Refilling Multiple Grooves Of Different Widths Or Depths Patents (Class 438/427)
  • Patent number: 7427553
    Abstract: A fabricating method of a semiconductor device is provided. The method comprises the steps of preparing a semiconductor substrate having an active area with a high voltage device area and a low voltage device area and an inactive area, forming a trench in the inactive area of the semiconductor substrate, forming a sacrifice oxide layer on an inner surface of the trench, forming a liner oxide layer on the sacrifice oxide layer, forming a gap-fill oxide layer as a device isolation layer on the liner oxide layer to fill up the trench, forming a buffer oxide layer on top surfaces of the liner and sacrifice oxide layers of the device isolation layer, and forming a gate oxide layer on the high voltage device area of the semiconductor substrate to have a uniform thickness.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: September 23, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Chang Nam Kim
  • Publication number: 20080213971
    Abstract: A semiconductor device having a memory cell area and a peripheral circuit area includes a silicon substrate and an isolation structure implemented by a silicon oxide film formed on a surface of the silicon substrate. A depth of the isolation structure in the memory cell area is smaller than a depth of the isolation structure in the peripheral circuit area, and an isolation height of the isolation structure in the memory cell area is substantially the same as an isolation height of the isolation structure in the peripheral circuit area. Reliability of the semiconductor device can thus be improved.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 4, 2008
    Applicant: RENESAS TECHNOLOGY CORP
    Inventors: Noriyuki Mitsuhira, Takehiko Nakahara, Yasusuke Suzuki, Jun Sumino
  • Patent number: 7419878
    Abstract: Power MOSFETs and fabrication processes for power MOSFETs use a continuous conductive gate structure within trenches to avoid problems arising from device topology caused when a gate bus extends above a substrate surface. The gate bus trench and/or gate structures in the device trenches can contain a metal/silicide to reduce resistance, where polysilicon layers surround the metal/silicide to prevent metal atoms from penetrating the gate oxide in the device trenches. CMP process can remove excess polysilicon and metal and planarize the conductive gate structure and/or overlying insulating layers. The processes are compatible with processes forming self-aligned or conventional contacts in the active device region.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: September 2, 2008
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7420259
    Abstract: A first insulation film, a first conductor film, and a cap are sequentially formed on a semiconductor substrate. The first insulation film, the first conductor film, and the cap, and the substrate are etched in the same pattern. A second insulation film is placed in that etched pattern. The cap is removed. A second conductor film is formed on the side face of the second insulation film.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: September 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Mori, Mitsuhiro Noguchi
  • Publication number: 20080206956
    Abstract: A method for fabricating a semiconductor device, includes forming a silicon nitride film on a base body, forming a silicon film on said silicon nitride film, forming at least one groove extending from said silicon film to inside of said base body, forming by high-density plasma-enhanced chemical vapor deposition a silicon-containing dielectric film in said groove and on said silicon film in such a way that a silicon-rich layer is formed at a height position spaced apart from said base body within said groove, said silicon-rich layer being higher in silicon content than remaining silicon-containing dielectric film, removing by etching a portion of said silicon-containing dielectric film above said silicon film and a portion of said remaining silicon-containing dielectric film above said silicon-rich layer, if any, and after having removed said silicon-containing dielectric film, removing by etching said silicon-rich layer and said silicon film.
