Including Transistor Formed On Trench Sidewalls Patents (Class 438/242)
-
Patent number: 8569164Abstract: A through substrate structure, an electronic device package using the same, and methods for manufacturing the same are disclosed. First, a via hole pattern is formed by etching an upper surface of a first substrate. A pattern layer of a second substrate is formed on the first substrate by filling the via hole pattern with a material for the second substrate by reflow. A via hole pattern is formed in the pattern layer of the second substrate by patterning the upper surface of the first substrate. Moreover, a via plug filling the via hole pattern is formed by a plating process, for example, thereby forming a through substrate structure, which can be used in an electronic device package.Type: GrantFiled: November 17, 2011Date of Patent: October 29, 2013Assignee: Industry-Academic Cooperation Foundation, Dankook UniversityInventors: Jae Hyoung Park, Seung Ki Lee, Ju Yong Lee
-
Patent number: 8557656Abstract: A non-planar transistor having floating body structures and methods for fabricating the same are disclosed. In certain embodiments, the transistor includes a fin having upper and lower doped regions. The upper doped regions may form a source and drain separated by a shallow trench formed in the fin. During formation of the fin, a hollow region may be formed underneath the shallow trench, isolating the source and drain. An oxide may be formed in the hollow region to form a floating body structure, wherein the source and drain are isolated from each other and the substrate formed below the fin. In some embodiments, independently bias gates may be formed adjacent to walls of the fin. In other embodiments, electrically coupled gates may be formed adjacent to the walls of the fin.Type: GrantFiled: August 13, 2012Date of Patent: October 15, 2013Assignee: Micron Technology, Inc.Inventor: Werner Juengling
-
Patent number: 8546215Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.Type: GrantFiled: March 1, 2013Date of Patent: October 1, 2013Assignee: Micron Technology, Inc.Inventors: Gordon Haller, Sanh Dang Tang, Steve Cummings
-
Patent number: 8518792Abstract: Disclosed is a non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating a damascene self-aligned F-RAM that allows for the formation of a ferroelectric capacitor with separated PZT layers aligned with a preexisting, three dimensional (3-D) transistor structure.Type: GrantFiled: August 8, 2012Date of Patent: August 27, 2013Assignee: Cypress Semiconductor CorporationInventors: Shan Sun, Thomas E. Davenport, John Cronin
-
Patent number: 8518791Abstract: Disclosed is a non-volatile, ferroelectric random access memory (F-RAM) device and a method for fabricating the same in the form of a damascene self-aligned F-RAM device comprising a PZT capacitor built on the sidewalls of an oxide trench, while allowing for the simultaneous formation of two ferroelectric sidewall capacitors.Type: GrantFiled: August 8, 2012Date of Patent: August 27, 2013Assignee: Cypress Semiconductor CorporationInventors: Shan Sun, Thomas E. Davenport, John Cronin
-
Patent number: 8501559Abstract: Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.Type: GrantFiled: September 11, 2012Date of Patent: August 6, 2013Assignee: Micron Technology, Inc.Inventors: Sanh D. Tang, John K. Zahurak
-
Patent number: 8501561Abstract: Disclosed is a semiconductor component arrangement and a method for producing a semiconductor component arrangement. The method comprises producing a trench transistor structure with at least one trench disposed in the semiconductor body and with at least an gate electrode disposed in the at least one trench. An electrode structure is disposed in at least one further trench and comprises at least one electrode. The at least one trench of the transistor structure and the at least one further trench are produced by common process steps. Furthermore, the at least one electrode of the electrode structure and the gate electrode are produced by common process steps.Type: GrantFiled: January 10, 2011Date of Patent: August 6, 2013Assignee: Infineon Technologies AGInventors: Markus Zundel, Franz Hirler, Norbert Krischke
-
Patent number: 8493709Abstract: In a capacitor structure and method of forming the same, a first electrode, a second electrode, and a first insulation layer are sequentially formed on a substrate. The first and second electrodes and the first insulation layer are covered with a second insulation layer on the substrate. A first plug is in contact with the second electrode through the second insulation layer. A second plug is in contact with the first electrode through the first and second insulation layer. A third insulation layer is formed on the second insulation layer. Third and fourth comb-shaped electrodes are formed in the third insulation layer. The third electrode is contact with the first plug and the fourth electrode is contact with the second plug while facing the third electrode. Thus, the teeth of the comb-shaped electrodes are alternately arranged and spaced apart in the third insulation layer.Type: GrantFiled: February 21, 2012Date of Patent: July 23, 2013Assignee: Samsung Electronics Co., Ltd.Inventor: Chul-Ho Chung
