Using Same Conductivity-type Dopant Patents (Class 438/307)
  • Patent number: 7598160
    Abstract: A method for manufacturing thin film semiconductor device is provided. The semiconductor thin film includes a semiconductor thin film and a gate electrode and has an active region turned into a polycrystalline region through irradiation with an energy beam. The gate electrode is provided to traverse the active region. In a channel part that is the active region overlapping with the gate electrode, a crystalline state is changed cyclically in a channel length direction, and areas each having a substantially same crystalline state traverse the channel part.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: October 6, 2009
    Assignee: Sony Corporation
    Inventors: Akio Machida, Toshio Fujino, Tadahiro Kono
  • Publication number: 20090230468
    Abstract: An LDMOS device includes a substrate of a first conductivity type, an epitaxial layer on the substrate, a buried well of a second conductivity type opposite to the first conductivity type in a lower portion of the epitaxial layer, the epitaxial layer being of the first conductivity type below the buried layer. The device further includes a field oxide located between a drain and both a gate on a gate oxide and a source with a saddle shaped vertical doping gradient of the second conductivity type in the epitaxial layer above the buried well such that the dopant concentration in the epitaxial layer above the buried well and below a central portion of the field oxide is lower than the dopant concentration at the edges of the field oxide nearest the drain and nearest the gate.
    Type: Application
    Filed: March 17, 2008
    Publication date: September 17, 2009
    Inventor: Jun Cai
  • Publication number: 20090191684
    Abstract: A method for fabricating a semiconductor device is disclosed. First, a semiconductor substrate having a doped region(s) is provided. Thereafter, a pre-amorphous implantation process and neutral (or non-neutral) species implantation process is performed over the doped region(s) of the semiconductor substrate. Subsequently, a silicide is formed in the doped region(s). By conducting a pre-amorphous implantation combined with a neutral species implantation, the present invention reduces the contact resistance, such as at the contact area silicide and source/drain substrate interface.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shau-Lin Shue, Ting-Chu Ko
  • Patent number: 7566615
    Abstract: A memory device includes a semiconductor substrate, a first gate insulator on a first portion of a semiconductor substrate, a storage node on the first gate insulator, a tunnel junction barrier on the storage node and a data electrode on the layer tunnel junction barrier. The device further includes a second gate insulator layer on a sidewall of the tunnel junction barrier, a third gate insulator on a second portion of the substrate adjacent the tunnel junction barrier and a gate electrode on the second gate insulator and the third gate insulator. First and second impurity-doped regions are disposed in the substrate and are coupled by a channel through the first and second portions of the substrate. Fabrication of such a device is also describes.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seung-Jae Baik
  • Publication number: 20090179275
    Abstract: The present invention relates to semiconductor memory device junction and a method of forming the same. The semiconductor memory device junction may include a semiconductor substrate having gate lines formed thereon, and a junction having first and second junction elements formed by implanting impurities of a different mass into the semiconductor substrate between the gate lines. The method of forming a semiconductor memory device junction may include providing a semiconductor substrate having gate lines, forming an auxiliary layer along a surface of the semiconductor substrate including the gate lines, implanting impurities into the semiconductor substrate between gate lines to form a first junction element, and implanting impurities into the semiconductor substrate to form a second junction element, wherein the impurities implanted to form the first junction element and the second junction element have different masses.