    Type: Application
    Filed: November 30, 2007
    Publication date: August 28, 2008
    Inventor: Taketo MATSUDA
  • Patent number: 7416956
    Abstract: Self-aligned trench filling is used to isolate devices in high-density integrated circuits. A deep, narrow trench isolation region is formed in a substrate between devices. The trench region includes two trench portions. A first trench portion, located above a second trench portion, is filled with a deposited dielectric. The second trench portion is filled with a grown dielectric. Filling the lower trench portion by growing a dielectric material provides for an even distribution of dielectric material within the lower portion. Filling the upper trench portion by depositing a dielectric material provides for an even distribution of material in the upper portion while also protecting against encroachment of the dielectric into device channel regions, for example. Devices can be fabricated by etching the substrate to form the trench region after or as part of etching one or more layers formed above the substrate for the device.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: August 26, 2008
    Assignee: SanDisk Corporation
    Inventor: Jack H. Yuan
  • Publication number: 20080182381
    Abstract: A first trench and a second trench having width wider than the first trench are simultaneously formed in a main surface area of a semiconductor substrate. The width of an opening portion of the first trench is made narrower by forming a first insulating film on the main surface of the semiconductor substrate and in the first and second trenches. A second insulating film is formed on the first insulating film by use of a high-density plasma-CVD method to form a void in the first trench while covering the opening portion of the first trench, and the second trench is filled with the second insulating film. Then, part of the second insulating film which covers the opening portion is removed by anisotropic etching and the void is filled with an insulating film having fluidity at the film formation time.
    Type: Application
    Filed: October 18, 2007
    Publication date: July 31, 2008
    Inventor: Masahiro KIYOTOSHI
  • Publication number: 20080176378
    Abstract: Multiple trench depths within an integrated circuit device are formed by first forming trenches in a substrate to a first depth, but of varying widths. Formation of a dielectric layer can cause some of the trenches to fill or close off while leaving other, wider trenches open. Removal of a portion of the dielectric material can then be tailored to expose a bottom of the open trenches while leaving remaining trenches filled. Removal of exposed portions of the underlying substrate can then be used to selectively deepen the open trenches, which can subsequently be filled. Such methods can be used to form trenches of varying depths without the need for subsequent masking.
    Type: Application
    Filed: March 28, 2008
    Publication date: July 24, 2008
    Inventors: Shubneesh Batra, Howard C. Kirsch, Gurtej S. Sandhu, Xianfeng Zhou, Chih-Chen Cho
  • Publication number: 20080166854
    Abstract: Trench isolation methods include forming a first trench and a second trench in a semiconductor substrate. The second trench has a larger width than the first trench. A tower isolation layer is formed on the semiconductor substrate using a first high density plasma deposition process. The lower isolation layer has a first thickness on an upper sidewall of the first trench and a second thickness on an upper sidewall of the second trench. The second thickness is greater than the first thickness. An upper isolation layer is formed on the semiconductor substrate including the lower isolation layer using a second high density plasma deposition process, different from the first high density plasma deposition process. The second high density plasma deposition process includes an H2 treatment process.
    Type: Application
    Filed: March 20, 2008
    Publication date: July 10, 2008
    Inventors: Dong-Suk Shin, Tae-Gyun Kim
  • Publication number: 20080166855
    Abstract: A method of manufacturing a semiconductor device having an active region and a termination region includes providing a semiconductor substrate having first and second main surfaces opposite to each other. The semiconductor substrate has an active region and a termination region surrounding the active region. The first main surface is oxidized. A first plurality of trenches and a first plurality of mesas are formed in the termination region. The first plurality of trenches in the termination region are filled with a dielectric material. A second plurality of trenches in the termination region. The second plurality of trenches are with the dielectric material.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 10, 2008
    Applicant: THIRD DIMENSION (3D) SEMICONDUCTOR, INC.