-
Patent number: 8481385Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.Type: GrantFiled: May 11, 2012Date of Patent: July 9, 2013Assignee: Micron Technology, Inc.Inventors: Haller A. Gordon, Tang D. Sanh, Cummings Steven
-
Publication number: 20130171783Abstract: A semiconductor memory device includes a semiconductor substrate, a semiconductor pillar extending from the semiconductor substrate, the semiconductor pillar comprising a first region, a second region, and a third region, the second region positioned between the first region and the third region, the third region positioned between the second region and the semiconductor substrate, immediately adjacent regions having different conductivity types, a first gate pattern disposed on the second region with a first insulating layer therebetween, and a second gate pattern disposed on the third region, wherein the second region is ohmically connected to the substrate by the second gate pattern.Type: ApplicationFiled: December 7, 2012Publication date: July 4, 2013Inventors: Daeik Kim, HyeongSun Hong, Yoosang Hwang, Hyun-Woo Chung
-
Patent number: 8409948Abstract: Some embodiments include methods of forming vertical transistors. A construction may have a plurality of spaced apart fins extending upwardly from a semiconductor substrate. Each of the fins may have vertical transistor pillars, and each of the vertical transistor pillars may have a bottom source/drain region location, a channel region location over the bottom source/drain region location, and a top source/drain region location over the channel region location. Electrically conductive gate material may be formed along the fins while using oxide within spaces along the bottoms of the fins to offset the electrically conductive gate material to be above the bottom source/drain region locations of the vertical transistor pillars. The oxide may be an oxide which etches at a rate of at least about 100 ?/minute with dilute HF at room temperature. In some embodiments the oxide may be removed after the electrically conductive gate material is formed.Type: GrantFiled: May 31, 2012Date of Patent: April 2, 2013Assignee: Micron Technology, Inc.Inventors: Mark Fischer, Sanh D. Tang
-
Patent number: 8405089Abstract: To provide an active region having first and second diffusion layers positioned at both sides of a gate trench and a third diffusion layer formed on a bottom surface of the gate trench, first and second memory elements connected to the first and second diffusion layers, respectively, a bit line connected to the third diffusion layer, a first gate electrode that covers a first side surface of the gate trench via a gate dielectric film and forms a channel between the first diffusion layer and the third diffusion layer, and a second gate electrode that covers a second side surface of the gate trench via a gate dielectric film and forms a channel between the second diffusion layer and the third diffusion layer. According to the present invention, because separate transistors are formed on both side surfaces of a gate trench, two times of conventional integration can be achieved.Type: GrantFiled: March 12, 2010Date of Patent: March 26, 2013Assignee: Elpida Memory, Inc.Inventor: Hiroyuki Uchiyama
-
Patent number: 8383477Abstract: A semiconductor device including a vertical transistor and a method for manufacturing the same may reduce a cell area in comparison with a conventional layout of 8F2 and 6F2. Also, the method does not require forming a bit line contact, a storage node contact or a landing plug, thereby decreasing the process steps. The semiconductor device including a vertical transistor comprises: an active region formed in a semiconductor substrate; a bit line disposed in the lower portion of the active region; a word line buried in the active region; and a capacitor disposed over the upper portion of the active region and the word line.Type: GrantFiled: December 22, 2010Date of Patent: February 26, 2013Assignee: Hynix Semiconductor Inc.Inventor: Kyoung Han Lee
-
