Having Well Structure Of Opposite Conductivity Type Patents (Class 438/223)
  • Patent number: 11552070
    Abstract: Disclosed is an electrostatic protection circuit, an array substrate and a display device. The electrostatic protection circuit includes a first electrostatic discharge end, a second electrostatic discharge end and a signal line connecting end; a first discharge sub-circuit coupled between the first electrostatic discharge end and the signal line connecting end; and a second discharge sub-circuit coupled between the second electrostatic discharge end and the signal line connecting end. Each of the first discharge sub-circuit and the second discharge sub-circuit comprises at least one MOSFET, and gates of all MOSFETs comprised in the first discharge sub-circuit and the second discharge sub-circuit are not coupled with any one of the first electrostatic discharge end, the second electrostatic discharge end and the signal line connecting end.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: January 10, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Chunping Long
  • Patent number: 11404844
    Abstract: A semiconductor structure is provided. The semiconductor structure includes: a substrate having a cavity recessed from a top surface of the substrate toward a bottom surface of the substrate opposite to the top surface, wherein the cavity has a sidewall and a bottom surface, and the bottom surface of the cavity is substantially parallel to the top surface of the substrate; a light source structure in the cavity, and the light source structure emitting a light from a sidewall of the light source structure; and a diffractive optical element (DOE) over the top surface of the substrate; wherein the sidewall of the cavity is a sloped surface, so that when the light is incident on the sidewall, the sloped surface reflects the incident light to generate a reflected light toward the DOE. Associated semiconductor structure and manufacturing method are also disclosed.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 2, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Chun-Sheng Fan, Wei-Feng Lin
  • Patent number: 9070437
    Abstract: Junction diodes fabricated in standard CMOS logic processes can be used as program selectors with at least one heat sink or heater to assist programming for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The heat sink can be at least one thin oxide area, extended OTP element area, or other conductors coupled to the OTP element to assist programming. A heater can be at least one high resistance area such as an unsilicided polysilicon, unsilicided active region, contact, via, or combined in serial, or interconnect to generate heat to assist programming. The OTP device has at least one OTP element coupled to at least one diode in a memory cell. The diode can be constructed by P+ and N+ active regions in a CMOS N well, or on an isolated active region as the P and N terminals of the diode.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 30, 2015
    Inventor: Shine C. Chung
  • Patent number: 8912052
    Abstract: A semiconductor device, including: a first layer including monocrystalline material and first transistors, the first transistors overlaid by a first isolation layer; a second layer including second transistors and overlaying the first isolation layer, the second transistors including a monocrystalline material; at least one contact to the second transistors, where the at least one contact is aligned to the first transistors with less than about 40 nm alignment error, a first set of external connections underlying the first layer to connect the device to external devices; and a second set of external connections overlying the second layer to connect the device to external devices.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: December 16, 2014
    Assignee: Monolithic 3D Inc.
    Inventor: Zvi Or-Bach
  • Patent number: 8901649
    Abstract: A semiconductor device, an electrostatic discharge protection device and manufacturing method thereof are provided. The electrostatic discharge protection device includes a gate, a gate dielectric layer, an N-type source region, an N-type drain region, an N-type doped region and a P-type doped region. The gate dielectric layer is disposed on a substrate. The gate is disposed on the gate dielectric layer. The N-type source region and the N-type drain region are disposed in the substrate at two sides of the gate, respectively. The N-type doped region is disposed in the N-type drain region and connects to the top of the N-type drain region. The P-type doped region is disposed under the N-type drain region and connects to the bottom of the N-type drain region.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 2, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Chieh-Wei He, Shih-Yu Wang, Qi-An Xu
  • Patent number: 8900943
    Abstract: A process for fabrication of a power semiconductor device is disclosed in which a single photomask is used to define each of p-conductivity well regions and n-conductivity type source regions. In the process a single photomask is deposited on a layer of polysilicon on a wafer, the polysilicon layer is removed from first regions of the power semiconductor device where the p-conductivity well regions and the n-conductivity type source regions are to be formed, and both p-conductivity type and n-conductivity type dopants are introduced into the wafer through the first regions.
