Including Transistor Formed On Trench Sidewalls Patents (Class 438/242)
  • Patent number: 7741178
    Abstract: A method for fabricating a vertical channel transistor in a semiconductor device includes forming a plurality of pillars arranged in a first direction and a second direction crossing the first direction over a substrate, wherein each of the pillars includes a hard mask pattern thereon, forming a bit line region in the substrate between the pillars, forming a first sidewall insulation layer on a sidewall of each of the pillars, forming an insulation layer for filling a space between the pillars, forming a mask pattern for exposing the substrate between lines of the pillars arranged in the first direction over a resulting structure including the insulation layer, etching the insulation layer and the substrate using the mask pattern as an etch barrier to form a trench for defining a bit line in the substrate, and forming a second sidewall insulation layer over a resulting structure including the trench.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hong-Gu Yi
  • Patent number: 7741174
    Abstract: Methods of forming pad structures are provided in which a first contact region and second contact regions are formed in an active region of a substrate. An insulating interlayer is formed on the substrate. The insulating interlayer has a first opening that exposes the first contact region and the second contact regions. First conductive pads are formed in the first opening. Each first conductive pad is in electrical contact with a respective one of the second contact regions. Spacers are formed, where each spacer is on a sidewall of a respective one of the first conductive pads. Finally, a second conductive pad is formed between the first conductive pads and in electrical contact with the first contact region to complete the pad structure.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: June 22, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyoung-Yong Cho
  • Publication number: 20100144109
    Abstract: The present invention relates to a transistor in a semiconductor device and method of manufacturing the same. Trenches are formed in a semiconductor substrate at gate edges. Low-concentration impurity regions are then formed at the sidewalls and the bottoms of the trenches. High-concentration impurity regions are formed at the bottoms of the trenches in a depth shallower than the low-concentration impurity regions. Source/drain consisting of the low-concentration impurity regions and the high-concentration impurity regions are thus formed. Therefore, the size of the transistor can be reduced while securing a stabilized operating characteristic even at high voltage. It is thus possible to improve reliability of the circuit and the degree of integration in the device.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 10, 2010
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventor: Nam Kyu PARK
  • Patent number: 7709346
    Abstract: A semiconductor device includes a plurality of gate trenches, each of which has first inner walls, which face each other in a first direction which is perpendicular to a second direction in which active regions extend, and second inner walls, which face each other in the second direction in which the active regions extends. An isolation layer contacts a gate insulating layer throughout the entire length of the first inner walls of the gate trenches including from entrance portions of the gate trenches to bottom portions of the gate trenches, and a plurality of channel regions are disposed adjacent to the gate insulating layers in the semiconductor substrate along the second inner walls and the bottom portions of the gate trenches.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: May 4, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Jin Kim, Kyeong-Koo Chi, Chang-Jin Kang, Hyoung-Sub Kim, Mybong-Cheol Kim, Tae-Rin Chung, Sung-Hoon Chung, Ji-Young Kim
  • Patent number: 7704836
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 27, 2010
    Assignee: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 7704827
    Abstract: An epitaxial layer is formed on an n+ semiconductor substrate by epitaxial growth. A gate trench is formed to the surface of gate trench so that the bottom of gate trench reaches middle of the epitaxial layer. A gate insulator is formed on the inner wall of gate trench and a polysilicon is formed in the gate trench with the gate insulator interposed therebetween. An HTO film is formed on the surface of the polysilicon and the n? epitaxial layer. At this time, an ion plantation is performed to the epitaxial layer through the HTO film. Hence, a p diffused base layer, an n+ diffused source layer, an n+ diffused source layer is formed. A CVD oxide film is formed on the HTO film. After a BPSG having flowability is deposited on the CVD oxide film, the BPSG film is planarized with a heat treatment of 900-1100 degree Celsius.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: April 27, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Yoshimitsu Murase, Kenya Kobayashi, Hideo Yamamoto, Atsushi Kaneko
  • Patent number: 7683415
    Abstract: A semiconductor device and a method for fabricating the same are provided. The method includes: forming a contact plug passing through an inter-layer insulation layer; sequentially forming a lower electrode layer, a dielectric layer and an upper electrode layer on the inter-layer insulation layer; patterning the upper electrode layer; patterning the dielectric layer and the lower electrode layer, thereby obtaining a capacitor including an upper electrode, a patterned dielectric layer and a lower electrode; and sequentially forming a first metal interconnection line connected with the contact plug and second metal interconnection lines connected with the capacitor.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: March 23, 2010
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Jin-Youn Cho