    Type: Application
    Filed: June 2, 2008
    Publication date: July 16, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventor: Hyun Soo Shon
  • Patent number: 7547956
    Abstract: A circuit with dielectric thicknesses is presented that includes a low-pass filter including one or more semiconductor devices having a thick gate oxide layer, while further semiconductor devices of the circuit have thin gate oxide layers. The low-pass filter semiconductor device includes an N-type substrate, a P-type region formed on the N-type substrate, a thick gate oxide layer formed over the P-type region, a P+ gate electrode formed over the thick gate oxide layer and coupled to a first voltage supply line, and P+ pick-up terminals formed in the P-type region adjacent the gate electrode and coupled to a second voltage supply line. The low-pass filter semiconductor device acts as a capacitor, whereby a gate-to-substrate voltage is maintained at less than zero volts to maintain a stable control voltage for the circuit.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: June 16, 2009
    Assignee: Broadcom Corporation
    Inventors: Derek Tam, Jasmine Cheng, Jungwoo Song, Takayuki Hayashi
  • Patent number: 7547606
    Abstract: An exemplary method of manufacturing a semiconductor device according to an embodiment of the present invention includes forming a gate insulation layer on a semiconductor substrate; forming a plurality of gate electrodes on the gate insulation layer; forming pocket regions by a pocket ion implantation process using the gate electrode as an implantation mask; forming a capping electrode layer on the gate electrode by depositing a polysilicon layer; forming lightly doped regions by low-concentration ion implantation using the capping electrode layer as an implantation mask; forming spacer layers on the sidewall of the capping electrode layer; and forming source and drain regions by high concentration ion implantation using the spacer layers as an implantation mask. The method can suppress the occurrence of the punch-through phenomenon.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: June 16, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Dong-Yeal Keum
  • Patent number: 7524715
    Abstract: A memory cell transistor of a DRAM device is provided. A gate stack pattern is formed on a semiconductor substrate. A DC node and a BC node are formed substantially under lateral sides of the gate stack pattern in the semiconductor substrate. The DC node and the BC node are being electrically connected to a bit line and a storage electrode of a capacitor, respectively. A first source/drain junction region is formed under the DC node and a second source/drain junction region is formed under the BC node. The first source/drain junction region has a profile which is different from that of the second source/drain junction region.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Su-jin Ahn
  • Publication number: 20090096039
    Abstract: A high-voltage device including a first conductive type substrate, a gate, a second conductive type well, a second conductive type source region, a second conductive type drain region, conductive layers, and a first conductive type top layer. The gate is disposed on the substrate, and the well is disposed in the substrate at one side of the gate. The source region is disposed in the substrate at the other side of the gate. The drain region is disposed in the well of the substrate. The conductive layers are disposed on the substrate between the gate and the drain region. The top layer is disposed in the well of the substrate, and the well is below the conductive layers. One portion of the top layer near the gate has a thickness greater than that of the other portion of the top layer away from the gate.
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Jen Huang, Shih-Ming Hsu
  • Patent number: 7514307
    Abstract: A method of manufacturing a semiconductor apparatus of the present invention comprises forming body diffusion layer, a gate electrode, and an interlayer dielectric over an surface of a semiconductor substrate, forming a photoresist having an opening in a region overlapping with a part of the body diffusion layer, removing the interlayer dielectric to form an opening using the photoresist as a mask, forming a body contact diffusion layer by implanting ion in the opening of the interlayer dielectric using the photoresist as a mask, forming a source contact by removing neighboring portion of the opening of the interlayer dielectric using the photoresist as a mask after the body contact diffusion layer 13 is formed, and removing the photoresist.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: April 7, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Kinya Ootani
  • Publication number: 20090068812
    Abstract: Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 12, 2009
    Inventors: Kirk Prall, Behnam Moradi, Seiichi Aritome, Di Li, Chris Larsen
  • Patent number: 7501322
    Abstract: A semiconductor memory device includes a semiconductor substrate having a trench therein. First and second gate patterns are formed on a surface of the substrate adjacent the trench, a respective one of which is on a respective opposing side of the trench. A split source/drain region is formed in the substrate between the first gate pattern and the second gate pattern such that the split source/drain region is divided by the trench. The split source/drain region includes a first source/drain subregion between the first gate pattern and the trench and a second source/drain subregion between the second gate pattern and the trench and spaced apart from the first source/drain subregion. A connecting region is formed in the substrate that extends around the trench from the first source/drain subregion to the second source/drain subregion. Related methods are also discussed.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: March 10, 2009
    Assignee: Sungwoo Electronics Co., Ltd.