    Type: Grant
    Filed: May 31, 2014
    Date of Patent: December 2, 2014
    Assignee: IXYS Corporation
    Inventors: Kyoung Wook Seok, Jae Yong Choi, Vladimir Tsukanov
  • Patent number: 8890259
    Abstract: An SCR apparatus includes an SCR structure and a first N injection region. The SCR structure includes a P+ injection region, a P well, an N well and a first N+ injection region, the first N injection region is located under an anode terminal of the P+ injection region of the SCR structure. A method for adjusting a sustaining voltage therefor is provided as well.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 18, 2014
    Assignees: CSMC Technologies Fab1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventors: Meng Dai, Zhongyu Lin
  • Patent number: 8853026
    Abstract: Semiconductor devices and methods of fabricating the same are provided. An insulating film can be disposed on a semiconductor substrate, and insulating film patterns can be formed opening a plurality of areas with predetermined widths by patterning the insulating film. A plurality of ion implantation areas having a first conductivity type can be formed by implanting impurities into the plurality of open areas, and an oxide film pattern can be formed on each of the ion implantation areas. The insulating film patterns can be removed, and ion implantation areas having a second conductivity type can be formed by implanting impurities using the oxide film pattern as a mask. The semiconductor substrate can be annealed at a high temperature to form deep wells.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 7, 2014
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Kyung Wook Kwon
  • Patent number: 8815698
    Abstract: A well region formation method and a semiconductor base in the field of semiconductor technology are provided. A method comprises: forming isolation regions in a semiconductor substrate to isolate active regions; selecting at least one of the active regions, and forming a first well region in the selected active region; forming a mask to cover the selected active region, and etching the rest of the active regions, so as to form grooves; and growing a semiconductor material by epitaxy to fill the grooves. Another method comprises: forming isolation regions in a semiconductor substrate for isolating active regions; forming well regions in the active regions; etching the active regions to form grooves, such that the grooves have a depth less than or equal to a depth of the well regions; and growing a semiconductor material by epitaxy to fill the grooves.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 26, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8796088
    Abstract: A semiconductor device and a method of fabricating the semiconductor device is provided. In the method, a semiconductor substrate defining a device region and an outer region at a periphery of the device region is provided, an align trench is formed in the outer region, a dummy trench is formed in the device region, an epi layer is formed over a top surface of the semiconductor substrate and within the dummy trench, a current path changing part is formed over the epi layer, and a gate electrode is formed over the current path changing part. When the epi layer is formed, a current path changing trench corresponding to the dummy trench is formed over the epi layer, and the current path changing part is formed within the current path changing trench.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 5, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Chul Jin Yoon
  • Patent number: 8778752
    Abstract: A method for designing a semiconductor device includes arranging at least a pattern of a first active region in which a first transistor is formed and a pattern of a second active region in which a second transistor is formed; arranging at least a pattern of a gate wire which intersects the first active region and the second active region; extracting at least a first region in which the first active region and the gate wire are overlapped with each other; arranging at least one pattern of a compressive stress film on a region including the first active region; and obtaining by a computer a layout pattern of the semiconductor device, when the at least one pattern of the compressive stress film is arranged, end portions of the at least one pattern thereof are positioned based on positions of end portions of the first region.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: July 15, 2014
    Assignee: Fujitu Semiconductor Limited
    Inventor: Yasunobu Torii
  • Patent number: 8765544
    Abstract: An apparatus is disclosed to increase a breakdown voltage of a semiconductor device. The semiconductor device includes an enhanced well region to effectively increase a voltage at which punch-through occurs when compared to a conventional semiconductor device. The enhanced well region includes a greater number of excess carriers when compared to a well region of the conventional semiconductor device. These larger number of excess carriers attract more carriers allowing more current to flow through a channel region of the semiconductor device before depleting the enhanced well region of the carriers. As a result, the semiconductor device may accommodate a greater voltage being applied to its drain region before the depletion region of the enhanced well region and a depletion region of a well region surrounding the drain region merge into a single depletion region.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: July 1, 2014