  • Patent number: 7651933
    Abstract: A method of fabricating a semiconductor device includes providing a semiconductor substrate in which a gate insulating layer and a pad layer are formed in an active region. A first trench is formed in an isolation region of the substrate. A passivation film is formed to cover the pad layer and fill the first trench. A second trench is formed by patterning the pad layer and removing an exposed semiconductor substrate, the second trench being formed within the first trench. An ion implantation process is performed on the semiconductor substrate exposed through the second trench.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: January 26, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Guee-Hwang Sim
  • Patent number: 7633121
    Abstract: A method to manufacture a trenched semiconductor power device including a plurality of trenched gates surrounded by source regions near a top surface of a semiconductor substrate encompassed in body regions. The method for manufacturing the trenched semiconductor power device includes a step of carrying out a tilt-angle implantation through sidewalls of trenches to form drift regions surrounding the trenches at a lower portion of the body regions with higher doping concentration than the epi layer for Rds reduction, and preventing a degraded breakdown voltage due to a thick oxide in lower portion of trench sidewall and bottom. In an exemplary embodiment, the step of carrying out the tilt-angle implantation through the sidewalls of the trenches further includes a step of carrying out a tilt angle implantation with a tilt-angle ranging between 4 to 30 degrees.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 15, 2009
    Assignee: Force-MOS Technology Corp.
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7615442
    Abstract: A method for fabricating a trench metal-oxide-semiconductor field effect transistor is disclosed. The method comprises steps of providing a substrate with an epitaxy layer thereon and etching the epitaxy layer to form a trench structure; forming a gate oxide layer on the surface of the epitaxy layer and the inner sidewalls of the trench structure and depositing a polysilicon layer to fill the trench structure; introducing a nitrogen gas and performing a driving-in procedure to form a body structure; performing an implantation procedure to form a source layer; forming a dielectric layer on the trench structure and the source layer; etching the dielectric layer and the source layer to define a source structure and form a contact region; filling the contact region with a contact structure layer; and forming a conductive metal layer on the contact structure layer and the dielectric layer.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: November 10, 2009
    Assignee: Mosel Vitelic Inc.
    Inventors: Hsin-Huang Hsieh, Mao-Song Tseng, Chien-Ping Chang
  • Patent number: 7611944
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: November 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, John Lee, Zengtao “Tony” Liu, Eric Freeman, Russell Nielsen
  • Patent number: 7608881
    Abstract: A thin-film device comprises: a substrate; a flattening film made of an insulating material and disposed on the substrate; and a capacitor provided on the flattening film. The capacitor incorporates: a lower conductor layer disposed on the flattening film; a dielectric film disposed on the lower conductor layer; and an upper conductor layer disposed on the dielectric film. The thickness of the dielectric film falls within a range of 0.02 to 1 ?m inclusive and is smaller than the thickness of the lower conductor layer. The surface roughness in maximum height of the top surface of the flattening film is smaller than that of the top surface of the substrate and equal to or smaller than the thickness of the dielectric film. The surface roughness in maximum height of the top surface of the lower conductor layer is equal to or smaller than the thickness of the dielectric film.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: October 27, 2009
    Assignee: TDK Corporation
    Inventors: Hajime Kuwajima, Masahiro Miyazaki, Akira Furuya
  • Patent number: 7589369
    Abstract: The invention includes a method in which a semiconductor substrate is provided to have a memory array region, and a peripheral region outward of the memory array region. Paired transistors are formed within the memory array region, with such paired transistors sharing a source/drain region corresponding to a bitline contact location, and having other source/drain regions corresponding to capacitor contact locations. A peripheral transistor gate is formed over the peripheral region. Electrically insulative material is formed over the peripheral transistor gate, and also over the bitline contact location. The insulative material is patterned to form sidewall spacers along sidewalls of the peripheral transistor gate, and to form a protective block over the bitline contact location. Subsequently, capacitors are formed which extend over the protective block, and which electrically connect with the capacitor contact locations. The invention also includes semiconductor constructions.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Patent number: 7563669
    Abstract: An integrated circuit device having a capacitor structure. In one form of the invention, an integrated circuit device includes a capacitor structure formed along a surface of a semiconductor layer. The capacitor structure includes a region formed in the semiconductor surface, a layer of dielectric material formed along a trench wall of the trench region and a first layer of doped polysilicon formed over the layer of dielectric material in the trench region. The capacitor structure further includes a second layer of doped polysilicon formed over the first layer of polysilicon.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: July 21, 2009
    Assignee: Agere Systems Inc.