    Inventors: Sung-Hoi Hur, Jung-Dal Choi
  • Patent number: 7485905
    Abstract: An electrostatic discharge protection device comprising a multi-finger gate, a first lightly doped region of a second conductivity, a first heavily doped region of the second conductivity, and a second lightly doped region of the second conductivity. The multi-finger gate comprises a plurality of fingers mutually connected in parallel over an active region of a first conductivity. The first lightly doped region of a second conductivity is disposed in the semiconductor substrate and between two of the fingers. The first heavily doped region of the second conductivity is disposed in the first lightly doped region of the second conductivity. The second lightly doped region of the second conductivity is beneath and adjoins the first lightly doped region of the second conductivity.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: February 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Chi Hung, Jian-Hsing Lee, Hung-Lin Chen, Deng-Shun Chang
  • Publication number: 20090026553
    Abstract: A semiconductor device and the methods of forming the same are provided. The semiconductor device includes a low energy band-gap layer comprising a semiconductor material; a gate dielectric on the low energy band-gap layer; a gate electrode over the gate dielectric; a first source/drain region adjacent the gate dielectric, wherein the first source/drain region is of a first conductivity type; and a second source/drain region adjacent the gate dielectric. The second source/drain region is of a second conductivity type opposite the first conductivity type. The low energy band-gap layer is located between the first and the second source/drain regions.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventors: Krishna Kumar Bhuwalka, Ken-Ichi Goto
  • Publication number: 20080290412
    Abstract: An apparatus comprising a substrate of first dopant type and first dopant concentration; pocket regions in the substrate and having the first dopant type and a second dopant concentration greater than the first dopant concentration; a gate stack over the substrate and laterally between the pocket regions; first and second source/drain regions on opposing sides of the gate stack and vertically between the gate stack and the pocket regions, the first and second source/drain regions having a second dopant type opposite the first dopant type and a third dopant concentration; and third and fourth source/drain regions having the second dopant type and a fourth dopant concentration that is greater than the third dopant concentration, wherein the pocket regions are between the third and fourth source/drain regions, and the third and fourth source/drain regions are vertically between the first and second source/drain regions and a bulk portion of the substrate.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 27, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chiang Wang, Yi-Ming Sheu, Ying-Shiou Lin
  • Publication number: 20080283911
    Abstract: A high-voltage semiconductor device and a method for manufacturing the same are disclosed. The disclosed high-voltage semiconductor device includes a semiconductor substrate, a first N type well in the semiconductor substrate, a first P type well in the first N type well, second N type wells in the first N type well along a periphery of the first P type well, a gate insulating film and a gate electrode on the first P type well, and first heavily-doped N type impurity regions in the first P type well at opposite sides of the gate electrode.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 20, 2008
    Inventor: Duck Ki Jang
  • Patent number: 7439563
    Abstract: A high-breakdown-voltage semiconductor device comprises a high-resistance semiconductor layer, trenches formed on the surface thereof in a longitudinal plane shape and in parallel, first regions formed on the semiconductor layer to be sandwiched between adjacent ones of the trenches and having an impurity concentration higher than that of the semiconductor layer, a second region having opposite conductivity to the first regions and continuously disposed in a trench sidewall and bottom portion, a sidewall insulating film disposed on the second region of the trench sidewall, a third region disposed on the second region of the trench bottom portion and having the same conductivity as and the higher impurity concentration than the second region, a fourth region disposed on the back surface of the semiconductor layer, a first electrode formed on each first region, a second electrode connected to the third region, and a third electrode formed on the fourth region.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: October 21, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuo Hatakeyama, Takashi Shinohe
  • Patent number: 7402451
    Abstract: An imager device that has mitigated dark current leakage and punch-through protection. The transistor associated with the photoconversion device is formed with a single (i.e, one-sided) active area extension region on one side of the transistor gate opposite the photoconversion device, while other transistors can have normal symmetrical (i.e, two-sided) active area extension regions (e.g., lightly doped drains) with resulting high performance and short gate lengths. The asymmetrical active area extension region of the transistor associated with the photodiode can serve to reduce dark current at the photoconversion device. The punch-through problem normally cured by a lightly doped drain is fixed at the transistor associated with the photoconversion device by adding a Vt adjustment implant and/or increasing its gate length.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: July 22, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Howard E. Rhodes
  • Patent number: 7399669
    Abstract: Semiconductor devices and methods for fabricating the same are disclosed in which an amorphous layer is formed in an interface between a device isolation layer and a source or drain region to stably thin a silicide layer formed in the interface. A leakage current of the silicide layer formed in the interface between the device isolation layer and the source/drain region is reduced.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: July 15, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Hyuk Park
  • Publication number: 20080160711
    Abstract: A method for forming a contactless flash memory cell array is disclosed. According to an embodiment of the invention, a plurality of active regions is formed on a substrate. An insulating layer is then deposited over the active regions, and a portion of the insulating layer is removed to form a one-dimensional slot and to provide access to the active regions. A bit line is then formed in the slot in contact with the active regions.