    Assignee: Broadcom Corporation
    Inventor: Akira Ito
  • Patent number: 8741709
    Abstract: A process for fabrication of a power semiconductor device is disclosed in which a single photomask is used to define each of p-conductivity well regions and n-conductivity type source regions. In the process a single photomask is deposited on a layer of polysilicon on a wafer, the polysilicon layer is removed from first regions of the power semiconductor device where the p-conductivity well regions and the n-conductivity type source regions are to be formed, and both p-conductivity type and n-conductivity type dopants are introduced into the wafer through the first regions.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: June 3, 2014
    Assignee: IXYS Corporation
    Inventors: Kyoung Wook Seok, Jae Yong Choi, Vladimir Tsukanov
  • Patent number: 8704229
    Abstract: Semiconductor devices are formed without zipper defects or channeling and through-implantation and with different silicide thicknesses in the gates and source/drain regions, Embodiments include forming a gate on a substrate, forming a nitride cap on the gate, forming a source/drain region in the substrate on each side of the gate, forming a wet cap fill layer on the source/drain region on each side of the gate, removing the nitride cap from the gate, and forming an amorphized layer in a top portion of the gate. Embodiments include forming the amorphized layer by implanting low energy ions.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: April 22, 2014
    Assignee: GlobalFoundries Inc.
    Inventors: Peter Javorka, Glyn Braithwaite
  • Patent number: 8686509
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a first doped region and a second doped region. The first doped region comprises a first contact region. The first doped region and the first contact region have a first type conductivity. The second doped region comprises a second contact region. The second doped region and the second contact region have a second type conductivity opposite to the first type conductivity. The first doped region is adjacent to the second doped region.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: April 1, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Chien-Chih Chen, Li-Fan Chen, Cheng-Chi Lin, Shin-Chin Lien, Shyi-Yuan Wu
  • Patent number: 8664723
    Abstract: A structure includes an isolation ring at a top surface of a substrate. A well region of a first conductivity type is in a surface portion of the substrate. The well region includes a first portion having a top portion encircled by the isolation ring, and a second portion having a top portion encircling the isolation ring. A base resistance tuning ring includes a portion overlapped by the isolation ring, wherein the base resistance tuning ring is between the first portion and the second portion of the well region. The base resistance tuning ring is selected from the group consisting essentially of a ring of the first conductivity type, a substantially neutral ring, and a ring of a second conductivity type opposite the first conductivity type.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Chou Tseng, Wun-Jie Lin
  • Patent number: 8633071
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: January 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Duresti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov
  • Patent number: 8592910
    Abstract: A semiconductor body includes a protective structure. The protective structure (10) includes a first and a second region (11, 12) which have a first conductivity type and a third region (13) that has a second conductivity type. The second conductivity type is opposite the first conductivity type. The first and the second region (11, 12) are arranged spaced apart in the third region (13), so that a current flow from the first region (11) to the second region (12) is made possible for the limiting of a voltage difference between the first and the second region (11, 12). The protective structure includes an insulator (14) that is arranged on the semiconductor body (9) and an electrode (16) that is constructed with floating potential and is arranged on the insulator (14).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 26, 2013
    Assignee: AMS AG
    Inventor: Hubert Enichlmair
  • Patent number: 8536654
    Abstract: A CMOS device having an NMOS transistor with a metal gate electrode comprising a mid-gap metal with a low work function/high oxygen affinity cap and a PMOS transistor with a metal gate electrode comprising a mid gap metal with a high work function/low oxygen affinity cap and method of forming.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: September 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Hiroaki Niimi
  • Patent number: 8507356