    Inventors: Sailesh Chittipeddi, Seungmoo Choi
  • Patent number: 7560723
    Abstract: A resistance variable memory cell and method of forming the same. The memory cell includes a first electrode and at least one layer of resistance variable material in contact with the first electrode. A first, second electrode is in contact with a first portion of the at least one layer of resistance variable material and a second, second electrode is in contact with a second portion of the at least one layer of resistance variable material.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: July 14, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Publication number: 20090176339
    Abstract: A method is provided for fabricating a multi-port memory in which a plurality of parallel connected capacitors are in a cell. A plurality of trench capacitors are formed which have capacitor dielectric layers extending along walls of the plurality of trenches, the plurality of trench capacitors having first capacitor plates and second capacitor plates opposite the capacitor dielectric layers from the first capacitor plates. The first capacitor plates are conductively tied together and the second capacitor plates are conductively tied together. In this way, the first capacitor plates are adapted to receive a same variable voltage and the second capacitor plates are adapted to receive a same fixed voltage.
    Type: Application
    Filed: December 16, 2008
    Publication date: July 9, 2009
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Jack A. Mandelman, Carl J. Radens, Geng Wang
  • Patent number: 7504298
    Abstract: A memory cell, device, and system include a memory cell having a shared digitline, a storage capacitor, and a plurality of access transistors configured to selectively electrically couple the storage capacitor with the shared digitline. The digitline couples with adjacent memory cells and the plurality of access transistor selects which adjacent memory cell is coupled to the shared digitline. A method of forming the memory cell includes forming a buried digitline in the substrate and a vertical pillar in the substrate immediately adjacent to the buried digitline. A dual gate transistor is formed on the vertical pillar with a first end electrically coupled to the buried digitline and a second end coupled to a storage capacitor formed thereto.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: H. Montgomery Manning, David H. Wells
  • Patent number: 7494895
    Abstract: A method of fabricating a 3D field effect transistor employing a hard mask spacer includes forming a hard mask pattern on a semiconductor substrate. The semiconductor substrate is etched using the hard mask pattern as an etch mask to form a trench that defines an active region. A trench oxide layer and a liner are sequentially formed on the semiconductor substrate, and an isolation layer is formed to fill the trench. An upper surface of the isolation layer may by recessed below an upper surface of the hard mask pattern. A hard mask spacer is formed that covers sidewalls of the hard mask pattern. Some portions of the isolation layer where an etching is blocked by the hard mask spacer remain on sidewalls of the channel region, respectively, thereby preventing the liner from being damaged by etching.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: February 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hung-Mo Yang, Keun-Nam Kim
  • Patent number: 7494865
    Abstract: A manufacturing method of metal oxide semiconductor transistor is provided. A substrate is provided. A source/drain extension region is formed in the substrate. A pad material layer with low dielectric constant is formed on the substrate. A trench is formed in the substrate and the pad material layer. A gate dielectric layer is formed on the surface of the substrate in the trench. A stacked gate structure is formed in the trench, wherein the top surface of a conductive layer of the stacked gate structure is higher than the surface of the pad material layer. A spacer material layer is formed conformably on the substrate. Portions of the spacer material layer and the pad material layer are removed so as to form a pair of first spacers and a pair of pad blocks. A source/drain is formed on the substrate beside the stacked gate structure.