    Inventors: Fwu-Iuan Hshieh, Brian D. Pratt
  • Patent number: 7396738
    Abstract: A method of forming a semiconductor memory device includes providing a semiconductor substrate having a cell region and a peripheral region. A gate dielectric layer is formed over the semiconductor substrate in the peripheral region. An insulating layer is formed over the gate dielectric layer. An isolation trench is formed in the peripheral region, the isolation trench defining first and second trenches having different opening widths. A first gap-fill layer is provided over the isolation trench and on the step. The first gap-fill layer has a first portion on a sidewall of the insulating layer, a second portion on a sidewall of the gate dielectric layer, and a third portion at least partly filling the second trench of the isolation trench, the second portion being thicker than the first portion. A wet etch is performed to remove at least part of the first gap-fill layer. A second gap-fill layer is provided over the first gap-fill layer in the isolation trench to form an isolation structure.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 8, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Jung Lee
  • Patent number: 7396728
    Abstract: A method forms a semiconductor device comprising isolation structures that selectively induce strain into active regions of NMOS and PMOS devices. Form a hard mask layer over a semiconductor body. A resist layer is formed on the hard mask layer that exposes and defines isolation regions. The hard mask layer is patterned and trench regions are formed using the hard mask layer as a mask. An oxide trench liner that induces compressive strain into active regions of the PMOS region is formed within trench regions of the PMOS region. A nitride trench liner that induces tensile strain into active regions of the NMOS region is formed within the NMOS trench regions.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: July 8, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Ajith Varghese, Narendra Singh Mehta, Jonathan McAulay Holt
  • Patent number: 7393789
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: July 1, 2008
    Assignee: MICRON Technology, Inc.
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar M. Subramanian
  • Publication number: 20080145998
    Abstract: A method of fabricating an interconnect structure comprising etching a via into an upper low K dielectric layer and into a hardened portion of a lower low K dielectric layer. The via is defined by a pattern formed in a photoresist layer. The photoresist layer is then stripped, and a trench that circumscribes the via as defined by a hard mask is etched into the upper low K dielectric layer and, simultaneously, the via that was etched into the hardened portion of the lower low K dielectric layer is further etched into the lower low K dielectric layer. The result is a low K dielectric dual damascene structure.
    Type: Application
    Filed: September 13, 2006
    Publication date: June 19, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: GERARDO A. DELGADINO, Yan Ye, Neungho Shin, Yunsang Kim, Li-Qun Xia, Tzu-Fang Huang, Lihua Li Huang, Joey Chiu, Xiaoye Zhao, Fang Tian, Wen Zhu, Ellie Yieh
  • Patent number: 7387940
    Abstract: The invention includes methods of forming trench isolation in the fabrication of integrated circuitry, methods of fabricating integrated circuitry including memory circuitry, and integrated circuitry such as memory integrated circuitry.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 17, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Robert D. Patraw, M. Ceredig Roberts, Keith R. Cook
  • Publication number: 20080113485
    Abstract: A method of evaluating the uniformity of the thickness of the polysilicon gate layer is provided. A substrate having a dense trenches area and a sparse trenches area is provided. A plurality of first trench isolation structures are formed in the sparse trenches area of the substrate and a plurality of second trench isolation structures are simultaneously formed in the dense trenches area of the substrate. A mask layer is formed between the gaps of the first and the second trench isolation structures. A portion of the first trench isolation structures of the sparse trenches area is then removed. Then, the mask layer is removed until the surface of the substrate is exposed. A polysilicon gate layer is formed over the substrate. Finally, a planarization process is performed to remove a portion of the polysilicon gate layer.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventors: Ta-Jen Wang, Yuan-Chen Tsai, Shih-Jan Tung
  • Patent number: 7371655
    Abstract: A low-power CMOS device can be fabricated by forming a shallow trench on a silicon substrate using a gate mask and negative photoresist. This enables an extremely low profile for a junction after completion of lightly doped drain and source/drain implantations. The method includes forming a shallow trench in a silicon substrate.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: May 13, 2008
    Assignee: Dongbu Electronics Co., Ltd
    Inventor: Eun Jong Shin
  • Patent number: 7371645