    Abstract: Semiconductor device manufacturing method includes forming a first mask, having a first opening to implant ion into semiconductor substrate and being used to form first layer well, on semiconductor substrate; forming first-layer well having first and second regions by implanting first ion into semiconductor substrate using first mask; forming second mask, having second opening to implant ion into semiconductor substrate and being used to form second layer well, on semiconductor substrate; and forming second-layer well below first layer well by implanting second ion into semiconductor substrate using second mask. First region is formed closer to an edge of first-layer well than second region. Upon implanting first ion, first ion deflected by first inner wall of first mask is supplied to first region. Upon implanting second ion, second ion deflected by second inner wall of second mask is supplied to second region.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: August 13, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Noriaki Ikeda
  • Patent number: 8420518
    Abstract: A method of manufacturing a semiconductor structure includes: forming a trench in a back side of a substrate; depositing a dopant on surfaces of the trench; forming a shallow trench isolation (STI) structure in a top side of the substrate opposite the trench; forming a deep well in the substrate; out-diffusing the dopant into the deep well and the substrate; forming an N-well and a P-well in the substrate; and filling the trench with a conductive material.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Phillip F. Chapman, David S. Collins, Steven H. Voldman
  • Patent number: 8377773
    Abstract: Generally, the present disclosure is directed to methods for adjusting transistor characteristics by forming a semiconductor alloy in the channel region of the transistor during early device processing. One disclosed method includes forming an isolation structure in a semiconductor layer of a semiconductor device and in a threshold voltage adjusting semiconductor alloy formed on the semiconductor layer, the isolation structure laterally separating a first active region and a second active region.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 19, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Peter Baars
  • Patent number: 8320165
    Abstract: An integrated circuit containing an SRAM array having a strap row. The strap row has a substrate contact structure that includes a substrate contact plug and a tap layer.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 27, 2012
    Assignee: Texas Instrument Incorporated
    Inventors: Robert R. Garcia, Theodore W. Houston
  • Patent number: 8315086
    Abstract: An integrated circuit containing an SRAM array having a strap row and an SRAM cell row. The strap row includes a tap connecting region that connects two columnar regions of a first polarity well. The strap row also includes a well tap active area in a tap connecting well region. The well tap active area includes a tap layer and a well contact plug that is disposed on the top surface of the tap layer.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Patent number: 8310860
    Abstract: An integrated circuit containing an SRAM array having a strap row. The strap row has a well tap active area that partially overlaps adjacent first polarity wells and a second polarity well that is located between the adjacent first polarity wells. A well contact plug is disposed on a top surface of a tap layer located within the well tap active area.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Patent number: 8243770
    Abstract: Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: August 14, 2012
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Robert G. W. Brown, Dale A. McNeill, Huibert DenBoer, Andrew J. Lanzone
  • Patent number: 8232180
    Abstract: The active region of an NMOS transistor and the active region of a PMOS transistor are divided by an STI element isolation structure. The STI element isolation structure is made up of a first element isolation structure formed so as to include the interval between both active regions, and a second element isolation structure formed in the region other than the first element isolation structure.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: July 31, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8198155
    Abstract: A semiconductor device according to an embodiment of the present invention includes an N-type transistor formed in a first region on a substrate, and a P-type transistor formed in a second region on the substrate.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: June 12, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Ikeno, Tomonori Aoyama, Kazuaki Nakajima, Seiji Inumiya, Takashi Shimizu, Takuya Kobayashi
  • Patent number: 8084319
    Abstract: Methods are provided for fabricating devices. A first layer is formed. A hardmask on the first layer is formed. Features on the hardmask are patterned. The sizes of features on the hardmask are reduced by applying a plasma treatment process to form reduced size features. Also, the size of features on the hardmask can be enlarged to form enlarged size features by applying the plasma treatment process and/or removing the oxidized part of the feature during plasma treatment process. Another method may include a first layer formed on a substrate and a second layer formed on the first layer. First features are patterned on the first layer, and second features are patterned on the second layer. A size of second features on the second layer is closed due to the different oxidation rate of the two layers during the plasma treatment process, to form a self-sealed channel and/or self-buried trench.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: December 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hongbo Peng, Stephen M. Rossnagel, Katherine L. Saenger