    Type: Grant
    Filed: July 23, 2006
    Date of Patent: February 24, 2009
    Assignee: ProMOS Technologies Inc.
    Inventors: Yu-Chi Chen, Jih-Wen Chou, Frank Chen
  • Patent number: 7489003
    Abstract: In a semiconductor device, the semiconductor device includes a conductive structure, first insulating layers and first conductive layer patterns. The conductive structure includes a first portion, second portions and third portions. The second portions extend in a first direction on the first portion. The second portions are spaced apart from one another in a second direction substantially perpendicular to the first direction. The third portions are provided on the second portions. The third portions are spaced apart from one another in the first and second directions. The first insulating layers cover sidewalls of the second portions. The first conductive layer patterns are provided on the first insulating layers.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: February 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyoung-Seub Rhie
  • Patent number: 7485525
    Abstract: An integrated circuit is provided which includes a memory having multiple ports per memory cell for accessing a data bit within each of a plurality of the memory cells. Such memory includes an array of memory cells in which each memory cell includes a plurality of capacitors connected together as a unitary source of capacitance. A first access transistor is coupled between a first one of the plurality of capacitors and a first bitline and a second access transistor is coupled between a second one of the plurality of capacitors and a second bitline. In each memory cell, a gate of the first access transistor is connected to a first wordline and a gate of the second access transistor is connected to a second wordline.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Jack A. Mandelman, Carl J. Radens, Geng Wang
  • Patent number: 7485921
    Abstract: This semiconductor device comprises a first semiconductor layer of a first conductivity type, an epitaxial layer of a first conductivity type formed in the surface on the first semiconductor layer, and a base layer of a second conductivity type formed on the surface of the epitaxial layer. Column layers of a second conductivity type are repeatedly formed in the epitaxial layer under the base layer at a certain interval. Trenches are formed so as to penetrate the base layer to reach the epitaxial layer; and gate electrodes are formed in the trenches via a gate insulation film. A termination layer of a second conductivity type is formed on the epitaxial layer at an end region at the perimeter of the base layer. The termination layer is formed to have a junction depth larger than that of the base layer.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: February 3, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yusuke Kawaguchi, Yoshihiro Yamaguchi, Syotaro Ono, Miwako Akiyama
  • Patent number: 7462901
    Abstract: A field effect transistor is provided. The field effect transistor includes a channel region, electrically conductive channel connection regions, and a control region. The electrically conductive channel connection regions adjoin the channel region along with a transistor dielectric. The control region is separated from the channel region by the transistor dielectric. In addition, the control region may comprise a monocrystalline material.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 9, 2008
    Assignee: Infineon Technologies AG
    Inventor: Helmut Tews
  • Patent number: 7445986
    Abstract: Memory cells with vertical transistor and capacitor and fabrication methods thereof. The memory cell comprises a substrate with a trench. A capacitor is disposed at the bottom of the trench. A first conductive layer is electrically coupled to the capacitor. The first conductive layer is isolated the substrate by a collar dielectric layer. A trench top oxide (TTO) layer is disposed on the first conductive layer. A vertical transistor is disposed over the TTO layer. The vertical transistor comprises a gate dielectric layer disposed on the sidewalls of the upper portion of the trench, and a metal gate disposed in the upper portion of the trench.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: November 4, 2008
    Assignee: Nanya Technology Corporation
    Inventor: Cheng-Chih Huang
  • Patent number: 7445985
    Abstract: A DRAM memory cell arrangement having memory cells each having a trench capacitor and a fin field-effect transistor or FinFET for addressing the trench capacitor. The memory cells are arranged in cell rows which are offset with respect to one another and are separated from one another by trench insulator structures. Word lines orthogonal to the cell rows mesh in comblike fashion between the cell rows and alternately traverse trench capacitors and channel regions of fin field-effect transistors. By means of a on-photolithographic mask having mask sections aligned with the trench capacitors, trench-insulator structures are provided in each case between a sidewall gate section of a word line and the adjoining trench capacitor, said trench-insulator structures decoupling the respective trench capacitor from the traversing word line.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: November 4, 2008
    Assignee: Infineon Technologies AG
    Inventor: Ulrike Gruning-Von Schwerin
  • Patent number: 7425499
    Abstract: Methods for forming interconnects in blind vias or other types of holes, and microelectronic workpieces having such interconnects. The blind vias can be formed by first removing the bulk of the material from portions of the back side of the workpiece without thinning the entire workpiece. The bulk removal process, for example, can form a first opening that extends to an intermediate depth within the workpiece, but does not extend to the contact surface of the electrically conductive element. After forming the first opening, a second opening is formed from the intermediate depth in the first opening to the contact surface of the conductive element. The second opening has a second width less than the first width of the first opening. This method further includes filling the blind vias with a conductive material and subsequently thinning the workpiece from the exterior side until the cavity is eliminated.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: September 16, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Steven D. Oliver, Kyle K. Kirby, William M. Hiatt