    Abstract: Fabrication of recessed channel array transistors (RCAT) with a corner gate device includes forming pockets between a semiconductor fin that includes a gate groove and neighboring shallow trench isolations that extend along longs sides of the semiconductor fin. A protection liner covers the semiconductor fin and the trench isolations in a bottom portion of the gate groove and the pockets. An insulator collar is formed in the exposed upper sections of the gate groove and the pockets, wherein a lower edge of the insulator collar corresponds to a lower edge of source/drain regions formed within the semiconductor fin. The protection liner is removed. The bottom portion of the gate groove and the pockets are covered with a gate dielectric and a buried gate conductor layer. The protection liner avoids residuals of polycrystalline silicon between the active area in the semiconductor fin and the insulator collar.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Klaus Muemmler, Peter Baars, Stefan Tegen
  • Patent number: 7368365
    Abstract: A method of forming a buried digit line is disclosed. Sacrificial spacers are formed along the sidewalls of an isolation trench, which is then filled with a sacrificial material. One spacer is masked while the other spacer is removed and an etch step into the substrate beneath the removed spacer forms an isolation window. Insulating liners are then formed along the sidewalls of the emptied trench, including into the isolation window. A digit line recess is then formed through the bottom of the trench between the insulating liners, which double as masks to self-align this etch. The digit line recess is then filled with metal and recessed back, with an optional prior insulating element deposited and recessed back in the bottom of the recess.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: May 6, 2008
    Inventor: David H. Wells
  • Patent number: 7368800
    Abstract: The invention includes methods of forming trench isolation in the fabrication of integrated circuitry, methods of fabricating integrated circuitry including memory circuitry, and integrated circuitry such as memory integrated circuitry.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: May 6, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 7364980
    Abstract: Closure at the opening of a trench with an epitaxial film is restrained, and thereby, filling morphology in the trenches is improved. A method for manufacturing a semiconductor substrate includes a step for growing an epitaxial layer 11 on the surface of a silicon substrate 13, a step of forming a trench 14 in this epitaxial layer, and a step of filling the inside of the trench 14 with the epitaxial film 12, wherein mixed gas made by mixing halogenoid gas into silicon source gas is circulated as material gas in filling the inside of the trench with the epitaxial film, and when the standard flow rate of the halogenoid gas is defined as Xslm and the film formation speed of the epitaxial film formed by the circulation of the silicon source gas is defined as Y?m/min, in the case when the aspect ratio of the trench is less than 10, an expression Y<0.2X+0.10 is satisfied, and in the case that the aspect ratio of the trench is between 10 and less than 20, an expression Y<0.2X+0.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: April 29, 2008
    Assignees: Sumco Corporation, Denso Corporation
    Inventors: Syouji Nogami, Tomonori Yamaoka, Shoichi Yamauchi, Hitoshi Yamaguchi, Takumi Shibata
  • Patent number: 7364981
    Abstract: The invention includes methods of forming trench isolation in the fabrication of integrated circuitry, methods of fabricating integrated circuitry including memory circuitry, and integrated circuitry such as memory integrated circuitry.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: April 29, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 7358588
    Abstract: A trench isolation type semiconductor device in which a recess is prevented from being formed in a field region and a method of fabricating the same are provided. The trench isolation type semiconductor device includes a semiconductor substrate defined by an active region and a field region, a trench formed in the field region, an oxide layer conformally formed along the inside of the trench, a liner layer conformally formed along the oxide layer, a field insulating layer formed inside the trench including the oxide layer and the liner layer, and a field protection layer formed on the field insulating layer so that a step difference does not occur on the semiconductor substrate.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: April 15, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-seog Youn, Jong-hyon Ahn, Deok-hyung Lee, Sung-gun Kang, Kong-soo Cheong
  • Patent number: 7354828
    Abstract: A semiconductor device includes a trench formed in a predetermined portion of a substrate and a first recess region beneath the trench. A field oxide layer is buried into both the trench and the first recess region. An active region is defined by the field oxide layer, having a first active region and a second active region. The latter has a second recess region formed in a lower portion of the active region than the former. A step gate pattern is formed on a border region between the first active region and the second active region. The gate pattern has a step structure whose one side extends to a surface of the first active region and the other side extends to a surface of the second active region. Other embodiments are also described.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: April 8, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Hee Cho