Patent number: 8361856Abstract: A memory cell includes a vertically oriented transistor having an elevationally outer source/drain region, an elevationally inner source/drain region, and a channel region elevationally between the inner and outer source/drain regions. The inner source/drain region has opposing laterally outer sides. One of a pair of data/sense lines is electrically coupled to and against one of the outer sides of the inner source/drain region. The other of the pair of data/sense lines is electrically coupled to and against the other of the outer sides of the inner source/drain region. An access gate line is elevationally outward of the pair of electrically coupled data/sense lines and is operatively adjacent the channel region. A charge storage device is electrically coupled to the outer source/drain region. Other embodiments and additional aspects, including methods, are disclosed.Type: GrantFiled: November 1, 2010Date of Patent: January 29, 2013Assignee: Micron Technology, Inc.Inventors: Lars Heineck, Jaydip Guha
-
Patent number: 8299515Abstract: Aspects of the invention provide for methods of forming a deep trench capacitor structure. In one embodiment, aspects of the invention include a method of forming a deep trench capacitor structure, including: forming a deep trench within a semiconductor substrate; depositing a first liner within the deep trench; filling a lower portion of the deep trench with a filler material; depositing a second liner within an upper portion of the deep trench; removing the filler material, such that the lower portion of the deep trench includes only the first liner and the upper portion of the deep trench includes the first liner and the second liner; forming a high doped region around the lower portion of the deep trench; and removing the first liner within the lower portion of the deep trench and the second liner within the upper portion of the deep trench.Type: GrantFiled: February 8, 2011Date of Patent: October 30, 2012Assignee: International Business Machines CorporationInventors: Joseph E. Ervin, Yanli Zhang
-
Patent number: 8298889Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.Type: GrantFiled: December 10, 2008Date of Patent: October 30, 2012Assignee: Semiconductor Components Industries, LLCInventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
-
Patent number: 8288224Abstract: A method for manufacturing capacitor lower electrodes includes a dielectric layer, a first silicon nitride layer and a hard mask layer; partially etching the hard mask layer, the first silicon nitride layer and the dielectric layer to form a plurality of concave portions; depositing a second silicon nitride layer onto the hard mask layer and into the concave portions; partially etching the second silicon nitride layer, the hard mask layer and the dielectric layer to form a plurality of trenches; forming a capacitor lower electrode within each trench and partially etching the first silicon nitride layer, the second silicon nitride layer, the dielectric layer and the capacitor lower electrodes to form an etching area; and etching and removing the dielectric layer from the etching area, thereby a periphery of each capacitor lower electrode is surrounded and attached to by the second silicon nitride layer.Type: GrantFiled: February 3, 2010Date of Patent: October 16, 2012Assignee: Inotera Memories, Inc.Inventors: Shin-Bin Huang, Tzung-Han Lee, Chung-Lin Huang
-
Patent number: 8283715Abstract: An integrated circuit with a memory cell is disclosed. The integrated circuit with a memory cell includes: a word line disposed in a word line trench of a substrate; a bit line disposed below the word line in a bit line trench and extending orthogonal to the word line; and, a separating layer disposed above the bit line in the bit line trench that separates the word line from the bit line; wherein an etching rate of the separating layer approaches that of the substrate.Type: GrantFiled: August 12, 2010Date of Patent: October 9, 2012Assignee: Rexchip Electronics CorporationInventors: Yung-Chang Lin, Sheng-Chang Liang
-
Patent number: 8278703Abstract: A non-planar transistor having floating body structures and methods for fabricating the same are disclosed. In certain embodiments, the transistor includes a fin having upper and lower doped regions. The upper doped regions may form a source and drain separated by a shallow trench formed in the fin. During formation of the fin, a hollow region may be formed underneath the shallow trench, isolating the source and drain. An oxide may be formed in the hollow region to form a floating body structure, wherein the source and drain are isolated from each other and the substrate formed below the fin. In some embodiments, independently bias gates may be formed adjacent to walls of the fin. In other embodiments, electrically coupled gates may be formed adjacent to the walls of the fin.Type: GrantFiled: February 8, 2010Date of Patent: October 2, 2012Assignee: Micron Technology, Inc.Inventor: Werner Juengling
-