  • Patent number: 7419871
    Abstract: The invention includes a method in which a semiconductor substrate is provided to have a memory array region, and a peripheral region outward of the memory array region. Paired transistors are formed within the memory array region, with such paired transistors sharing a source/drain region corresponding to a bitline contact location, and having other source/drain regions corresponding to capacitor contact locations. A peripheral transistor gate is formed over the peripheral region. Electrically insulative material is formed over the peripheral transistor gate, and also over the bitline contact location. The insulative material is patterned to form sidewall spacers along sidewalls of the peripheral transistor gate, and to form a protective block over the bitline contact location. Subsequently, capacitors are formed which extend over the protective block, and which electrically connect with the capacitor contact locations. The invention also includes semiconductor constructions.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: September 2, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Patent number: 7387931
    Abstract: In a semiconductor memory device having a vertical channel transistor a body of which is connected to a substrate and a method of fabricating the same, the semiconductor memory device includes a semiconductor substrate including a plurality of pillars arranged spaced apart from one another, and each of the pillars includes a body portion and a pair of pillar portions extending from the body portion and spaced apart from each other. A gate electrode is formed to surround each of the pillar portions. A bitline is disposed on the body portion to penetrate a region between a pair of the pillar portions of each of the first pillars arranged to extend in a first direction. A wordline is disposed over the bitline, arranged to extend in a second direction intersecting the first direction, and configured to contact the side surface of the gate electrode. A first doped region is formed in the upper surface of each of the pillar portions of the pillar.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: June 17, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Kang-yoon Lee, Dong-gun Park, Bong-soo Kim, Seong-goo Kim
  • Patent number: 7371645
    Abstract: Fabrication of recessed channel array transistors (RCAT) with a corner gate device includes forming pockets between a semiconductor fin that includes a gate groove and neighboring shallow trench isolations that extend along longs sides of the semiconductor fin. A protection liner covers the semiconductor fin and the trench isolations in a bottom portion of the gate groove and the pockets. An insulator collar is formed in the exposed upper sections of the gate groove and the pockets, wherein a lower edge of the insulator collar corresponds to a lower edge of source/drain regions formed within the semiconductor fin. The protection liner is removed. The bottom portion of the gate groove and the pockets are covered with a gate dielectric and a buried gate conductor layer. The protection liner avoids residuals of polycrystalline silicon between the active area in the semiconductor fin and the insulator collar.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Klaus Muemmler, Peter Baars, Stefan Tegen
  • Patent number: 7368777
    Abstract: An accumulation-mode field effect transistor includes a plurality of gates and a semiconductor region having a channel region adjacent to but insulated from each of the plurality of gates. The semiconductor region further includes a conduction region wherein the channel regions and the conduction region are of a first conductivity type. The transistor further includes a drain terminal and a source terminal configured so that when the accumulation-mode field effect transistor is in the on state a current flows from the drain terminal to the source terminal through the conduction region and the channel regions. A number of charge balancing structures are integrated with the semiconductor region so as to extend parallel to the current flow. In a blocking state, the charge balancing structures influence an electric field in the conduction region so as to increase the blocking capability of the accumulation-mode field effect transistor.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: May 6, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Christopher Boguslaw Kocon
  • Patent number: 7368344
    Abstract: Methods of reducing the floating body effect in vertical transistors are disclosed. The floating body effect occurs when an active region in a pillar is cut off from the substrate by a depletion region and the accompanying electrostatic potential created. In a preferred embodiment, a word line is recessed into the substrate to tie the upper active region to the substrate. The resulting memory cells are preferably used in dynamic random access memory (DRAM) devices.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: May 6, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Gordon A Haller
  • Patent number: 7364971
    Abstract: A semiconductor device includes a body region, a drift region having a first part and a second part, and a trench gate electrode. The body region is disposed on the drift region. The first and second parts extend in an extending direction so that the second part is adjacent to the first part. The trench gate electrode penetrates the body region and reaches the drift region so that the trench gate electrode faces the body region and the drift region through an insulation layer. The trench gate electrode extends in a direction crossing with the extending direction of the first and second parts. The first part includes a portion near the trench gate electrode, which has an impurity concentration equal to or lower than that of the body region.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: April 29, 2008
