Having Well Structure Of Opposite Conductivity Type Patents (Class 438/223)
-
Patent number: 7736962Abstract: A junction field effect transistor comprises an insulating layer formed in a substrate. A source region of a first conductivity type is formed on the insulating layer, and a drain region of the first conductivity type is formed on the insulating layer and spaced apart from the drain region. A channel region of the first conductivity type is located between the source region and the drain region and formed on the insulating layer. A gate region of the second conductivity type surrounds all surfaces of a length of the channel region such that the channel region is embedded within the gate region.Type: GrantFiled: January 7, 2009Date of Patent: June 15, 2010Assignee: SuVolta, Inc.Inventor: Kiyoshi Mori
-
Patent number: 7713809Abstract: A method and structure for reducing dark current in an image sensor includes preventing unwanted electrons from being collected in the photosensitive region of the image sensor. In one embodiment, dark current is reduced by providing a deep n-type region having an n-type peripheral sidewall formed in a p-type substrate region underlying a pixel array region to separate the pixel array region from a peripheral circuitry region of the image sensor. The method and structure also provide improved protection from blooming.Type: GrantFiled: October 13, 2006Date of Patent: May 11, 2010Assignee: Aptina Imaging CorporationInventors: Howard E. Rhodes, Steve Cole
-
Patent number: 7645664Abstract: Layout patterns for the deep well region to facilitate routing the body-bias voltage in a semiconductor device are provided and described. The layout patterns include a diagonal sub-surface mesh structure, an axial sub-surface mesh structure, a diagonal sub-surface strip structure, and an axial sub-surface strip structure. A particular layout pattern is selected for an area of the semiconductor device according to several factors.Type: GrantFiled: June 8, 2006Date of Patent: January 12, 2010Inventors: Mike Pelham, James B. Burr
-
Patent number: 7612415Abstract: Embodiments relate to a method of forming a 90 nm semiconductor device, including forming an isolation film within a semiconductor substrate in which a pMOS region and an nMOS region are defined. A first mask is formed to shield the nMOS region by using a DUV photoresist having a thickness of approximately 0.7 to 0.75 ?m. Ions are implanted into the pMOS region to form a p type well. A second mask is formed to shield the pMOS region by using a DUV photoresist having a thickness of approximately 0.7 to 0.75 ?m. Ions are implanted into the nMOS region to form an n type well. A gate oxide film and a gate is formed over the semiconductor substrate. A low-concentration impurity may be implanted by using the gate as a mask. An LDD region may be formed. A sidewall spacer may be formed over both sidewalls of the gate. A high-concentration impurity is implanted by using the sidewall spacer as a mask, forming a source/drain region.Type: GrantFiled: August 29, 2007Date of Patent: November 3, 2009Assignee: Dongbu HiTek Co., Ltd.Inventor: Jin-Ha Park
-
Patent number: 7589386Abstract: A semiconductor device including a first field effect transistor having a source, a first conductivity type drain, a gate, and a first conductivity type channel layer formed beneath the gate and between the source and the drain. The device also includes a first conductivity type well region, a second conductivity type channel layer formed on the surface of the well region, a first wire that connects an end of the second conductivity type channel layer to the first conductivity type drain, a second wire that connects the other end of the second conductivity type channel layer to a power source, and a third wire 208 that connects the first conductivity type well region to the gate of the first field effect transistor. This semiconductor device and manufacturing method thereof enables low power consumption and simple control of threshold voltage values as well as decreases the number of conventional manufacturing processes.Type: GrantFiled: November 9, 2006Date of Patent: September 15, 2009Assignee: Sony CorporationInventor: Tsutomu Imoto
-
Patent number: 7575969Abstract: A high resistivity silicon for RF passive operation including CMOS structures with implanted CMOS wells and a buried layer under the wells formed by deep implants during well implantations.Type: GrantFiled: March 2, 2001Date of Patent: August 18, 2009Assignee: Texas Instruments IncorporatedInventor: Dirk Leipold
-
Patent number: 7562327Abstract: In a cell comprising an N well and a P well, a distance SP04 from a center line of a contact N-type region to an N well end of the N well is set to be a distance which causes a transistor not to be affected by resist. A distance from a well boundary to the center line of the contact N-type region is equal to SP04. A design on the P well is similar to that on the N well. Thereby, modeling of the transistor in the cell can be performed, taking into consideration an influence from resist in one direction. Also, by fabricating a cell array which satisfies the above-described conditions, design accuracy can be improved.Type: GrantFiled: November 2, 2006Date of Patent: July 14, 2009Assignee: Panasonic CorporationInventors: Shinsaku Sekido, Kyoji Yamashita, Katsuhiro Ootani, Yasuyuki Sahara, Daisaku Ikoma
-
Patent number: 7547595Abstract: A method for forming CMOS integrated circuits. The method forms a blanket layer of silicon dioxide overlying an entirety of the surface region of a first well region and a second well region provided on a semiconductor substrate. The blanket layer of silicon dioxide is overlying the hard mask on the first gate structure and the second gate structure. The blanket layer of silicon dioxide is also overlying a region to be protected. Depending upon the embodiment, the region can be a sidewall spacer structure and portion of an MOS device on a peripheral region of the substrate. Of course, there can be other variations, modifications, and alternatives. The method protects the region to be protected using a masking layer, while the surface region of the first well region and the second well region being exposed.Type: GrantFiled: June 19, 2006Date of Patent: June 16, 2009Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventor: Xian J. Ning
-
Patent number: 7538396Abstract: A semiconductor device includes a substrate, an epitaxial layer, a sinker, an active device, a first buried layer, and a second buried layer. The substrate has a first type conductivity. The epitaxial layer has a second type conductivity, and is located on the substrate. The sinker has the second type conductivity, and is located in the epitaxial layer. The sinker extends from the substrate to an upper surface of the epitaxial layer, and partitions a region off from the epitaxial layer. The active device is located within the region. The first buried layer has the first type conductivity, and is located between the region and the substrate. The second buried layer has the second type conductivity, and is located between the first buried layer and the substrate. The second buried layer connects with the sinker. Because of the above-mentioned configuration, latch-up can be prevented.Type: GrantFiled: January 19, 2007Date of Patent: May 26, 2009Assignee: Episil Technologies Inc.Inventors: Shih-Kuei Ma, Chung-Yeh Lee, Chun-Ying Yeh, Wei-Ting Kuo
-
Patent number: 7528026Abstract: By consuming a surface portion of polysilicon material or silicon material after implantation and prior to activation of dopants, contaminants may be efficiently removed, thereby significantly enhancing the process uniformity during a subsequent silicidation process. Hence, the defect rate during the silicidation process, for instance “missing silicide” defects, may be significantly reduced, thereby also enhancing the reliability of static RAM cells.Type: GrantFiled: December 7, 2006Date of Patent: May 5, 2009Assignee: Advanced Micro Devices, Inc.Inventors: Markus Lenski, Ralf Van Bentum, Ekkehard Pruefer
-
Patent number: 7482218Abstract: A transistor formed on a semiconductor substrate of a first conductivity type in a well formed in the substrate and doped with the first conductivity type to an impurity level higher than that of the substrate. A drain doped to a second conductivity type opposite to said first conductivity type is disposed in the well. A pair of opposed source regions doped to the second conductivity type are disposed in the well and are electrically coupled together. They are separated from opposing outer edges of the drain region by channels. A pair of gates are electrically coupled together and disposed above and insulated from the channels. A region of the well disposed below the drain is doped so as to reduce capacitive coupling between the drain and the well.Type: GrantFiled: February 21, 2007Date of Patent: January 27, 2009Assignee: Actel CorporationInventors: John McCollum, Fethi Dhaoui
-
Patent number: 7449400Abstract: The present invention relates to an isolation film in a semiconductor device and method of forming the same. An isolation film is formed in a doped region of a peripheral region, in which the doped region is isolated from a deep well region of a cell region and the isolation film is thicker than an isolation film of the cell region so that a parasitic transistor is not generated and a leakage current can be prevented.Type: GrantFiled: June 20, 2005Date of Patent: November 11, 2008Assignee: Hynix Semiconductor Inc.Inventor: Sung Kee Park
-
Patent number: 7445979Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall and which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.Type: GrantFiled: April 5, 2006Date of Patent: November 4, 2008Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) LimitedInventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
-
Publication number: 20080211034Abstract: A semiconductor device includes: a substrate and a p-channel MIS transistor. The p-channel MIS transistor includes: an n-type semiconductor region formed in the substrate; p-type first source and drain regions formed at a distance from each other in the n-type semiconductor region; a first gate insulating film formed on the n-type semiconductor region between the first source region and the first drain region; and a first gate electrode formed on the first gate insulating film. The first gate electrode includes a first nickel silicide layer having a Ni/Si composition ratio of 1 or greater, and a silicide layer formed on the first nickel silicide layer. The silicide layer contains a metal having a larger absolute value of oxide formation energy than that of Si, and a composition ratio of the metal to Si is smaller than the Ni/Si composition ratio.Type: ApplicationFiled: October 12, 2007Publication date: September 4, 2008Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Yoshinori Tsuchiya, Masato Koyama
-
Patent number: 7419863Abstract: Complementary IGFETs (210W and 220W or 530 and 540) are fabricated so that the body dopant concentration in each IGFET decreases by at least 10 in moving from a subsurface location in the body material of that IGFET up to one of its source/drain zones. Semiconductor dopant, typically a fast-diffusing species such as aluminum, is introduced into starting semiconductor material to form a relatively uniformly doped region that serves as body material (108) for one of the IGFETs. A remaining part of the starting material serves as body material (268) for the other IGFET. Well dopant is introduced into the body material of each IGFET for establishing the requisite body dopant profile. Alternatively, a cavity is formed through an initial structure having body material (108) doped in the preceding way for one of the IGFETs. Semiconductor material is introduced into the cavity to form the body material (568) for the other IGFET.Type: GrantFiled: August 29, 2005Date of Patent: September 2, 2008Assignee: National Semiconductor CorporationInventor: Constantin Bulucea
-
Patent number: 7410855Abstract: A semiconductor device includes a semiconductor substrate, an nMISFET formed on the substrate, the nMISFET including a first dielectric formed on the substrate and a first metal gate electrode formed on the first dielectric and formed of one metal element selected from Ti, Zr, Hf, Ta, Sc, Y, a lanthanoide and actinide series and of one selected from boride, silicide and germanide compounds of the one metal element, and a pMISFET formed on the substrate, the pMISFET including a second dielectric formed on the substrate and a second metal gate electrode formed on the second dielectric and made of the same material as that of the first metal gate electrode, at least a portion of the second dielectric facing the second metal gate electrode being made of an insulating material different from that of at least a portion of the first dielectric facing the first metal gate electrode.Type: GrantFiled: August 20, 2007Date of Patent: August 12, 2008Assignee: Kabushiki Kaisha ToshibaInventors: Reika Ichihara, Yoshinori Tsuchiya, Masato Koyama, Akira Nishiyama
-
Patent number: 7384829Abstract: A method that includes forming a pattern of strained material and relaxed material on a substrate; forming a strained device in the strained material; and forming a non-strained device in the relaxed material is disclosed. In one embodiment, the strained material is silicon (Si) in either a tensile or compressive state, and the relaxed material is Si in a normal state. A buffer layer of silicon germanium (SiGe), silicon carbon (SiC), or similar material is formed on the substrate and has a lattice constant/structure mis-match with the substrate. A relaxed layer of SiGe, SiC, or similar material is formed on the buffer layer and places the strained material in the tensile or compressive state. In another embodiment, carbon-doped silicon or germanium-doped silicon is used to form the strained material. The structure includes a multi-layered substrate having strained and non-strained materials patterned thereon.Type: GrantFiled: July 23, 2004Date of Patent: June 10, 2008Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Ramachandra Divakaruni
-
Patent number: 7354818Abstract: A method of manufacturing a semiconductor device having an active region and a termination region includes providing a semiconductor substrate having first and second main surfaces opposite to each other. The semiconductor substrate has an active region and a termination region surrounding the active region. The first main surface is oxidized. A first plurality of trenches and a first plurality of mesas are formed in the termination region. The first plurality of trenches in the termination region are filled with a dielectric material. A second plurality of trenches are formed in the termination region. The trenches of the second plurality of trenches are filled with the dielectric material.Type: GrantFiled: December 27, 2005Date of Patent: April 8, 2008Assignee: Third Dimension (3D) Semiconductor, Inc.Inventors: Fwu-Iuan Hshieh, Brian D. Pratt
-
Publication number: 20080054366Abstract: A CMOS semiconductor device includes: an isolation region formed in the surface layer of a semiconductor substrate to define an NMOSFET active region and a PMOSFET active region adjacent to each other; an NMOSFET structure formed in the NMOSFET active region; a PMOSFET structure formed in the PMOSFET active region; a tensile stress film covering the NMOSFET structure; and a compressive stress film covering the PMOSFET structure, wherein a border between the tensile stress film and the compressive stress film is set nearer to the PMOSFET active region than the NMOSFET active region along a gate width direction. A performance of a CMOS semiconductor device can be improved by the layout of the tensile and compressive stress films.Type: ApplicationFiled: April 30, 2007Publication date: March 6, 2008Applicant: FUJITSU LIMITEDInventor: Sergey Pidin
-
Patent number: 7336530Abstract: A pixel circuit with a dual gate PMOS is formed by forming two P+ regions in an N? well. The N? well is in a P? type substrate. The two P+ regions form the source and drain of a PMOS transistor. The PMOS transistors formed within the N? well will not affect the collection of the photo-generated charge as long as the source and drain potentials of the PMOS transistors are set at a lower potential than the N? well potential so that they remain reverse biased with respect to the N? well. One of the P+ regions used to form the source and drain regions can be used to reset the pixel after it has been read in preparation for the next cycle of accumulating photo-generated charge. The N? well forms a second gate for the dual gate PMOS transistor since the potential of the N? well 12 affects the conductivity of the channel of the PMOS transistor. The addition of two NMOS transistors enables the readout signal to be stored at the gate of one of the NMOS transistors thereby making a snapshot imager possible.Type: GrantFiled: August 23, 2006Date of Patent: February 26, 2008Assignee: Digital Imaging Systems GmbHInventors: Taner Dosluoglu, Nathaniel Joseph McCaffrey
-
Patent number: 7309636Abstract: The present invention pertains to a high-voltage MOS device. The high-voltage MOS device includes a substrate, a first well, a first field oxide layer enclosing a drain region, a second field oxide enclosing a source region, and a third field oxide layer encompassing the first and second field layers with a device isolation region in between. A channel region is situated between the first and second field oxide layers. A gate oxide layer is provided on the channel region. A gate is stacked on the gate oxide layer. A device isolation diffusion layer is provided in the device isolation region.Type: GrantFiled: November 7, 2005Date of Patent: December 18, 2007Assignee: United Microelectronics Corp.Inventor: Chin-Lung Chen
-
Patent number: 7300834Abstract: Disclosed herein are methods of forming a well in a semiconductor device, in which a well end point under a trench is formed deeper than other area by well implantation prior to trench filling and by which leakage current is minimized. In one example, the disclosed method includes forming a trench in a surface of a substrate to define a field area, forming a first conductive type well in a first active area of the substrate, forming a second conductive type well in a second active area of the substrate, and filling up the trench with a dielectric.Type: GrantFiled: December 28, 2004Date of Patent: November 27, 2007Assignee: Dongbu Electronics Co., Ltd.Inventor: Dae Kyeun Kim
-
Patent number: 7294522Abstract: A CMOS image sensor and a method for fabricating the same are disclosed, in which a dead zone and a dark current are simultaneously reduced by selective epitaxial growth. The CMOS image sensor includes a first conductive type semiconductor substrate, a second conductive type impurity ion area, a gate electrode, an insulating film formed on an entire surface of the semiconductor substrate including the gate electrode and excluding the second conductive type impurity ion area, and a silicon epitaxial layer formed on the second conductive type impurity ion area and doped with first conductive type impurity ions.Type: GrantFiled: December 28, 2005Date of Patent: November 13, 2007Assignee: Donogbu Electronics Co., Ltd.Inventor: Hee Sung Shim
-
Patent number: 7279378Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.Type: GrantFiled: February 25, 2005Date of Patent: October 9, 2007Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) LimitedInventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
-
Patent number: 7253047Abstract: Semiconductor processing methods of forming transistors, semiconductor processing methods of forming dynamic random access memory circuitry, and related integrated circuitry are described. In one embodiment, active areas are formed over a substrate, with one of the active areas having a width of less than one micron, and with some of the active areas having different widths. A gate line is formed over the active areas to provide transistors having different threshold voltages. In one embodiment, the transistors are provided with different threshold voltages without using a separate channel implant for the transistors.Type: GrantFiled: September 1, 1999Date of Patent: August 7, 2007Assignee: Micron Technology, Inc.Inventor: Luan C. Tran
-
Patent number: 7247534Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.Type: GrantFiled: November 19, 2003Date of Patent: July 24, 2007Assignee: International Business Machines CorporationInventors: Dureseti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov
-
Patent number: 7229870Abstract: Methods of fabricating CMOS transistors are disclosed. A disclosed method includes forming first and second gate patterns on the first and second wells, respectively; forming a sidewall insulating layer over the substrate; forming first lightly doped regions in the first well by NMOS LDD ion implantation; forming a first gate spacer insulating layer over the substrate; forming second lightly doped regions in the second well by PMOS LDD ion implantation; sequentially stacking a spacer insulating layer and a second gate spacer insulating layer on the first gate spacer insulating layer; forming first and second spacers on sidewalls of the first and second gate patterns; and forming first and second heavily doped regions in the first and second wells by NMOS and PMOS source/drain ion implantations, respectively.Type: GrantFiled: December 29, 2004Date of Patent: June 12, 2007Assignee: Dongbu Electronics Co., Ltd.Inventor: Byeong Ryeol Lee
-
Patent number: 7211477Abstract: Methods and apparatus are provided for a MOSFET (50, 99, 199) exhibiting increased source-drain breakdown voltage (BVdss). Source (S) (70) and drain (D) (76) are spaced apart by a channel (90) underlying a gate (84) and one or more carrier drift spaces (92, 92?) serially located between the channel (90) and the source (70, 70?) or drain (76, 76?). A buried region (96, 96?) of the same conductivity type as the drift space (92, 92?) and the source (70, 70?) or drain (76, 76?) is provided below the drift space (92, 92?), separated therefrom in depth by a narrow gap (94, 94?) and ohmically coupled to the source (70, 70?) or drain (76, 76?). Current flow (110) through the drift space produces a potential difference (Vt) across this gap (94, 94?).Type: GrantFiled: May 6, 2005Date of Patent: May 1, 2007Assignee: Freescale Semiconductor, Inc.Inventors: Edouard D. de Frésart, Richard J. De Souza, Xin Lin, Jennifer H. Morrison, Patrice M. Parris, Moaniss Zitouni
-
Patent number: 7192816Abstract: A silicon-on-insulator (SOI) device structure 100 formed using a self-aligned body tie (SABT) process. The SABT process connects the silicon body of a partially depleted (PD) structure to a bias terminal. In addition, the SABT process creates a self-aligned area of silicon around the edge of the active areas, as defined by the standard transistor active area mask, providing an area efficient device layout. By reducing the overall gate area, the speed and yield of the device may be increased. In addition, the process flow minimizes the sensitivity of critical device parameters due to misalignment and critical dimension control. The SABT process also suppresses the parasitic gate capacitance created with standard body tie techniques.Type: GrantFiled: March 31, 2005Date of Patent: March 20, 2007Assignee: Honeywell International Inc.Inventor: Paul S. Fechner
-
Patent number: 7183155Abstract: The present invention provides a non-volatile memory device and fabricating method thereof, by which a cell size can be lowered despite high degree of cell integration and by which the device fabrication is facilitated. The present invention includes at least two trench isolation layers arranged in a device isolation area of a semiconductor substrate, each having a first depth, a first conductive type well arranged between the at least two trench isolation layers to have a second depth smaller than the first depth, a second conductive type source region and a second conductive type drain region arranged in a prescribed upper part of the first conductive type well to be separated from each other by a channel region in-between, an ONO layer on the channel region of the semiconductor substrate, the ONO layer comprising a lower oxide layer, a nitride layer, and an upper oxide layer, and a wordline conductor layer on the ONO layer.Type: GrantFiled: December 23, 2004Date of Patent: February 27, 2007Assignee: Dongbu Electronics Co., Ltd.Inventors: Sung Mun Jung, Jum Soo Kim
-
Patent number: 7166853Abstract: A system for electrically contacting a semiconductor wafer during implanting of the wafer includes one or more pairs of closely spaced contacts located adjacent the semiconductor wafer and a driving circuit connected to the contacts to provide a discharge from one contact to the semiconductor wafer and from the semiconductor wafer to the other contact of each pair of contacts. The contacts can be spaced apart from the wafer and the tips of the contacts closest to the wafer may have sharp points to aid in the establishment of corona at lower drive voltages. Alternately, the contacts may be rounded and may contact the wafer. The driving circuit may be adapted from a pulsed discharge circuit, such as a Kettering ignition circuit, a capacitance discharge ignition circuit, or a blocking oscillator circuit. Alternately, the driving circuit may be adapted from a continuous discharge circuit, such as a Tesla coil circuit.Type: GrantFiled: September 11, 2002Date of Patent: January 23, 2007Assignee: Varian Semiconductor Equipment Associates, Inc.Inventor: Kevin G. Rhoads
-
Patent number: 7157322Abstract: A semiconductor device including an NMOSFET which has an n-type source/drain main region containing arsenic and an n-type source/drain buffer region having arsenic and phosphorous of which a concentration is lower than that of the source/drain main region, and the concentration of the phosphorous in the source/drain buffer region is smaller than the concentration of the arsenic therein. The semiconductor device has a suppressed reverse short channel effect and reduced p-n junction leakage current. Further, the semiconductor device has a larger margin to a certain gate length and a specified threshold voltage to elevate a production yield.Type: GrantFiled: April 10, 2001Date of Patent: January 2, 2007Assignee: NEC Electronics CorporationInventor: Kiyotaka Imai
-
Patent number: 7144775Abstract: The present invention is an electronic memory cell and a method for the cell's fabrication comprising a first transistor configured to be coupled to a bit line. The first transistor has an essentially zero voltage drop when activated and is configured to control an operation of the memory cell. A second transistor is configured to operate as a memory transistor and is coupled to the first transistor. The second transistor is further configured to be programmable with a voltage about equal to a voltage on the bit line.Type: GrantFiled: May 18, 2004Date of Patent: December 5, 2006Assignee: Atmel CorporationInventors: Muhammad I. Chaudhry, Damian A. Carver
-
Patent number: 7145187Abstract: In a multiple input ESD protection structure, the inputs are isolated from the substrate by highly doped regions of opposite polarity to the input regions. Dual polarity is achieved by providing a symmetrical structure with n+ and p+ regions forming each dual polarity input. The inputs are formed in a p-well which, in turn, is formed in a n-well. Each dual polarity input is isolated by a PBL under the p-well, and a NISO underneath the n-well. An isolation ring separates and surrounds the inputs. The isolation ring comprises a p+ ring or a p+ region, n+ region, and p+ region formed into adjacent rings.Type: GrantFiled: December 12, 2003Date of Patent: December 5, 2006Assignee: National Semiconductor CorporationInventors: Vladislav Vashchenko, Peter J. Hopper, Philipp Lindorfer
-
Patent number: 7109052Abstract: A method for making an integrated circuit may include forming at least one active optical device and a waveguide coupled thereto. The waveguide may include a superlattice including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: September 9, 2004Date of Patent: September 19, 2006Assignee: RJ Mears, LLCInventors: Robert J. Mears, Robert John Stephenson
-
Patent number: 7091079Abstract: The present invention provides a method of forming devices having different operation voltages. First, a substrate having an HV region, an MV region, and an LV region is provided. Then, at least a deep well encompassing the LV region and the MV region is formed in the substrate. Afterward, a plurality of n-wells and a plurality of p-wells are in the HV region, the MV region, and the LV region. Following that, a plurality of HV devices are formed in the HV region, a plurality of MV devices are formed in the MV region, and a plurality of LV devices are formed in the LV region.Type: GrantFiled: November 11, 2004Date of Patent: August 15, 2006Assignee: United Microelectronics Corp.Inventors: Jung-Ching Chen, Jy-Hwang Lin
-
Patent number: 7078278Abstract: A dual-metal CMOS arrangement and method of making the same provides a substrate and a plurality of NMOS devices and PMOS devices formed on the substrate. Each of the plurality of NMOS devices and PMOS devices have gate electrodes. Each NMOS gate electrode includes a first silicide region on the substrate and a first metal region on the first silicide region. The first silicide region of the NMOS gate electrode consists of a first silicide having a work function that is close to the conduction band of silicon. Each of the PMOS gate electrodes includes a second silicide region on the substrate and a second metal region on the second silicide region. The second silicide region of the PMOS gate electrode consists of a second silicide having a work function that is close to the valence band of silicon.Type: GrantFiled: April 28, 2004Date of Patent: July 18, 2006Assignee: Advanced Micro Devices, Inc.Inventors: James Pan, Ming-Ren Lin
-
Patent number: 7045410Abstract: A method (200) of forming an isolation structure is disclosed, and includes forming a patterned isolation hard mask layer (206, 212) having an isolation opening associated therewith over a semiconductor body. An implant into the isolation opening is then performed (214), followed by forming an isolation trench (216) in the semiconductor body associated with the isolation opening. The isolation trench is then filled with a dielectric material (218).Type: GrantFiled: July 27, 2004Date of Patent: May 16, 2006Assignee: Texas Instruments IncorporatedInventors: Freidoon Mehrad, Amitava Chatterjee
-
Patent number: 7029967Abstract: A method for forming metal silicide regions in source and drain regions (160, 170) is described. Prior to the thermal annealing of the source and drain regions (160, 170), germanium is implanted into a semiconductor substrate adjacent to sidewall structures (90, 95) formed adjacent gate structures (60, 70). The position of the implanted germanium species in the semiconductor substrate will overlap the source and drain regions (160, 170). Following thermal annealing of the source and drain regions (160, 170), the implanted germanium prevents the formation of metal silicide spikes.Type: GrantFiled: July 21, 2004Date of Patent: April 18, 2006Assignee: Texas Instruments IncorporatedInventors: Song Zhao, Sue E. Crank, Amitava Chatterjee, Kaiping Liu, Jiong-Ping Lu, Donald S. Miles, Duofeng Yue, Lance S. Robertson
-
Patent number: 7026196Abstract: A method for forming a field effect transistor includes: forming a conductive region on an isolation layer formed on a substrate, and a cap dielectric layer on the conductive region; forming a sacrificial dielectric layer over the isolation layer and the cap dielectric layer, and on sidewalls of the conductive region; removing a portion of the sacrificial dielectric layer on the cap dielectric layer; removing the cap dielectric layer; removing remaining portions of the sacrificial dielectric layer; forming a gate on the conductive region; and forming source/drain (S/D) regions within the conductive region and adjacent to the gate. A field effect transistor includes a conductive region over an isolation layer formed on a substrate, the conductive region being substantially without undercut at the region within the isolation layer beneath the conductive region; a gate on the conductive region; and S/D regions within the conductive region and adjacent to the gate.Type: GrantFiled: November 24, 2003Date of Patent: April 11, 2006Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chuan-Ping Hou, Jhi-Cherng Lu, Kuang-Hsin Chen, Hsun-Chih Tsao
-
Patent number: 7023055Abstract: A method in which semiconductor-to-semiconductor direct wafer bonding is employed to provide a hybrid substrate having semiconductor layers of different crystallographic orientations that are separated by a conductive interface is provided. Also provided are the hybrid substrate produced by the method as well as using the direct bonding method to provide an integrated semiconductor structure in which various CMOS devices are built upon a surface orientation that enhances device performance.Type: GrantFiled: October 29, 2003Date of Patent: April 4, 2006Assignee: International Business Machines CorporationInventors: Meikei Ieong, Alexander Reznicek, Min Yang
-
Patent number: 7005340Abstract: A method is provided for manufacturing a semiconductor device that can reduce the number of steps in manufacturing a triple-well that includes multiple ion implantation steps and heat treatment steps.Type: GrantFiled: March 5, 2003Date of Patent: February 28, 2006Assignee: Seiko Epson CorporationInventor: Masahiro Hayashi
-
Patent number: 6989302Abstract: The present invention provides, in one embodiment, a method of fabricating a semiconductor device (100). The method comprises exposing a portion (125) of an n-type substrate (105) to an arsenic dimer (130). The method also includes forming a p-type lightly doped drain (LDD) region (145) within the portion of the n-type substrate (125). Other embodiments advantageously incorporate the method into methods for making PMOS devices.Type: GrantFiled: May 5, 2003Date of Patent: January 24, 2006Assignee: Texas Instruments IncorporatedInventors: Tim J. Makovicka, Alan L. Kordick
-
Patent number: 6977417Abstract: An impurity-diffused layer having an extension structure is formed first by implanting Sb ion as an impurity for forming a pocket region; then by implanting N as a diffusion-suppressive substance so as to produce two peaks in the vicinity of the interface with a gate electrode and at an amorphous/crystal interface which serves as an defect interface generated by the impurity in the pocket region; and by carrying out ion implantations for forming an extension region and deep source and drain regions.Type: GrantFiled: June 20, 2003Date of Patent: December 20, 2005Assignee: Fujitsu LimitedInventors: Youichi Momiyama, Kenichi Okabe, Takashi Saiki, Hidenobu Fukutome
-
Patent number: 6969893Abstract: There is provided a semiconductor device of low power consumption and high reliability having DTMOS' and substrate-bias variable transistors, and portable electronic equipment using the semiconductor device. On a semiconductor substrate (11), trilayer well regions (12, 14, 16; 13, 15, 16) are formed, and DTMOS' (29, 30) and substrate-bias variable transistors (27, 28) are provided in the shallow well regions (16, 17). Large-width device isolation regions (181, 182, 183) are provided at boundaries forming PNP, NPN or NPNP structures, where a small-width device isolation region (18) is provided on condition that well regions on both sides are of an identical conductive type. Thus, a plurality of well regions of individual conductive types where substrate-bias variable transistors (27, 28) of individual conductive types are provided can be made electrically independent of one another, allowing the power consumption to be reduced. Besides, the latch-up phenomenon can be suppressed.Type: GrantFiled: November 13, 2001Date of Patent: November 29, 2005Assignee: Sharp Kabushiki KaishaInventors: Akihide Shibata, Hiroshi Iwata, Seizo Kakimoto
-
Patent number: 6965151Abstract: Structures for providing devices that include resistive paths specifically designed to provide a predetermined resistance between the bulk material of the device and a well tie contact. By providing a resistive path, an equivalent RC circuit is introduced to the device that allows the bulk material potential to track the gate potential, thereby advantageously lowering the threshold voltage as the device turns on and raising the threshold voltage as the device turns off. In addition, the introduction of the resistive path also allows the bulk material potential to be controlled and stabilize at an equilibrium potential between switching events.Type: GrantFiled: March 20, 2003Date of Patent: November 15, 2005Assignee: Sun Microsystems, Inc.Inventor: James B. Burr
-
Patent number: 6949812Abstract: A semiconductor structure for high frequency operation has a substrate with a doped well formed therein and a buffer layer made of a substrate material covers the well. The buffer layer is made of an undoped material and is disposed on a top side of the well for inhibiting an outdiffusion of a dopant from the well. At least a portion of the substrate is not covered by the buffer layer.Type: GrantFiled: September 24, 2002Date of Patent: September 27, 2005Assignee: Infineon Technologies AGInventors: Reinhard Losehand, Hubert Werthmann
-
Patent number: 6929994Abstract: A method is provided for manufacturing a semiconductor device having a high breakdown voltage transistor and a low breakdown voltage transistor with different driving voltages in a common substrate. The method includes: (a) introducing an impurity of a second conductivity type in a specified region of a semiconductor substrate of a first conductivity type to form a first impurity layer and a second impurity layer; (b) further introducing an impurity of the second conductivity type in a region of the second impurity layer to form a third impurity layer; and (c) conducting a heat treatment to diffuse impurities of the first impurity layer and the third impurity layer to form a first well of the second conductivity type and a second well of the second conductivity type having an impurity concentration higher than the first well.Type: GrantFiled: March 5, 2003Date of Patent: August 16, 2005Assignee: Seiko Epson CorporationInventor: Masahiro Hayashi
-
Patent number: 6930027Abstract: A method of manufacturing a semiconductor component includes forming a first electrically insulating layer (120) and a second electrically insulating layer (130) over a semiconductor substrate (110). The method further includes etching a first trench (140) and a second trench (150) through the first and second electrically insulating layers and into the semiconductor substrate, and etching a third trench (610) through a bottom surface of the second trench and into the semiconductor substrate. The third trench has a first portion (920) and a second portion (930) interior to the first portion. The method still further includes forming a third electrically insulating layer (910) filling the first trench and the first portion of the third trench without filling the second portion of the third trench, and also includes forming a plug layer (1010) in the second portion of the third trench.Type: GrantFiled: February 18, 2003Date of Patent: August 16, 2005Assignee: Freescale Semiconductor, Inc.Inventors: Vijay Parthasarathy, Vishnu Khemka, Ronghua Zhu, Amitava Bose, Todd Roggenbauer, Paul Hui, Michael C. Butner
-
Patent number: 6929992Abstract: The threshold voltage shift exhibited by strained silicon NMOS devices is compensated with respect to the threshold voltages of PMOS devices formed on the same substrate by increasing the work function of the NMOS gates. The NMOS gate work function exceeds the PMOS gate work function so as to compensate for a difference in the respective NMOS and PMOS threshold voltages. The NMOS gates are preferably fully silicided while the PMOS gates are partially silicided.Type: GrantFiled: December 17, 2003Date of Patent: August 16, 2005Assignee: Advanced Micro Devices, Inc.Inventors: Ihsan J. Djomehri, Qi Xiang, Jung-Suk Goo, James N. Pan