Patent number: 8258054Abstract: A method for fabricating a semiconductor device includes etching a substrate to form a plurality of trenches, forming first liner layers over bottom surfaces and inner sidewalls of the trenches to a first height, forming sacrificial liner layers on one of the inner sidewalls of the trenches where the first liner layers are formed, forming third sacrificial layers to a second height, so that the third sacrificial layers are buried over the trenches where the sacrificial liner layers are formed, removing portions of the sacrificial liner layers exposed by the third sacrificial layers to form sacrificial patterns, forming second liner layers on the inner sidewalls of the trenches exposed by the third sacrificial layers, and removing the third sacrificial layers to form side contact regions opening one of the inner sidewalls of the trenches in a line form.Type: GrantFiled: December 29, 2009Date of Patent: September 4, 2012Assignee: Hynix Semiconductor Inc.Inventor: Eun-Jung Ko
-
Patent number: 8232171Abstract: A trench is formed by an anisotropic etch in a semiconductor material layer employing a masking layer, which can be gate spacers. In one embodiment, an adsorbed fluorine layer is provided at a cryogenic temperature only on vertical sidewalls of the semiconductor structure including the sidewalls of the trench. The adsorbed fluorine layer removes a controlled amount of the underlying semiconductor material once the temperature is raised above the cryogenic temperature. The trench can be filled with another semiconductor material to generate stress in the semiconductor material layer. In another embodiment, the semiconductor material is laterally etched by a plasma-based etch at a controlled rate while a horizontal portion of a contiguous oxide liner prevents etch of the semiconductor material from the bottom surface of the trench.Type: GrantFiled: September 17, 2009Date of Patent: July 31, 2012Assignee: International Business Machines CorporationInventors: Sebastian Ulrich Engelmann, Nicholas C. M. Fuller, Eric Andrew Joseph, Isaac Lauer, Ryan M. Martin, James Vichiconti, Ying Zhang
-
Patent number: 8222105Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.Type: GrantFiled: February 10, 2010Date of Patent: July 17, 2012Assignee: Micron Technology, Inc.Inventors: Gordon Haller, Sanh D. Tang, Steve Cummings
-
Patent number: 8211769Abstract: A method for fabricating a semiconductor device includes forming a plurality of active regions that are separated from each other by a plurality of trenches, respectively, wherein the trenches are formed by etching a substrate, forming an insulation layer having openings that each expose a portion of a first sidewall of each active region, forming a filling layer which fills the openings, forming a diffusion control layer over a substrate structure including the filling layer, and forming a junction on a portion of the first sidewall of each active region.Type: GrantFiled: February 11, 2011Date of Patent: July 3, 2012Assignee: Hynix Semiconductor Inc.Inventor: Bo-Mi Lee
-
Patent number: 8207032Abstract: Some embodiments include methods of forming vertical transistors. A construction may have a plurality of spaced apart fins extending upwardly from a semiconductor substrate. Each of the fins may have vertical transistor pillars, and each of the vertical transistor pillars may have a bottom source/drain region location, a channel region location over the bottom source/drain region location, and a top source/drain region location over the channel region location. Electrically conductive gate material may be formed along the fins while using oxide within spaces along the bottoms of the fins to offset the electrically conductive gate material to be above the bottom source/drain region locations of the vertical transistor pillars. The oxide may be an oxide which etches at a rate of at least about 100 ?/minute with dilute HF at room temperature. In some embodiments the oxide may be removed after the electrically conductive gate material is formed.Type: GrantFiled: August 31, 2010Date of Patent: June 26, 2012Assignee: Micron Technology, Inc.Inventors: Mark Fischer, Sanh D. Tang
-
Patent number: 8174065Abstract: There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures.Type: GrantFiled: July 21, 2010Date of Patent: May 8, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Bong-Soo Kim, Kang-Yoon Lee, Dong-Gun Park, Jae-Man Yoon, Seong-Goo Kim, Hyeoung-Won Seo
-
Patent number: 8164133Abstract: A vertical transistor includes a gate isolating layer flanking a stack of a source layer, a resilient active unit and a drain layer, and a gate layer formed on the gate isolating layer. The active unit includes an active layer formed between first and second barrier layers each having a thickness ranging from 4 nm to 40 nm. When an input voltage including a DC component and a ripple component is applied to the source layer, the active unit periodically vibrates as a result of the ripple component of the input voltage such that an induced AC current is generated based on a control voltage applied to the gate layer to flow to the drain layer. The induced AC current flowing to the drain layer serves as an AC output generated by the vertical transistor based on the input voltage. A method of enabling a vertical transistor to generate an AC output is also disclosed.Type: GrantFiled: July 7, 2010Date of Patent: April 24, 2012Assignee: I Shou UniversityInventor: Yue-Min Wan