  • Patent number: 7354786
    Abstract: A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: April 8, 2008
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Stefan Finkbeiner, Matthias Illing, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20080079085
    Abstract: By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
    Type: Application
    Filed: April 12, 2007
    Publication date: April 3, 2008
    Inventors: Christoph Schwan, Joe Bloomquist, Peter Javorka, Manfred Horstmann, Sven Beyer, Markus Forsberg, Frank Wirbeleit, Karla Romero
  • Patent number: 7332419
    Abstract: An integrated circuit transistor is fabricated with a trench gate having nonconductive sidewalls. The transistor is surrounded by an isolation trench filled with a nonconductive material. The sidewalls of the gate trench are formed of the nonconductive material and are substantially free of unetched substrate material. As a result, the sidewalls of the gate trench do not form an undesired conductive path between the source and the drain of the transistor, thereby advantageously reducing the amount of parasitic current that flows between the source and drain during operation.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: February 19, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Michael Smith, Mark Helm, Kirk Prall
  • Patent number: 7326627
    Abstract: The present fabrication method includes the steps of: providing a nitride film in a main surface of a semiconductor substrate; providing an upper trench, with the nitride film used as a mask; filling the upper trench with an oxide film introduced therein; removing the oxide film to expose at least a portion of a bottom of the upper trench and allowing a remainder of the oxide film to serve as a sidewall; providing a lower trench in a bottom of the upper trench, with the sidewall used as a mask; and with the upper trench having the sidewall remaining therein, providing an oxide film in the upper trench and the lower trench. This can provide a semiconductor device fabrication method and a semiconductor device preventing a contact from penetrating the device in an interconnection process.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: February 5, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Jun Sumino, Satoshi Shimizu, Tsuyoshi Sugihara
  • Publication number: 20080026542
    Abstract: A method of manufacturing a semiconductor device is provided. According to an embodiment, a first opening is formed on a semiconductor substrate, and a sacrificial layer is formed to fill the first opening. Then, a second opening is formed on a region of the semiconductor substrate having the first opening. The second opening is formed to have a greater width and shallower depth than the first opening. Next, the sacrificial layer is removed, and the first and second openings are filled with insulating material to form a device isolation layer.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 31, 2008
    Inventor: Shim Cheon Man
  • Patent number: 7323394
    Abstract: A method of producing an element separation structure includes the steps of: forming a first thermal oxide film on the substrate; forming a silicon nitride film on the first thermal oxide film; removing the first thermal oxide film and the silicon nitride film in an element separation structure forming region; forming a groove portion in the element separation structure forming region; forming a groove portion oxide film in the groove portion; forming a pre-filling oxide film for filling the groove portion; removing the pre-filling oxide film; forming a resist layer on the silicon nitride film and the pre-filling oxide film; forming a resist mask on the element separation structure forming region; removing the silicon nitride film and the first thermal oxide film; forming a second thermal oxide film on the substrate; and removing the second thermal oxide film and leveling the pre-filling oxide film to form a filling portion.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: January 29, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Taikan Iinuma
  • Patent number: 7323379
    Abstract: An embedded memory system includes an array of dynamic random access memory (DRAM) cells, which are isolated with deep trench isolation, and logic transistors, which are isolated with shallow trench isolation. Each DRAM cell includes an access transistor and a capacitor structure. The capacitor structure is fabricated by forming a metal-dielectric-semiconductor (MOS) capacitor in a deep trench isolation region. A cavity is formed in the deep trench isolation, thereby exposing a sidewall region of the substrate. The sidewall region is doped, thereby forming one electrode of the cell capacitor. A gate dielectric layer is formed over the exposed sidewall, and a polysilicon layer is deposited over the resulting structure, thereby filling the cavity. The polysilicon layer is patterned to form the gate electrode of the access transistor and a capacitor electrode, which extends over the sidewall region and upper surface of the substrate.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: January 29, 2008
    Assignee: MoSys, Inc.
    Inventors: Dennis Sinitsky, Fu-Chieh Hsu
  • Publication number: 20080003774
    Abstract: A method for manufacturing a semiconductor device includes forming a device isolation film by a double Shallow Trench Isolation (STI) process, forming a first active region having a negative slope and a second active region having a positive slope. Additionally, the method includes applying a recess region and a bulb-type recess region to the above-extended active region so as to prevent generation of horns in the active regions. This structure results in improvement in effective channel length and area.
    Type: Application
    Filed: December 29, 2006
    Publication date: January 3, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventor: Seung Joo Baek
  • Publication number: 20070298584
    Abstract: According to a fabrication method for an element isolation structure section, that is, STI, of the present invention, by differing the etching rate of material to be embedded in a narrow-width, that is, a small area trench section (first trench section) formed in a small isolation area, from the etching rate of a material to be embedded in a wide-width (plane shape of larger area) trench section (second trench section) formed in a large isolation area, in the etching step, dishing (recessing) that inevitably occurs in a CMP step can be reduced. Therefore, a STI having a higher level of flatness can be formed. As a result, by simple steps, deterioration of the electrical characteristics of elements that are element-isolated by STI can be reduced. That is to say, not only STI having excellent electrical characteristics, but also a semiconductor device provided with such STI, can be provided at a good level of production yield.
    Type: Application
    Filed: April 20, 2007
    Publication date: December 27, 2007
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventor: Noriyuki Tokuichi
  • Patent number: 7309640
    Abstract: A method is provided for fabricating an integrated circuit. According to the method, hollow isolating trenches are produced within a substrate, and active components are produced in and on active areas of the substrate that are between the trenches. The trenches are produced in an initial phase carried out before production of the active components and a final phase carried out after production of the active components. In the initial phase, trenches are formed in the substrate, and the trenches are filled with a fill material. In the final phase, the active components are encapsulated, accesses are created through the encapsulation material to each filled trench, the fill material is removed through each access, and the opening of each trench is plugged through the corresponding access. Also provided is an integrated that includes hollow isolating trenches within a substrate.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: December 18, 2007
    Assignees: STMicroelectronics SA, Koninklijke Philips Electronics N.V.
    Inventors: Alexandre Martin, Davy Villanueva, Frédéric Salvetti
  • Patent number: 7307002
    Abstract: A method is disclosed for the definition of the poly-1 layer in a semiconductor wafer. A non-critical mask is used to recess field oxides in the periphery prior to poly-1 deposition by an amount equal to the final poly-1 thickness. A complimentary non-critical mask is used to permit CMP of the core to expose the tops of core oxide mesas from the shallow isolation trenches.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: December 11, 2007
    Assignee: Spansion LLC
    Inventors: Unsoon Kim, Hiroyuki Kinoshita, Yu Sun, Krishnashree Achuthan, Christopher H. Raeder, Christopher M. Foster, Harpreet Kaur Sachar, Kashmir Singh Sahota
  • Patent number: 7297609
    Abstract: A method for fabricating a semiconductor device includes the steps of sequentially forming a pad oxide layer and a pad nitride layer on a substrate, the pad oxide layer including a first oxide layer formed on an upper surface of the substrate and a second oxide layer formed on a lower surface of the substrate, and the pad nitride layer including a first nitride layer formed on the upper surface of the substrate and a second nitride layer formed on the lower surface of the substrate; patterning the first nitride layer by removing a portion of the first nitride layer; forming a trench in the substrate corresponding to the removed portion of the first nitride layer, thereby patterning the first oxide layer; filling the trench with an insulating material to form a device isolation layer; forming a passivation layer on the substrate, the passivation layer including a first passivation layer formed on the upper surface of the substrate including the device isolation layer, and a second passivation layer formed on t
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 20, 2007
    Assignee: Donogbu Electronics Co., Ltd.