    Type: Application
    Filed: February 22, 2008
    Publication date: July 3, 2008
    Inventor: Everett B. Lee
  • Publication number: 20080132024
    Abstract: A method of manufacturing double diffused drains in a semiconductor device. An embodiment comprises forming a gate dielectric layer on a substrate, and masking and patterning the gate dielectric layer. Once the gate dielectric layer has been patterned, a second dielectric layer, having a different depth than the gate dielectric layer, is deposited into the pattern. Once the dielectric layers have been placed into a step form, DDDs are formed by implanting ions through the two dielectric layers, whose different filtering properties form the DDDS. In another embodiment the implantations through the two dielectric layers are performed using different energies to form the different dose regions. In yet another embodiment the implantations are performed using different species (light and heavy), instead of different energies, to form the different dose regions.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: Hung-Lin Chen, Shao-Yen Ku
  • Publication number: 20080099852
    Abstract: An integrated semiconductor device includes at least one transistor. A first and a second source/drain diffusion region are arranged in a doped well. A contact structure is arranged on or above the substrate surface and abuts the lateral sidewall of a gate electrode isolation and electrically contacts the first source/drain diffusion region. The first source/drain diffusion region includes a highly doped main dopant region and a further dopant region, both formed of dopants of the same dopant type and spatially overlapping one another. The further dopant region extends deeper into the substrate below the substrate surface than the main dopant region.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventor: Juergen Faul
  • Patent number: 7329583
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: February 12, 2008
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7294551
    Abstract: A semiconductor device has a gate electrode formed on a P type semiconductor substrate via gate oxide films. A first low concentration (LN type) drain region is made adjacent to one end of the gate electrode. A second low concentration (SLN type) drain region is formed in the first low concentration drain region so that the second low concentration drain region is very close to the outer boundary of the second low concentration drain region and has at least a higher impurity concentration than the first low concentration drain region. A high concentration (N+ type) source region is formed adjacent to the other end of said gate electrode, and a high concentration (N+ type) drain region is formed in the second low concentration drain region having the designated space from one end of the gate electrode.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: November 13, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shuichi Kikuchi, Eiji Nishibe
  • Patent number: 7276431
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 2, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7220646
    Abstract: A semiconductor integrated circuit including an LDMOS device structure comprises a semiconductor layer with a pair of spaced-apart field effect gate structures over an upper surface of the semiconductor layer. First and second spaced-apart source regions of a first conductivity type are formed in a portion of the layer between the pair of gate structures with a first region of a second conductivity type formed there between. A lightly doped body region of a second conductivity type is formed in the semiconductor layer, extending from below the source regions to below the gate structures and extending a variable depth into the semiconductor layer. This body region is characterized by an inflection in depth in that portion of the body region extending below the first region.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: May 22, 2007
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Patent number: 7211482
    Abstract: A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: May 1, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Kim, Jin-Jun Park
  • Patent number: 7208385
    Abstract: A structure for making a LDMOS transistor (100) includes an interdigitated source finger (26) and a drain finger (21) on a substrate (15). Termination regions (35, 37) are formed at the tips of the source finger and drain finger. A drain (45) of a second conductivity type is formed in the substrate of a first conductivity type. A field reduction region (7) of a second conductivity type is formed in the drain and is wrapped around the termination regions for controlling the depletion at the tip and providing higher voltage breakdown of the transistor.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: April 24, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Zia Hossain, Mohamed Imam, Joe Fulton
  • Patent number: 7202134