-
Patent number: 8158476Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.Type: GrantFiled: August 4, 2010Date of Patent: April 17, 2012Assignee: Micron Technology, Inc.Inventors: Luan C. Tran, John Lee, Zengtao “Tony” Liu, Eric Freeman, Russell Nielsen
-
Patent number: 8148796Abstract: Disclosed are a solar cell and a manufacturing method thereof. The solar cell in accordance with an embodiment of the present invention includes: a substrate having a plurality of holes formed on one surface thereof; a metal layer formed on an inner wall of the hole and on one surface of the substrate; a p-type semiconductor coated on the metal layer; an n-type semiconductor formed inside the hole and on one surface of the substrate; a transparent conductive oxide formed on the n-type semiconductor; and an electrode terminal formed on the p-type semiconductor and on the transparent conductive oxide.Type: GrantFiled: May 28, 2009Date of Patent: April 3, 2012Assignee: Samsung Electro-Mechanics Co., Ltd.Inventors: Ro-Woon Lee, Jae-Woo Joung, Shang-Hoon Seo, Tae-Gu Kim
-
Patent number: 8143135Abstract: Trench capacitors and methods of manufacturing the trench capacitors are provided. The trench capacitors are very dense series capacitor structures with independent electrode contacts. In the method, a series of capacitors are formed by forming a plurality of insulator layers and a plurality of electrodes in a trench structure, where each electrode is formed in an alternating manner with each insulator layer. The method further includes planarizing the electrodes to form contact regions for a plurality of capacitors.Type: GrantFiled: October 8, 2009Date of Patent: March 27, 2012Assignee: International Business Machines CorporationInventors: Timothy W. Kemerer, James S. Nakos, Steven M. Shank
-
Patent number: 8124494Abstract: A method for making a semiconductor device by reshaping a silicon surface with a sacrificial layer is presented. In the present invention the steps of forming a sacrificial dielectric layer and removing the sacrificial dielectric layer are repeated multiple times in order to remove sharp edges from the silicon surface near the field oxides. Another aspect of the present invention includes making a MOSFET transistor that incorporates the forming and removing of multiple sacrificial layers into the process.Type: GrantFiled: July 16, 2007Date of Patent: February 28, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Hsiung Wang, Wen-Ting Chu, Eric Chen, Hsien-Wei Chin
-
Patent number: 8084322Abstract: Techniques for forming devices, such as transistors, having vertical junction edges. More specifically, shallow trenches are formed in a substrate and filled with an oxide. Cavities may be formed in the oxide and filled with a conductive material, such a doped polysilicon. Vertical junctions are formed between the polysilicon and the exposed substrate at the trench edges such that during a thermal cycle, the doped polysilicon will out-diffuse doping elements into the adjacent single crystal silicon advantageously forming a diode extension having desirable properties.Type: GrantFiled: May 24, 2006Date of Patent: December 27, 2011Assignee: Micron Technology, Inc.Inventors: Fernando Gonzalez, Chandra Mouli
-
Patent number: 8084316Abstract: Single transistor floating-body DRAM devices have a vertical channel transistor structure. The DRAM devices include a substrate, and first and second floating bodies disposed on the substrate and isolated from each other. A source region and a drain region are disposed under and above each of the first and second floating bodies. A gate electrode is disposed between the first and second floating bodies. Methods of fabricating the single transistor floating-body DRAM devices are also provided.Type: GrantFiled: May 1, 2006Date of Patent: December 27, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
-
Patent number: 8076712Abstract: A dual charge storage node memory device and methods for its fabrication are provided. In one embodiment a dielectric plug is formed comprising a first portion recessed into a semiconductor substrate and a second portion extending above the substrate. A layer of semiconductor material is formed overlying the second portion. A first layered structure is formed overlying a first side of the second portion of the dielectric plug, and a second layered structure is formed overlying a second side, each of the layered structures overlying the layer of semiconductor material and comprising a charge storage layer between first and second dielectric layers. Ions are implanted into the substrate to form a first bit line and second bit line, and a layer of conductive material is deposited and patterned to form a control gate overlying the dielectric plug and the first and second layered structures.Type: GrantFiled: July 20, 2010Date of Patent: December 13, 2011Assignee: Spansion LLCInventors: Chungho Lee, Ashot Melik-Martirosian, Wei Zheng, Timothy Thurgate, Chi Chang, Hiroyuki Kinoshita, Kuo-Tung Chang, Unsoon Kim