    Assignee: DENSO CORPORATION
    Inventors: Hitoshi Yamaguchi, Mikimasa Suzuki, Yoshiyuki Hattori
  • Patent number: 7335558
    Abstract: A method of manufacturing a NAND flash memory device, including the steps of providing a semiconductor substrate in which a cell region and a select transistor region are defined; simultaneously forming a plurality of cell gates on the semiconductor substrate of the cell region and forming selection gates on the semiconductor substrate of the select transistor region; forming an oxide film on the entire structure and then forming a nitride film; etching the nitride film so that the nitride film remains only between the selection gates and adjacent edge cell gates; and, blanket etching the oxide film to form spacers on sidewalls of the selection gates. Accordingly, uniform threshold voltage distributions can be secured, and process margins for a spacer etch target can be secured when etching the spacers. Furthermore, the nitride film partially remains between the edge cell gates and the selection gates even after the gate spacers are etched.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 26, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chan Sun Hyun
  • Patent number: 7326611
    Abstract: The invention includes a method of forming a semiconductor construction. Dopant is implanted into the upper surface of a monocrystalline silicon substrate. The substrate is etched to form a plurality of trenches and cross-trenches which define a plurality of pillars. After the etching, dopant is implanted within the trenches to form a source/drain region that extends less than an entirety of the trench width. The invention includes a semiconductor construction having a bit line disposed within a semiconductor substrate below a first elevation. A wordline extends elevationally upward from the first elevation and substantially orthogonal relative to the bit line. A vertical transistor structure is associated with the wordline. The transistor structure has a channel region laterally surrounded by a gate layer and is horizontally offset relative to the bit line.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: February 5, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7323380
    Abstract: A high density vertical single transistor gain cell is realized for DRAM operation. The gain cell includes a vertical transistor having a source region, a drain region, and a floating body region therebetween. A gate opposes the floating body region and is separated therefrom by a gate oxide on a first side of the vertical transistor. A floating body back gate opposes the floating body region on a second side of the vertical transistor and is separated therefrom by a dielectric to form a body capacitor.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: January 29, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7316951
    Abstract: The present invention provides a fabrication method for a trench capacitor having an insulation collar (10) in a silicon substrate (1), having the steps of: providing a trench (5) in the silicon substrate (1); providing the insulation collar (10) in the upper trench region as far as the top side of the silicon substrate (1); depositing a layer (12) made of a metal oxide in the trench (5); carrying out a thermal treatment for selectively reducing the layer (12), a region of the layer (12) that lies below the insulation collar (10) above the silicon substrate (1) being reduced and being converted into a first capacitor electrode layer (15) made of a corresponding metal silicide, and a region of the layer (12) that lies above the insulation collar (10) not being reduced; selectively removing the non-reduced region of the layer (12) that lies above the insulation collar (10); providing a capacitor dielectric layer (18) in the trench (5) above the first capacitor electrode layer (15); and providing a second capaci
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: January 8, 2008
    Assignee: Infineon Technologies AG
    Inventors: Martin Gutsche, Harald Seidl
  • Patent number: 7316956
    Abstract: A method for fabricating a wire with silicide is disclosed. First, a conductive layer is formed on a substrate. And, a hard mask layer is formed on the conductive layer. Then, the hard mask layer is used as a mask to remove a portion of the conductive layer. Afterwards, a spacer is formed on the sidewalls of the conductive layer and the hard mask layer. Afterwards, the hard mask layer is removed. Next, a silicide is formed on the conductive layer.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: January 8, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Rex Young, Liang-Chuan Lai
  • Patent number: 7282401
    Abstract: A method used in fabrication of a recessed access device transistor gate has increased tolerance for mask misalignment. One embodiment of the invention comprises forming a vertical spacing layer over a semiconductor wafer, then etching the vertical spacing layer and the semiconductor wafer to form a recess in the wafer. A conductive transistor gate layer is then formed within the trench and over the vertical spacing layer. The transistor gate layer is etched, which exposes the vertical spacing layer. A spacer layer is formed over the etched conductive gate layer and over the vertical spacing layer, then the spacer layer and the vertical spacing layer are anisotropically etched. Subsequent to anisotropically etching the vertical spacing layer, a portion of the vertical spacing layer is interposed between the semiconductor wafer and the etched conductive transistor gate layer in a direction perpendicular to the plane of a major surface of the semiconductor wafer.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7282400