    Abstract: A gate electrode is formed over but insulated from a semiconductor body region for each of first and second transistors. A DDD implant is carried out to from DDD source and DDD drain regions in the body region for the first transistor. After the DDD implant, off-set spacers are formed along side-walls of the gate electrode of each of the first and second transistors. After forming the off-set spacers, a LDD implant is carried out to from LDD source and drain regions in the body region for the second transistor. After the LDD implant, main spacers are formed adjacent the off-set spacers of at least the second transistor. After forming the main spacers, a source/drain implant is carried out to form a highly doped region within each of the DDD drain and source regions and the LDD drain and source regions.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: April 10, 2007
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Peter Rabkin, Hsingya Arthur Wang, Kai-Cheng Chou
  • Patent number: 7189623
    Abstract: A method of forming a transistor gate includes forming a gate oxide layer over a semiconductive substrate. Chlorine is provided within the gate oxide layer. A gate is formed proximate the gate oxide layer. In another method, a gate and a gate oxide layer are formed in overlapping relation, with the gate having opposing edges and a center therebetween. At least one of chlorine or fluorine is concentrated in the gate oxide layer within the overlap more proximate at least one of the gate edges than the center. Preferably, the central region is substantially undoped with fluorine and chlorine. The chlorine and/or fluorine can be provided by forming sidewall spacers proximate the opposing lateral edges of the gate, with the sidewall spacers comprising at least one of chlorine or fluorine. The spacers are annealed at a temperature and for a time effective to diffuse the fluorine or chlorine into the gate oxide layer to beneath the gate.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Akram Ditali
  • Patent number: 7176091
    Abstract: Drain-extended MOS transistors (T1, T2) and semiconductor devices (102) are described, as well as fabrication methods (202) therefor, in which a p-buried layer (130) is formed prior to formation of epitaxial silicon (106) over a substrate (104), and a drain-extended MOS transistor (T1, T2) is formed in the epitaxial silicon layer (106). The p-buried layer (130) may be formed above an n-buried layer (120) in the substrate (104) for high-side driver transistor (T2) applications, wherein the p-buried layer (130) extends between the drain-extended MOS transistor (T2) and the n-buried layer (120) to inhibit off-state breakdown between the source (154) and drain (156).
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: February 13, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Patent number: 7172933
    Abstract: A method of forming a channel region for a MOSFET device in a strained silicon layer via employment of adjacent and surrounding silicon-germanium shapes, has been developed. The method features simultaneous formation of recesses in a top portion of a conductive gate structure and in portions of the semiconductor substrate not occupied by the gate structure or by dummy spacers located on the sides of the conductive gate structure. The selectively defined recesses will be used to subsequently accommodate silicon-germanium shapes, with the silicon-germanium shapes located in the recesses in the semiconductor substrate inducing the desired strained channel region. The recessing of the conductive gate structure and of semiconductor substrate portions reduces the risk of silicon-germanium bridging across the surface of sidewall spacers during epitaxial growth of the alloy layer, thus reducing the risk of gate to substrate leakage or shorts.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: February 6, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chun Huang, Bow-Wen Chan, Baw-Ching Perng, Lawrence Sheu, Hun-Jan Tao, Chih-Hsin Ko, Chun-Chieh Lin
  • Patent number: 7084039
    Abstract: A method of fabricating a CMOS (complementary metal oxide semiconductor) transistor includes manufacturing steps, by which adverse transistor characteristics can be prevented from being degraded by high-temperature annealing for hardening a screen oxide layer. The method includes steps of forming a gate on a semiconductor substrate with a gate oxide layer therebetween, forming a screen oxide layer on the substrate and the gate, forming a nitride layer on the screen oxide layer, forming LDD regions in the substrate substantially aligned with the gate, removing the nitride layer, forming a spacer on the screen oxide layer and on at least a portion of a sidewall of the gate, and forming in the substrate source/drain regions extending from the LDD regions respectively in the substrate substantially aligned with the spacer.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: August 1, 2006
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Hyun Soo Shin
  • Patent number: 7074658