  • Patent number: 8080455
    Abstract: A method for fabricating a semiconductor device is provided. A substrate comprising a P-well is provided. A low voltage device area and a high voltage device area are defined in the P-well. A photoresist layer is formed on the substrate. A photomask comprising a shielding region is provided. The shielding region is corresponded to the high voltage device area. A pattern of the photomask is transferred to the photoresist layer on the substrate by a photolithography process using the photomask. A P-type ion field is formed outside of the high-voltage device area by selectively doping P-type ions into the substrate using the photoresist layer as a mask.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 20, 2011
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chih-Ping Lin, Pi-Kuang Chuang, Hung-Li Chang, Shih-Ming Chen, Hsiao-Ying Yang
  • Publication number: 20110278674
    Abstract: Trench isolation structure and method of forming trench isolation structures. The structures includes a trench in a silicon region of a substrate, the trench extending from a top surface of the substrate into the silicon region; an ion implantation stopping layer over sidewalls of the trench; a dielectric fill material filling remaining space in the trench, the dielectric fill material not including any materials found in the stopping layer; an N-type dopant species in a first region of the silicon region on a first side of the trench; the N-type dopant species in a first region of the dielectric material adjacent to the first side of the trench; a P-type dopant species in a second region of the silicon region on a second side of the trench; and the P-type dopant species in a second region of the dielectric material adjacent to the second side of the trench.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 17, 2011
    Applicant: International Business Machines Corporation
    Inventors: Terence Blackwell Hook, Jeffrey Bowman Johnson, James Spiros Nakos
  • Patent number: 8053305
    Abstract: The invention provides a method for producing a semiconductor device that can reduce the number of mask steps. In a CMOS production process, gate electrodes are formed in regions for forming an NMOS and a PMOS at the same time with a common mask pattern, and after the gate electrodes have been formed, a well, and source and drain regions are formed by impurity ion implantations with a common mask pattern in each region of the NMOS and the PMOS, using the gate electrode as a mask, whereby the number of mask steps is reduced.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: November 8, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masahiko Yanagi
  • Patent number: 8049231
    Abstract: Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: November 1, 2011
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Robert G. W. Brown, Dale A. McNeill, Huibert DenBoer, Andrew J. Lanzone
  • Patent number: 8049278
    Abstract: An ESD device includes a low doped well connected to a first contact and a diffusion area connected to a second contact. A substrate between the low doped well and the diffusion area has a dopant polarity that is opposite a dopant polarity of the low doped well and the diffusion area. A distance between the low doped well and the diffusion area determines a triggering voltage of the ESD device. A depletion region is formed between the low doped well and the substrate when a reverse bias voltage is applied to the ESD device. A current discharging path is formed between the first contact and the second contact when the depletion region comes in to contact with the diffusion area. The substrate is biased by a connection to the second contact. Alternatively, an additional diffusion area with the same dopant polarity, connected to a third contact, biases the substrate.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 1, 2011
    Assignee: Broadcom Corporation
    Inventor: Agnes Neves Woo
  • Patent number: 8043909
    Abstract: The present invention provides a porous semiconductive structure, characterized in that the structure has an electrical conductivity of 5·10?8 S·cm?1 to 10 S·cm?1, and an activation energy of the electrical conductivity of 0.1 to 700 meV, and a solid fraction of 30 to 60% by volume, and a pore size of 1 nm to 500 nm, the solid fraction having at least partly crystalline doped constituents which are bonded to one another via sinter necks and have sizes of 5 nm to 500 nm and a spherical and/or ellipsoidal shape, which comprise the elements silicon, germanium or an alloy of these elements, and also a process for producing a porous semiconductive structure, characterized in that A. doped semimetal particles are obtained, and then B. a dispersion is obtained from the semimetal particles obtained after step A, and then C. a substrate is coated with the dispersion obtained after step B, and then D. the layer obtained after step C is treated by means of a solution of hydrogen fluoride in water, and then E.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 25, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: André Ebbers, Martin Trocha, Robert Lechner, Martin S. Brandt, Martin Stutzmann, Hartmut Wiggers