    Abstract: Improved methods and structures are provided that are lateral to surfaces with a (110) crystal plane orientation such that an electrical current of such structures is conducted in the <110> direction. Advantageously, improvements in hole carrier mobility of approximately 50% can be obtained by orienting the structure's channel in a (110) plane such that the electrical current flow is in the <110> direction. Moreover, these improved methods and structures can be used in conjunction with existing fabrication and processing techniques with minimal or no added complexity.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Wendell P. Noble, Leonard Forbes, Alan R. Reinberg
  • Patent number: 7276410
    Abstract: A substrate has an active region divided into storage node contact junction regions, channel regions and a bit line contact junction region. Device isolation layers are formed in the substrate isolating the active region from a neighboring active region Recess patterns are formed each in a trench structure and extending from a storage node contact junction region to a channel region Line type gate patterns, each filling a predetermined portion of the trench of the individual recess pattern, is formed in a direction crossing a major axis of the active region in an upper portion of the individual channel region.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: October 2, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang-Man Bae
  • Patent number: 7274060
    Abstract: A memory cell array includes memory cells with storage capacitor and an access transistor. The access transistors are formed in active areas. The memory cell array further includes bit lines oriented in a first direction and word lines oriented in a second direction. The active areas extend in the second direction. The bottom side of each gate electrode of the transistors is disposed beneath the bottom side of each word line. In addition, the word lines are disposed above the bit lines.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: September 25, 2007
    Assignee: Infineon Technologies, AG
    Inventors: Martin Popp, Frank Jakubowski, Juergen Holz, Lars Heineck
  • Patent number: 7271052
    Abstract: A single transistor vertical memory gain cell with long data retention times. The memory cell is formed from a silicon carbide substrate to take advantage of the higher band gap energy of silicon carbide as compared to silicon. The silicon carbide provides much lower thermally dependent leakage currents which enables significantly longer refresh intervals. In certain applications, the cell is effectively non-volatile provided appropriate gate bias is maintained. N-type source and drain regions are provided along with a pillar vertically extending from a substrate, which are both p-type doped. A floating body region is defined in the pillar which serves as the body of an access transistor as well as a body storage capacitor. The cell provides high volumetric efficiency with corresponding high cell density as well as relatively fast read times.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7262089
    Abstract: The invention includes semiconductor structures having buried silicide-containing bitlines. Vertical surround gate transistor structures can be formed over the bitlines. The surround gate transistor structures can be incorporated into memory devices, such as, for example, DRAM devices. The invention can be utilized for forming 4F2 DRAM devices.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Todd R. Abbott, H. Montgomery Manning
  • Patent number: 7259415
    Abstract: A single transistor vertical memory gain cell with long data retention times. The memory cell is formed from a silicon carbide substrate to take advantage of the higher band gap energy of silicon carbide as compared to silicon. The silicon carbide provides much lower thermally dependent leakage currents which enables significantly longer refresh intervals. In certain applications, the cell is effectively non-volatile provided appropriate gate bias is maintained. N-type source and drain regions are provided along with a pillar vertically extending from a substrate, which are both p-type doped. A floating body region is defined in the pillar which serves as the body of an access transistor as well as a body storage capacitor. The cell provides high volumetric efficiency with corresponding high cell density as well as relatively fast read times.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: August 21, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7241658
    Abstract: A high density vertical gain cell is realized for memory operation. The gain cell includes a vertical MOS transistor used as a sense transistor having a floating body between a drain region and a source region, and a second vertical MOS transistor merged with the sense transistor. Addressing the second vertical MOS transistor provides a means for changing a potential of the floating body of the sense transistor. The vertical gain cell can be used in a memory array with a read data/bit line and a read data word line coupled to the sense transistor, and with a write data/bit line and a write data word line coupled to the second transistor of the vertical gain cell.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: July 10, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7241659
    Abstract: A method for forming a volatile memory device. A substrate comprising a pair of neighboring trenches is provided, each trench comprising a capacitor. A collar insulating layer is formed on an upper sidewall of each trench. The collar insulating layer comprises a low level portion and a high level portion adjacent to a predetermined active area of the volatile memory device.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: July 10, 2007
    Assignee: Promos Technologies, Inc.