    Abstract: A structure for an LDMOS transistor has a horseshoe-shaped gate layer formed on a N-type layer of a semiconductor silicon substrate, in which the gate layer comprises a transverse-extending area, a first lengthwise-extending area connected to a left end of the transverse-extending area and a second lengthwise-extending area connected to a right end of the transverse-extending area. A first P-type body is formed in the N-type layer, and overlaps the left periphery of the first lengthwise-extending area of the gate layer. A second P-type body is formed in the N-type layer, and overlaps the right periphery of the second lengthwise-extending area of the gate layer.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: July 11, 2006
    Assignee: Vanguard International Semiconductor Corporatio
    Inventors: Jia-Wei Yang, Da-Pong Chang, Chih-Cherng Liao
  • Patent number: 7060580
    Abstract: Provided are a field effect transistor and a method of fabricating the same, wherein the field effect transistor is formed which has a hyperfine channel length by employing a technique for forming a sidewall spacer and adjusting the deposition thickness of a thin film. In the field effect transistor of the present invention, a source junction and a drain junction are thin, and the overlap between the source and the gate and between the drain and the gate is prevented, thereby lowering parasitic resistance. Further, the gate electric field is easily introduced to the drain extending region, so that the carrier concentration is effectively controlled in the channel at the drain. Also, the drain extending region is formed to be thinner than the source, so that the short channel characteristic is excellent.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: June 13, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Won-ju Cho, Chang-geun Ahn, Ki-ju Im, Jong-heon Yang, In-bok Baek, Seong-jae Lee
  • Patent number: 7060581
    Abstract: A method for manufacturing a semiconductor device, includes forming a first impurity implanted layer in a semiconductor substrate by selectively implanting ions of a first impurity. A dummy pattern is formed on a surface of the semiconductor substrate above the first impurity implanted layer. A second impurity implanted layer is formed in the semiconductor substrate by implanting ions of a second impurity. An interlevel insulating film is buried on the surface of the semiconductor substrate so as to planarize at the level of the dummy pattern. Ions of the first and second impurities are activated by irradiating the semiconductor substrate with a pulsed light at a pulse width of 0.1 ms to 100 ms. An opening is formed by selectively removing the dummy pattern. A gate insulating film and a gate electrode are formed on the exposed surface of the semiconductor substrate.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: June 13, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Ito, Kyoichi Suguro
  • Patent number: 7041583
    Abstract: A method for improving the etch behavior of disposable features in the fabrication of a semiconductor device is disclosed. The semiconductor device comprises a bottom anti-reflective coating layer and/or a disposable sidewall spacer which are to be removed in a subsequent etch removal process. The bottom anti-reflective coating layer and/or the disposable sidewall spacer are irradiated by heavy inert ions to alter the structure of the irradiated features and to increase concurrently the etch rate of the employed materials, for example, silicon nitride or silicon reacted nitride.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: May 9, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Rolf Stephan
  • Patent number: 7030464
    Abstract: A technology of restraining junction leakage in a semiconductor device is to be provided. There is provided a semiconductor device provided with a semiconductor substrate, a gate electrode 9 formed on the semiconductor substrate, and a source/drain region formed beside the gate electrode, wherein the source/drain region 4 comprises a first impurity diffusion region including a first P-type impurity and located in the proximity of a surface of the semiconductor substrate, and a second P-type impurity diffusion region located below the first impurity diffusion region and including a second P-type impurity having a smaller diffusion coefficient in the semiconductor substrate than the first P-type impurity.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: April 18, 2006
    Assignee: NEC Electronics Corporation
    Inventors: Yuri Masuoka, Naohiko Kimizuka
  • Patent number: 7022577
    Abstract: The present invention relates to a method of fabricating a semiconductor device. In specific embodiments, the method comprises providing a semiconductor substrate, and ion implanting dopant impurities over a time period into the semiconductor device by varying an ion energy of implanting the dopant impurities over the time period. The dopant impurities are activation annealed to form one or more doped regions extending below the surface of the semiconductor substrate. The ion energy may be varied continuously or in a stepwise manner over the time period, and may also be varied in a cyclical manner.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: April 4, 2006
    Assignee: Silterra Malaysia Sdn. Bhd.
    Inventor: Narayanan Meyyappan
  • Patent number: 7022565
    Abstract: A method of fabricating a trench capacitor of a mixed mode integrated circuit includes forming shallow trench isolation regions for isolating active/passive devices on a semiconductor substrate. The lower electrode layer of the polysilicon layer, the dielectric layer, and the upper electrode layer are formed in sequence in a plurality of shallow trench isolation regions to form a trench capacitor. The present invention uses a trench capacitor to substitute for the 3-dimensional structure capacitor to overcome the disadvantages of the conventional capacitor, resulting in increasing the surface area of electrode and the capacitance.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: April 4, 2006
    Assignee: Grace Semiconductor Manufacturing Corporation
    Inventor: Jung-Cheng Kao
  • Patent number: 7001818
    Abstract: By suppressing a short-channel effect of a MIS field-effect transistor and reducing a fringing capacitance of a gate, a signal delay in the transistor can be shortened. The MIS field-effect transistor is formed d by forming a side-wall spacer from a dielectric having a large dielectric constant and then forming an impurity diffusion layer area with the side-wall spacer used as an introduction end in an ion implantation process to introduce impurities. In this case, the side wall of the side-wall spacer having the large dielectric constant has an optimum film thickness in the range from 5 nm to 15 nm, which is required for achieving a large driving current. On the other hand, a side-wall spacer on an outer side is made of a silicon-dioxide film, which is a dielectric having a small dielectric constant.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: February 21, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Ryuta Tsuchiya, Masatada Horiuchi
  • Patent number: 6987052
    Abstract: A method of forming a semiconductor structure in a semiconductor wafer includes the steps of forming an epitaxial layer on at least a portion of a semiconductor substrate of a first conductivity type and forming at least one trench through the epitaxial layer to at least partially expose the substrate. The method further includes doping at least one or more sidewalls of the at least one trench with an impurity of a known concentration level. The at least one trench is then substantially filled with a filler material. In this manner, a low-resistance electrical path is formed between an upper surface of the epitaxial layer and the substrate.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: January 17, 2006
    Assignee: Agere Systems Inc.
    Inventors: Frank A. Baiocchi, John Charles Desko, Bailey R. Jones, Sean Lian
  • Patent number: 6974730
    Abstract: A method for forming a field effect transistor device employs a self-aligned etching of a semiconductor substrate to form a recessed channel region in conjunction with a pair of raised source/drain regions. The method also provides for forming and thermally annealing the pair of source/drain regions prior to forming a pair of lightly doped extension regions within the field effect transistor device. In accord with the foregoing features, the field effect transistor device is fabricated with enhanced performance.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: December 13, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Carlos H. Diaz, Yi-Ming Sheu, Syun-Ming Jang, Hun-Jan Tao, Fu-Liang Yang
  • Patent number: 6936848
    Abstract: A dual gate layout of a thin film transistor of liquid crystal display to alleviate dark current leakage is disclosed. The layout comprises (1) a polysilicon on a substrate having a L-shaped or a snake shaped from top-view, which has a heavily doped source region, a first lightly doped region, a first gate channel, a second lightly doped region, a second gate channel, a third lightly doped region and a heavily doped drain region formed in order therein; (2) a gate oxide layer formed on the polysilicon layer and the substrate, (3) a gate metal layer then formed on the gate oxide layer having a scanning line and an extension portion with a L-shaped or an I-shaped. The gate metal intersects with the polysilicon layer thereto define the forgoing gate channels. Among of gate channels, at least one is along the signal line, which is connected to the source region through a source contact.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: August 30, 2005
    Assignee: AU Optronics Corp.
    Inventors: Wein-Town Sun, Chun-Sheng Li, Jian-Shen Yu
  • Patent number: 6913980
    Abstract: A method of forming an associated transistor is presented whereby short channel effects and junction capacitances are mitigated and enhanced switching speeds are thereby facilitated. Compensation regions are formed within a substrate by implanting dopants relatively deeply over source and drain regions formed within the substrate. The compensation regions are spaced apart slightly less than are the source and drain regions. This spacing affects potential contours and reduces junction capacitances within the transistor. The different distances between the source and drain regions and the compensation regions are achieved by forming and selectively adjusting sidewall spacers adjacent to a gate structure of the transistor. These spacers serve as guides for the dopants implanted into the substrate to form the source and drain regions and the compensation regions.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: July 5, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Zhiqiang Wu, Jihong Chen, Kaiping Liu
  • Patent number: 6884688
    Abstract: A MOS transistor includes a drain zone, a source zone, and a gate electrode. Doping atoms of the first conductivity type are implanted in the region of the drain zone and the source zone by at least two further implantation steps such that a pn junction between the drain zone and a substrate region is vertically shifted and a voltage ratio of the MOS transistor between a lateral breakdown voltage and a vertical breakdown voltage can be set.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: April 26, 2005
    Assignee: Infineon Technologies AG
    Inventors: Kai Esmark, Harald Gossner, Gunther Mackh, Richard Owen, Franz Zängl
  • Patent number: 6867106
    Abstract: The semiconductor device comprises: a conducting layer including: a channel region; a source region and a drain region sandwiching the channel region; and a body region connected to the channel region and being adjacent to the source region and the drain region; a gate electrode formed above the channel region interposing a gate insulation film therebetween; a dummy electrode formed on the body region near the interface between at least the drain region and the body region, and electrically insulated with the gate electrode; and a body contact region formed in the body region except a region where the dummy electrode is formed. The gate electrode and the dummy electrode are electrically insulated with each other, whereby the semiconductor device having body contacts can have a gate capacitance much decreased. Accordingly, deterioration of the speed performance of the transistors can be suppressed.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: March 15, 2005
    Assignee: Fujitsu Limited
    Inventors: Seiichiro Yamaguchi, Mitsuaki Kai, Isao Amano
  • Patent number: 6858507
    Abstract: A process for grading the junctions of a lightly doped drain (LDD) N-channel MOSFET by performing a low dosage phosphorous implant after low and high dosage arsenic implants have been performed during the creation of the N-LDD regions and N+ source and drain electrodes. The phosphorous implant is driven to diffuse across both the electrode/LDD junctions and the LDD/channel junctions.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Aftab Ahmad, Charles Dennison
  • Patent number: 6849516
    Abstract: According to one illustrative embodiment of the present invention, a method of forming a field effect transistor includes the formation of a doped high-k dielectric layer above a substrate including a gate electrode formed over an active region and separated therefrom by a gate insulation layer. A heat treatment is carried out with the substrate to diffuse dopants from the high-k dielectric layer into the active region to form extension regions. The high-k dielectric layer is patterned to form sidewall spacers at sidewalls of the gate electrode and an implantation process is carried out with the sidewall spacers as implantation mask to form source and drain regions.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: February 1, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Feudel, Manfred Horstmann, Karsten Wieczorek, Stephan Kruegel
  • Patent number: RE40138
    Abstract: A process for fabricating input/output, N channel, (I/O NMOS) devices, featuring an ion implanted nitrogen region, used to reduce hot carrier electron, (HEC), injection, has been developed. The process features implanting a nitorgen region, at the interface of an overlying silicon oxide layer, and an underlying lightly doped source/drain, (LDD), region. The implantation procedure can either be performed prior to, or after, the deposition of a silicon oxide liner layer, in both cases resulting in a desired nitrogen pile-up at the oxide-LDD interface, as well as resulting, in a more graded LDD profile. An increase in the time to fail, in regards to HCE injection, for these I/O NMOS devices, is realized, when compared to counterparts fabricated without the nitrogen implantation procedure.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: March 4, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mu-Chi Chiang, Hsien-Chin Lin, Jiaw-Ren Shih