  • Publication number: 20110248352
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 13, 2011
    Inventors: Lucian Shifren, Pushkar Ranade, Scott E. Thompson, Sachin R. Sonkusale, Weimin Zhang
  • Patent number: 8017494
    Abstract: A process for the fabrication of a MOSgated device that includes a plurality of spaced trenches in the termination region thereof.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: September 13, 2011
    Assignee: International Rectifier Corporation
    Inventor: Ling Ma
  • Patent number: 8012848
    Abstract: Trench isolation structure and method of forming trench isolation structures. The structures includes a trench in a silicon region of a substrate, the trench extending from a top surface of the substrate into the silicon region; an ion implantation stopping layer over sidewalls of the trench; a dielectric fill material filling remaining space in the trench, the dielectric fill material not including any materials found in the stopping layer; an N-type dopant species in a first region of the silicon region on a first side of the trench; the N-type dopant species in a first region of the dielectric material adjacent to the first side of the trench; a P-type dopant species in a second region of the silicon region on a second side of the trench; and the P-type dopant species in a second region of the dielectric material adjacent to the second side of the trench.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Terence Blackwell Hook, Jeffrey Bowman Johnson, James Spiros Nakos
  • Patent number: 7972918
    Abstract: A semiconductor structure is provided with (i) an empty well having relatively little well dopant near the top of the well and (ii) a filled well having considerably more well dopant near the top of the well. Each well is defined by a corresponding body-material region (108 or 308) of a selected conductivity type. The regions respectively meet overlying zones (104 and 304) of the opposite conductivity type. The concentration of well dopant of the selected conductivity type locally reaches a maximum in each body-material region at a location no more than 10 times deeper below the upper semiconductor surface than the overlying zone's depth, decreases by at least a factor of 10 in moving from the empty-well maximum-concentration location through the overlying zone to the upper surface, and reaches at least one other maximum in moving from the filled-well maximum-concentration location through the other zone to the upper surface.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: July 5, 2011
    Assignee: National Semiconductor Corporation
    Inventor: Constantin Bulucea
  • Patent number: 7943466
    Abstract: In one embodiment, a semiconductor device is formed having sub-surface charge compensation regions in proximity to channel regions of the device. The charge compensation trenches comprise at least two opposite conductivity type semiconductor layers. A channel connecting region electrically couples the channel region to one of the at least two opposite conductivity type semiconductor layers.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: May 17, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Shanghui Larry Tu, Gordon M. Grivna
  • Patent number: 7919368
    Abstract: Electrically erasable programmable “read-only” memory (EEPROM) cells in an integrated circuit, and formed by a single polysilicon level. The EEPROM cell consists of a coupling capacitor and a combined read transistor and tunneling capacitor. The capacitance of the coupling capacitor is much larger than that of the tunneling capacitor. In one embodiment, field oxide isolation structures isolate the devices from one another; a lightly-doped region at the source of the read transistor improves breakdown voltage performance. In another embodiment, trench isolation structures and a buried oxide layer surround the well regions at which the coupling capacitor and combined read transistor and tunneling capacitor are formed.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: April 5, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Xiaoju Wu, Jozef C. Mitros
  • Patent number: 7915131
    Abstract: A semiconductor device includes: an isolation region formed in a semiconductor substrate; active regions surrounded by the isolation region and including p-type and n-type regions, respectively; an NMOS transistor formed in the active region including the p-type region and including an n-type gate electrode; a PMOS transistor formed in the active region including the n-type region and including a p-type gate electrode; and a p-type resistor formed on the isolation region. The p-type resistor has an internal stress greater than that of the p-type gate electrode.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 29, 2011
    Assignee: Panasonic Corporation
    Inventors: Ryo Nakagawa, Takayuki Yamada
  • Patent number: 7906389