    Inventors: Chin-Long Hung, Hong-Long Chang, Yueh-Chuan Lee
  • Patent number: 7232719
    Abstract: A memory charge storage node (120.1, 120.2, 120.3) is at least partially located in a trench (124). The memory comprises a transistor including a source/drain region (170) present at a first side (124.1) but not a second side (124.2) of the trench. Before forming conductive material (120.3) providing at least a portion of the charge storage node, a blocking feature (704) is formed adjacent to the second side (124.2) to block the conductive material (120.3). The blocking feature can be dielectric left in the final structure, or can be a sacrificial feature which is removed after the conductive material deposition to make room for dielectric. The blocking features for multiple trenches in a memory array can be patterned using a mask (710) comprising a plurality of straight strips each of which runs through the memory array in the row direction. The charge storage node has a protrusion (120.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: June 19, 2007
    Assignee: ProMOS Technologies Inc.
    Inventors: Chao-Hsi Chung, Jung-Wu Chien
  • Patent number: 7223651
    Abstract: A memory cell includes a selection transistor and a trench capacitor. The trench capacitor is filled with a conductive trench filling on which an insulating covering layer is arranged. The insulating covering layer is laterally overgrown, proceeding from the substrate with a selectively grown epitaxial layer. The selection transistor is formed in the selectively grown epitaxial layer, comprises a source region connected to the trench capacitor and a drain region connected to a bit line. The junction depth of the source region is chosen so that the source region reaches as far as the insulating covering layer. Optionally, the thickness of the epitaxial layer can be reduced to a thickness by oxidation and a subsequent etching. Afterwards, a contact trench is etched through the source region down to the conductive trench filling, which trench is filled with a conductive contact and electrically connects the conductive trench filling to the source region.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: May 29, 2007
    Assignee: Infineon Technologies, AG
    Inventors: Frank Richter, Dietmar Temmler, Andreas Wich-Glasen
  • Patent number: 7214621
    Abstract: The invention includes methods of forming devices associated with semiconductor constructions. In exemplary methods, common processing steps are utilized to form fully silicided recessed array access gates and partially silicided periphery transistor gates.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: May 8, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, Gordon A. Haller, Thomas Arthur Figura, Ravi Iyer
  • Patent number: 7208390
    Abstract: A semiconductor device structure has trenches of two widths or more. The smallest widths are to maximize density. The greater widths may be required because of more demanding isolation, for example, in the case of non-volatile memories. These more demanding, wider isolation trenches are lined with a high quality grown oxide as part of the process for achieving the desired result of high quality isolation. For the case of the narrowest trenches, the additional liner causes the aspect ratio, the ratio of the depth of the trench to the width of the trench, to increase. Subsequent deposition of insulating material to fill the trenches with the highest aspect ratios can result in voids that can ultimately result in degraded yields. These voids are avoided by etching at least a portion of the liners of those trenches with the highest aspect ratios to reduce the aspect ratio to acceptable levels.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: April 24, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rana P. Singh, Paul A. Ingersoll