-
Patent number: 8053307Abstract: A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.Type: GrantFiled: April 14, 2010Date of Patent: November 8, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Bong-Soo Kim
-
Patent number: 8034682Abstract: A method of forming a semiconductor device includes the following. Removing portions of a silicon layer such that a trench having sidewalls which fan out near the top of the trench to extend directly over a portion of the silicon layer is formed in the silicon layer; and forming source regions in the silicon layer adjacent the trench sidewall such that the source regions extend into the portions of the silicon layer directly over which the trench sidewalls extend.Type: GrantFiled: September 16, 2010Date of Patent: October 11, 2011Assignee: Fairchild Semiconductor CorporationInventors: Robert Herrick, Becky Losee, Dean Probst
-
Patent number: 8030636Abstract: A resistance variable memory cell and method of forming the same. The memory cell includes a first electrode and at least one layer of resistance variable material in contact with the first electrode. A first, second electrode is in contact with a first portion of the at least one layer of resistance variable material and a second, second electrode is in contact with a second portion of the at least one layer of resistance variable material.Type: GrantFiled: August 2, 2010Date of Patent: October 4, 2011Assignee: Micron Technology, Inc.Inventor: Jun Liu
-
Patent number: 8003457Abstract: A substrate is provided. A pillar protruding out of a surface of the substrate is already formed on the substrate, and a patterned layer is already formed on the pillar. The pillar includes a lower part, a channel region, and an upper part from bottom to top, and the lower part has a first doped region. A gate dielectric layer is formed on a sidewall at one side of the pillar. A surrounding gate is formed on the gate dielectric layer located on the channel region, and a base line electrically connected to the channel region is formed on a sidewall at the other side of the pillar. A second doped region is formed in the upper part of the pillar.Type: GrantFiled: March 8, 2011Date of Patent: August 23, 2011Assignee: Nanya Technology CorporationInventor: Jung-Hua Chen
-
Patent number: 7932167Abstract: A memory cell in an integrated circuit is fabricated in part by forming a lower electrode feature, an island, a sacrificial feature, a gate feature, and a phase change feature. The island is formed on the lower electrode feature and has one or more sidewalls. It comprises a lower doped feature, a middle doped feature formed above the lower doped feature, and an upper doped feature formed above the middle doped feature. The sacrificial feature is formed above the island, while the gate feature is formed along each sidewall of the island. The gate feature overlies at least a portion of the middle doped feature of the island and is operative to control an electrical resistance therein. Finally, the phase feature is formed above the island at least in part by replacing at least a portion of the sacrificial feature with a phase change material. The phase change material is operative to switch between lower and higher electrical resistance states in response to an application of an electrical signal.Type: GrantFiled: June 29, 2007Date of Patent: April 26, 2011Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, John G. Gaudiello, Mark Charles Hakey, Steven J. Holmes, David V. Horak, Charles William Koburger, III, Chung Hon Lam
-
Patent number: 7923363Abstract: Method of manufacturing a non-volatile memory device on a semiconductor substrate in a memory area, said non-volatile memory device comprising a cell stack of a first semiconductor layer, a charge trapping layer and an electrically conductive layer, the charge trapping layer being the intermediate layer between the first semiconductor layer and the electrically conductive layer, the charge trapping layer comprising at least a first insulating layer; the method comprising: —providing the substrate having the first semiconductor layer; —depositing the charge trapping layer; —depositing the electrically conductive layer; —patterning the cell stack to form at least two non-volatile memory cells, and —creating a shallow trench isolation in between said at least two non-volatile memory cells.Type: GrantFiled: September 13, 2005Date of Patent: April 12, 2011Assignee: NXP B.V.Inventors: Pierre Goarin, Robertus Theodorus Fransiscus Van Schaijk
-
Patent number: 7910435Abstract: In a semiconductor device and a method of manufacturing the semiconductor device, the semiconductor device includes a conductive structure, first insulating layers and first conductive layer patterns. The conductive structure includes a first portion, second portions and third portions. The second portions extend in a first direction on the first portion. The second portions are spaced apart from one another in a second direction substantially perpendicular to the first direction. The third portions are provided on the second portions. The third portions are spaced apart from one another in the first and second directions. The first insulating layers cover sidewalls of the second portions. The first conductive layer patterns are provided on the first insulating layers.Type: GrantFiled: January 6, 2009Date of Patent: March 22, 2011Assignee: Samsung Electronics Co., Ltd.Inventor: Hyoung-Seub Rhie
-
Patent number: 7902057Abstract: Fin-FET devices and methods of fabrication are disclosed. The Fin-FET devices include dual fins that may be used to provide a trench region between a source region and a drain region. In some embodiments, the dual fins may be formed by forming a trench with fin structures on opposite sides in a protruding region of a substrate. The dual fins may be useful in forming single-gate, double-gate or triple-gate fin-FET devices. Electronic systems including such fin-FET devices are also disclosed.Type: GrantFiled: July 31, 2007Date of Patent: March 8, 2011Assignee: Micron Technology, Inc.Inventor: Terrence McDaniel
-
Patent number: 7879679Abstract: A method for manufacturing an electronic component on a semiconductor substrate, including forming at least one opening in the substrate; forming in the bottom and on the walls of the opening and on the substrate an alternated succession of layers of a first material and of a second material, the second material being selectively etchable with respect to the first material and the substrate; trimming the layer portions of the first material and of the second material which are not located in the opening; selectively etching a portion of the first material to obtain trenches; and filling the trenches with at least one third material.Type: GrantFiled: March 31, 2008Date of Patent: February 1, 2011Assignee: STMicroelectronics Crolles 2 SASInventors: Oliver Kermarrec, Daniel Bensahel, Yves Campidelli
-
Patent number: 7846790Abstract: A method of fabricating a semiconductor device having multiple gate dielectric layers and a semiconductor device fabricated thereby, in which the method includes forming an isolation layer defining first and second active regions in a semiconductor substrate. A passivation layer is formed on the substrate having the isolation layer. A first patterning process is carried out that etches the passivation layer on the first active region to form a first opening exposing the first active region, and a first dielectric layer is formed in the exposed first active region. A second patterning process is carried out, which etches the passivation layer on the second active region to form a second opening exposing the second active region, and a second dielectric layer is formed in the exposed second active region.Type: GrantFiled: October 23, 2007Date of Patent: December 7, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Sung-Gun Kang, Kang-Soo Chu
-
Patent number: 7833858Abstract: Methods for forming semiconductor structures are provided for a semiconductor device employing a superjunction structure and overlying trench with embedded control gate. An embodiment comprises forming interleaved first and second spaced-apart regions of first and second semiconductor materials of different conductivity type and different mobilities so that the second semiconductor material has a higher mobility for the same carrier type than the first semiconductor material, and providing an overlying third semiconductor material in which a trench is formed with sidewalls having thereon a fourth semiconductor material that has a higher mobility than the third material, adapted to carry current between source regions, through the fourth semiconductor material in the trench and the second semiconductor material in the device drift space to the drain.Type: GrantFiled: July 29, 2009Date of Patent: November 16, 2010Assignee: Freesscale Semiconductor, Inc.Inventors: Edouard D. deFresart, Robert W. Baird
-
Patent number: 7824982Abstract: The invention includes a method of forming a semiconductor construction. Dopant is implanted into the upper surface of a monocrystalline silicon substrate. The substrate is etched to form a plurality of trenches and cross-trenches which define a plurality of pillars. After the etching, dopant is implanted within the trenches to form a source/drain region that extends less than an entirety of the trench width. The invention includes a semiconductor construction having a bit line disposed within a semiconductor substrate below a first elevation. A wordline extends elevationally upward from the first elevation and substantially orthogonal relative to the bit line. A vertical transistor structure is associated with the wordline. The transistor structure has a channel region laterally surrounded by a gate layer and is horizontally offset relative to the bit line.Type: GrantFiled: December 12, 2007Date of Patent: November 2, 2010Assignee: Micron Technology, Inc.Inventor: Leonard Forbes
-
Patent number: 7812388Abstract: A trench capacitor and method of forming a trench capacitor. The trench capacitor including: a trench in a single-crystal silicon substrate, a conformal dielectric liner on the sidewalls and the bottom of the trench; an electrically conductive polysilicon inner plate filling regions of the trench not filled by the liner; an electrically conductive doped outer plate in the substrate surrounding the sidewalls and the bottom of the trench; a doped silicon region in the substrate; a first electrically conductive metal silicide layer on a surface region of the doped silicon region exposed at the top surface of the substrate; a second electrically conductive metal silicide layer on a surface region of the inner plate exposed at the top surface of the substrate; and an insulating ring on the top surface of the substrate between the first and second metal silicide layers.Type: GrantFiled: June 25, 2007Date of Patent: October 12, 2010Assignee: International Business Machines CorporationInventors: Timothy Wayne Kemerer, Robert Mark Rassel, Steven M Shank, Francis Roger White
-
Patent number: 7808029Abstract: A mask structure and process for forming trenches in a silicon carbide or other wafer, and for implanting impurities into the walls of the trenches using the same mask where the mask includes a thin aluminum layer and a patterned hard photoresist mask. A thin LTO oxide may be placed between the metal layer and the hard photoresist mask.Type: GrantFiled: April 23, 2007Date of Patent: October 5, 2010Assignee: Siliconix Technology C.V.Inventors: Luigi Merlin, Giovanni Richieri, Rossano Carta
-
Patent number: 7799636Abstract: A method of forming a semiconductor device includes the following. A masking layer with opening is formed over a silicon layer. The silicon layer is isotropically etched through the masking layer openings so as to remove bowl-shaped portions of the silicon layer, each of which includes a middle portion and outer portions extending directly underneath the masking layer. The outer portions form outer sections of corresponding trenches. Additional portions of the silicon layer are removed through the masking layer openings so as to form a middle section of the trenches which extends deeper into the silicon layer than the outer sections of the trenches. A first doped region of a first conductivity type is formed in an upper portion of the silicon layer. An insulating layer is formed within each trench, and extends directly over a portion of the first doped region adjacent each trench sidewall.Type: GrantFiled: September 25, 2009Date of Patent: September 21, 2010Assignee: Fairchild Semiconductor CorporationInventors: Robert Herrick, Becky Losee, Dean Probst
-
Patent number: 7790530Abstract: A DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout is fabricated with silicon-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance SRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS. In general terms, the memory cell includes a first transistor provided with a gate, a source, and a drain respectively; a second transistor having a first gate, a second gate, a source, and a drain respectively; and a capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.Type: GrantFiled: October 21, 2008Date of Patent: September 7, 2010Assignee: International Business Machines CorporationInventors: Jack A. Mandelman, Kangguo Cheng, Ramachandra Divakaruni, Carl J. Radens, Geng Wang
-
Patent number: 7791058Abstract: A resistance variable memory cell and method of forming the same. The memory cell includes a first electrode and at least one layer of resistance variable material in contact with the first electrode. A first, second electrode is in contact with a first portion of the at least one layer of resistance variable material and a second, second electrode is in contact with a second portion of the at least one layer of resistance variable material.Type: GrantFiled: June 25, 2009Date of Patent: September 7, 2010Assignee: Micron Technology, Inc.Inventor: Jun Liu