    Abstract: A butted contact structure forming a source contact electrically connecting a voltage node and a well region and method for forming the same, the butted contact structure including an active region having a well region disposed adjacent an electrical isolation region on a semiconductor substrate; a MOSFET device including a source and drain region on the active region; and, a conductive contact having a first portion formed to the source region and a second portion formed through the electrical isolation region to the doped well region.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: March 15, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon-Jhy Liaw
  • Publication number: 20110053325
    Abstract: The invention provides a method for producing a semiconductor device that can reduce the number of mask steps. In a CMOS production process, gate electrodes are formed in regions for forming an NMOS and a PMOS at the same time with a common mask pattern, and after the gate electrodes have been formed, a well, and source and drain regions are formed by impurity ion implantations with a common mask pattern in each region of the NMOS and the PMOS, using the gate electrode as a mask, whereby the number of mask steps is reduced.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 3, 2011
    Inventor: Masahiko Yanagi
  • Patent number: 7868392
    Abstract: Integrated circuit comprising doped zones (3 to 8) formed in a substrate (1, 2), forming a parasitic thyristor structure with two parasitic bipolar transistors (T1, T2), the integrated circuit comprising two metallizations (16, 19) interconnecting each of the two corresponding doped zones (4, 5; 6, 7) of the integrated circuit, to reduce the base resistances (RP?, RP?) of the two bipolar transistors, at least one of the metallizations (16, 19) performed to reduce the base resistances (RN?, RP?) of the two bipolar transistors, being connected to a power supply metallization (15, 16) in the integrated circuit, entirely through the substrate (1, 2).
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: January 11, 2011
    Assignee: STMicroelectronics S.A.
    Inventor: Francois Tailliet
  • Patent number: 7833857
    Abstract: An ESD protecting circuit and a manufacturing method thereof are provided. The ESD protecting circuit includes a device isolation layer, first and second high-concentration impurity regions, a third high-concentration impurity region of a complementary type, first and second conductive wells, and a fourth conductive impurity region. The ESD protecting circuit is configured as a field transistor without a gate electrode, and the high breakdown voltage characteristics of the field transistor are lowered by implanting impurity ions, providing an ESD protecting circuit with a low breakdown voltage and low leakage current. Because the leakage current is reduced, the ESD protecting circuit can be used for an analog I/O device that is sensitive to current fluxes. Also, an N-type well may protect a junction of the field transistor.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 16, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: San Hong Kim
  • Patent number: 7763946
    Abstract: A semiconductor device includes: a substrate and a p-channel MIS transistor. The p-channel MIS transistor includes: an n-type semiconductor region formed in the substrate; p-type first source and drain regions formed at a distance from each other in the n-type semiconductor region; a first gate insulating film formed on the n-type semiconductor region between the first source region and the first drain region; and a first gate electrode formed on the first gate insulating film. The first gate electrode includes a first nickel silicide layer having a Ni/Si composition ratio of 1 or greater, and a silicide layer formed on the first nickel silicide layer. The silicide layer contains a metal having a larger absolute value of oxide formation energy than that of Si, and a composition ratio of the metal to Si is smaller than the Ni/Si composition ratio.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: July 27, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Tsuchiya, Masato Koyama
  • Patent number: 7759204
    Abstract: A method of manufacturing a semiconductor device having an active region and a termination region includes providing a semiconductor substrate having first and second main surfaces opposite to each other. The semiconductor substrate has an active region and a termination region surrounding the active region. The first main surface is oxidized. A first plurality of trenches and a first plurality of mesas are formed in the termination region. The first plurality of trenches in the termination region are filled with a dielectric material. A second plurality of trenches in the termination region. The second plurality of trenches are with the dielectric material.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: July 20, 2010
    Assignee: Third Dimension Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Brian D. Pratt
  • Patent number: 7754593
    Abstract: A method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; etching an upper part of the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: July 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomohiro Saito
  • Patent number: 7749833
    Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: July 6, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng