form dual work function replacement gate structures.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: Unoh Kwon, Michael P. Chudzik, Ravikumar Ramachandran
  • Patent number: 8138039
    Abstract: A vertical transistor having a wrap-around-gate and a method of fabricating such a transistor. The wrap-around-gate (WAG) vertical transistors are fabricated by a process in which source, drain and channel regions of the transistor are automatically defined and aligned by the fabrication process, without photolithographic patterning.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 20, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Robert J. Burke, Anand Srinivasan
  • Patent number: 8133784
    Abstract: A method of fabricating a non-volatile memory device according to an example embodiment may include etching a plurality of sacrificial films and insulation films to form a plurality of first openings that expose a plurality of first portions of a semiconductor substrate. A plurality of channel layers may be formed in the plurality of first openings so as to coat the plurality of first portions of the semiconductor substrate and side surfaces of the plurality of first openings. A plurality of insulation pillars may be formed on the plurality of channel layers so as to fill the plurality of first openings. The plurality of sacrificial films and insulation films may be further etched to form a plurality of second openings that expose a plurality of second portions of the semiconductor substrate. A plurality of side openings may be formed by removing the plurality of sacrificial films. A plurality of gate dielectric films may be formed on surfaces of the plurality of side openings.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: March 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dew-ill Chung, Han-soo Kim, Jae-hun Jeong, Jin-soo Lim, Ki-hyun Kim, Ju-young Lim
  • Patent number: 8119484
    Abstract: One aspect of the present subject matter relates to a memory. A memory embodiment includes a nanofin transistor having a first source/drain region, a second source/drain region above the first source/drain region, and a vertically-oriented channel region between the first and second source/drain regions. The nanofin transistor also has a surrounding gate insulator around the nanofin structure and a surrounding gate surrounding the channel region and separated from the nanofin channel by the surrounding gate insulator. The memory includes a data-bit line connected to the first source/drain region, at least one word line connected to the surrounding gate of the nanofin transistor, and a stacked capacitor above the nanofin transistor and connected between the second source/drain region and a reference potential. Other aspects are provided herein.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: February 21, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Publication number: 20120025320
    Abstract: A fabricating method of CMOS transistor includes following steps. A first gate and a second gate are formed on a substrate. A gate insulator is formed on the substrate to cover the first and second gates. A first source, a first drain, a second source, and a second drain are formed on the gate insulator. The first source and the first drain are above the first gate. The second source and the second drain are above the second gate. A first channel layer and a mask layer are formed on the gate insulator. The mask layer is on the first channel layer. The first channel layer is above the first gate and contacts with the first source and the first drain. A second channel layer is formed on the gate insulator. The second channel layer is above the second gate and contacts with the second source and the second drain.
    Type: Application
    Filed: November 10, 2010
    Publication date: February 2, 2012
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Chung-Tao Chen, Ta-Wei Chiu, Yu-Pu Lin, Yi-Wei Chen
  • Patent number: 8101500
    Abstract: A method of forming a semiconductor device on a heavily doped P-type (110) semiconductor layer over a metal substrate includes providing a first support substrate and forming a P-type heavily doped (110) silicon layer overlying the first support substrate. At least a top layer of the first support substrate is removable by a selective etching process with respect to the P-type heavily doped (110) silicon layer. A vertical semiconductor device structure is formed in and over the (110) silicon layer. The vertical device structure includes a top metal layer and is characterized by a current conduction in a <110> direction. The method includes bonding a second support substrate to the top metal layer and removing the first support substrate using a mechanical grinding and a selective etching process to expose a surface of the P-type heavily doped (110) silicon layer and to allow a metal layer to be formed on the surface.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: January 24, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Qi Wang, Minhua Li, Yuri Sokolov
  • Patent number: 8101484
    Abstract: In accordance with an exemplary embodiment of the invention, a substrate of a first conductivity type silicon is provided. A substrate cap region of the first conductivity type silicon is formed such that a junction is formed between the substrate cap region and the substrate. A body region of a second conductivity type silicon is formed such that a junction is formed between the body region and the substrate cap region. A trench extending through at least the body region is then formed. A source region of the first conductivity type is then formed in an upper portion of the body region. An out-diffusion region of the first conductivity type is formed in a lower portion of the body region as a result of one or more temperature cycles such that a spacing between the source region and the out-diffusion region defines a channel length of the field effect transistor.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 24, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Izak Bencuya, Brian Sze-Ki Mo, Ashok Challa
  • Patent number: 8097513
    Abstract: A vertical transistor of a semiconductor device has a channel area formed in a vertical direction to a semiconductor substrate. After semiconductor poles corresponding to the length of semiconductor channels and gate electrodes surrounding sidewalls of the semiconductor poles are formed, subsequent processes of forming silicon patterns corresponding to junction areas, etc. are performed. The gate electrodes support the semiconductor poles during these subsequent processes. The height of the semiconductor poles corresponding to the length of the channel is increased, yet the semiconductor poles do not collapse or incline since the gate electrodes support the semiconductor poles.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 17, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki Ro Hong, Do Hyung Kim
  • Patent number: 8093122
    Abstract: A method for fabricating a vertical channel transistor includes forming a structure including a plurality of trimmed pillar patterns, forming a conductive layer for a gate electrode including a seam over a resultant structure with the pillar patterns, performing an etch-back process until the seam is exposed, and forming a gate electrode by etching the etch-backed conductive layer.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 10, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chun-Hee Lee
  • Patent number: 8088657
    Abstract: An integrated circuit includes a logic circuit and a memory cell. The logic circuit includes a P-channel transistor, and the memory cell includes a P-channel transistor. The P-channel transistor of the logic circuit includes a channel region. The channel region has a portion located along a sidewall of a semiconductor structure having a surface orientation of (110). The portion of the channel region located along the sidewall has a first vertical dimension that is greater than a vertical dimension of any portion of the channel region of the P-channel transistor of the memory cell located along a sidewall of a semiconductor structure having a surface orientation of (110).
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: January 3, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James D. Burnett, Leo Mathew, Byoung W. Min
  • Publication number: 20110317485
    Abstract: The present disclosure provides a static random access memory (SRAM) cell. The SRAM cell includes a first and a second pull-up devices; a first and a second pull-down devices configured with the first and second pull-up devices to form two cross-coupled inverters for data storage; and a first and second pass-gate devices configured with the two cross-coupled inverters to form a port for data access, wherein the first and second pull-down devices each includes a first channel doping feature of a first doping concentration, and the first and second pass-gate devices each includes a second channel doping feature of a second doping concentration greater than the first doping concentration.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 29, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 8084304
    Abstract: A method for preventing gate oxide damage of a trench MOSFET during wafer processing while adding an ESD protection module atop the trench MOSFET includes fabricate numerous trench MOSFETs on a wafer; add a Si3N4 isolation layer, capable of preventing the LTO patterning process from damaging the gate oxide, atop the wafer; add numerous ESD protection modules atop the Si3N4 isolation layer.
    Type: Grant
    Filed: May 29, 2010
    Date of Patent: December 27, 2011
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Mengyu Pan, Zengyi He, Kaiyu Chen
  • Patent number: 8084813
    Abstract: A short gate high power metal oxide semiconductor field effect transistor formed in a trench includes a short gate having gate length defined by spacers within the trench. The transistor further includes a buried region that extends beneath the trench and beyond a corner of the trench, that effectively shields the gate from high drain voltage, to prevent short channel effects and resultantly improve device performance and reliability.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: December 27, 2011
    Assignee: Cree, Inc.
    Inventors: Andrei Konstantinov, Christopher Harris, Jan-Olov Svederg
  • Patent number: 8084316
    Abstract: Single transistor floating-body DRAM devices have a vertical channel transistor structure. The DRAM devices include a substrate, and first and second floating bodies disposed on the substrate and isolated from each other. A source region and a drain region are disposed under and above each of the first and second floating bodies. A gate electrode is disposed between the first and second floating bodies. Methods of fabricating the single transistor floating-body DRAM devices are also provided.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: December 27, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Patent number: 8076716
    Abstract: An electronic device can include a transistor. In an embodiment, the transistor can include a semiconductor layer having a primary surface and a conductive structure. The conductive structure can include a horizontally-oriented doped region lying adjacent to the primary surface, an underlying doped region spaced apart from the primary surface and the horizontally-oriented doped region, and a vertically-oriented conductive region extending through a majority of the thickness of the semiconductor layer and electrically connecting the doped horizontal region and the underlying doped region. In another embodiment, the transistor can include a gate dielectric layer, wherein the field-effect transistor is designed to have a maximum gate voltage of approximately 20 V, a maximum drain voltage of approximately 30 V, and a figure of merit no greater than approximately 30 m?*nC.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: December 13, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 8076724
    Abstract: A semiconductor device is formed having lower gate-to-drain capacitance. The semiconductor device having an active region (1300) and a dielectric platform region (1310). A trench (80) is formed adjacent to a drain (20) of the semiconductor device to a first depth. The etch process for forming trench (80) etches the dielectric platform region (1310) to a first depth. A second trench (210) is etched in trench (80) to further isolate areas in the active region (1300). The etch process for forming the second trench (210) etches the dielectric platform region (1310) to form a support structure for the dielectric platform in the substrate. The dielectric platform, the trench (80), and the second trench (210) is capped and sealed. The dielectric platform is made approximately planar to the major surface of the substrate by forming the support structure from the first depth to the second depth.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: December 13, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Robert Bruce Davies
  • Patent number: 8058655
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs). The devices have raised regions with sloped sidewalls which taper inward. The sidewalls can form an angle of 5° or more from vertical to the substrate surface. The devices can have dual-sloped sidewalls in which a lower portion of the sidewalls forms an angle of 5° or more from vertical and an upper portion of the sidewalls forms an angle of <5° from vertical. The devices can be made using normal (i.e., 0°) or near normal incident ion implantation. The devices have relatively uniform sidewall doping and can be made without angled implantation.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 15, 2011
    Assignee: SS SC IP, LLC
    Inventors: David C. Sheridan, Andrew P. Ritenour
  • Patent number: 8053286
    Abstract: A method of forming a semiconductor device is provided, which may include, but is not limited to, the following processes. Grooves may be formed in an insulating region and in a semiconductor region, while forming burrs near the boundary between the insulating region and the semiconductor region. Protection films may be selectively formed on inside walls of the grooves except on bottom walls of the grooves. A selective thermal process may be carried out in the presence of the protection films, thereby removing the burrs.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: November 8, 2011
    Assignee: Elpida Memory, Inc.
    Inventors: Kyoko Miyata, Fumiki Aiso
  • Patent number: 8049270
    Abstract: This semiconductor device an epitaxial layer of a first conductivity type formed on a surface of the first semiconductor layer, and a base layer of a second conductivity type formed on a surface of the epitaxial layer. A diffusion layer of a first conductivity type is selectively formed in the base layer, and a trench penetrates the base layer to reach the epitaxial layer. A gate electrode is formed in the trench through the gate insulator film formed on the inner wall of the trench. A first buried diffusion layer of a second conductivity type is formed in the epitaxial layer deeper than the bottom of the gate electrode. A second buried diffusion layer connects the first buried diffusion layer and the base layer and has a resistance higher than that of the first buried diffusion layer.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: November 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miwako Akiyama, Akio Nakagawa, Yusuke Kawaguchi, Syotaro Ono, Yoshihiro Yamaguchi
  • Patent number: 8043903
    Abstract: A method of manufacturing a semiconductor device may include, but is not limited to the following processes. A first recess is formed in a semiconductor substrate to define an active region on the semiconductor substrate. The active region includes a protruding portion of the semiconductor substrate surrounded by the first recess. The protruding portion has a sloped side surface. A first insulating film that fills the first recess is formed. A gate recess is formed in the active region to form a thin film portion that upwardly extends. The thin film portion is positioned between the gate recess and the first insulating film. The thin film portion is a part of the protruding portion. An upper part of the thin film portion is removed by wet-etching to adjust a height of the thin film portion.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: October 25, 2011
    Assignee: Elpida Memory, Inc.
    Inventors: Katsumi Koge, Teruyuki Mine, Yasushi Yamazaki
  • Publication number: 20110253981
    Abstract: The present disclosure provides a method for manufacturing at least one nanowire Tunnel Field Effect Transistor (TFET) semiconductor device. The method comprises providing a stack comprising a layer of channel material with on top thereof a layer of sacrificial material, removing material from the stack so as to form at least one nanowire from the layer of channel material and the layer of sacrificial material, and replacing the sacrificial material in the at least one nanowire by heterojunction material. A method according to embodiments of the present disclosure is advantageous as it enables easy manufacturing of complementary TFETs.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicants: Katholieke Universiteit Leuven, K.U. LEUVEN R&D, IMEC
    Inventors: Rita Rooyackers, Daniele Leonelli, Anne Vandooren, Anne S. Verhulst, Roger Loo, Stefan De Gendt