    Inventor: Jae Hee Kim
  • Publication number: 20070264793
    Abstract: In a method of manufacturing a semiconductor device such as a SONOS type semiconductor device, a trench is formed on a substrate. An isolation layer protruding from the substrate is formed to fill the trench. After a first layer is formed on the substrate, a preliminary second layer pattern is formed on the first layer. The preliminary second layer pattern has an upper face substantially lower than or substantially equal to an upper face of the isolation layer. A third layer is formed on the preliminary second layer and the isolation layer. A fourth layer is formed on the third layer. The fourth layer, the third layer, the preliminary second layer pattern and the first layer are partially etched to form a gate structure on the substrate. Source/drain regions are formed at portions of the substrate adjacent to the gate structure.
    Type: Application
    Filed: May 10, 2007
    Publication date: November 15, 2007
    Inventors: Jung-Min Oh, Jeong-Nam Han, Chang-Ki Hong, Kun-Tack Lee, Dae-Hyuk Kang, Woo-Gwam Shim, Jong-Won Lee
  • Patent number: 7291540
    Abstract: The invention is directed to a hermetically packaged and implantable integrated circuit for electronics that is made my producing streets in silicon-on-insulator chips that are subsequently coated with a selected electrically insulating thin film prior to completing the dicing process to yield an individual chip. A thin-layered circuit may transmit light, allowing a photodetector to respond to transmitted light to stimulate a retina, for example. Discrete electronic components may be placed in the three-dimensional street area of the integrated circuit package, yielding a completely integrated hermetic package that is implantable in living tissue.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: November 6, 2007
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Brian V. Mech, Robert J. Greenberg, Gregory J. DelMain
  • Patent number: 7279376
    Abstract: The present invention provides a technology for forming the trenches having different depths in one semiconductor substrate, which enables easily conducting the photo resist process employed for the etch process and forming trenches at higher depth dimension accuracy. The openings of the first films are formed in the semiconductor substrate to expose surfaces of the semiconductor substrate, the semiconductor substrate is etched through the openings to a depth of the shallower trench and then the cell region is covered with the second photo resist pattern, and the peripheral region is etched through the first films to form the deeper trench. Since the etch process is conducted under the conditions, in which the surfaces of the semiconductor substrate are exposed (opened) within the openings in the first film, trenches having different depths can be formed with higher depth dimension accuracy by suitably controlling the etch conditions.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: October 9, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Kazutaka Otsuki
  • Patent number: 7279393
    Abstract: The present invention provides a trench isolation structure, a method for manufacturing a trench isolation structure, and a method for manufacturing an integrated circuit including the trench isolation structure. In one aspect, the method includes forming a hardmask over a substrate, etching a trench in the substrate through the hardmask, forming a liner in the trench, depositing an interfacial layer over the liner within the trench and over the hardmask and filling the trench with a dielectric material.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: October 9, 2007
    Assignee: Agere Systems Inc.
    Inventors: Arun Nanda, Nace Rossi, Ranbir Singh
  • Patent number: 7268056
    Abstract: The present fabrication method includes the steps of: providing a nitride film in a main surface of a semiconductor substrate; providing an upper trench, with the nitride film used as a mask; filling the upper trench with an oxide film introduced therein; removing the oxide film to expose at least a portion of a bottom of the upper trench and allowing a remainder of the oxide film to serve as a sidewall; providing a lower trench in a bottom of the upper trench, with the sidewall used as a mask; and with the upper trench having the sidewall remaining therein, providing an oxide film in the upper trench and the lower trench. This can provide a semiconductor device fabrication method and a semiconductor device preventing a contact from penetrating the device in an interconnection process.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: September 11, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Jun Sumino, Satoshi Shimizu, Tsuyoshi Sugihara
  • Patent number: 7268057
    Abstract: The invention includes methods in which oxide is formed within openings in a three-step process. A first step is deposition of oxide under a pressure of greater than 15 mTorr. A second step is removal of a portion of the oxide with an etch. A third step is an oxide deposition under a pressure of less than or equal to 10 mTorr. Methodology of the present invention can be utilized for forming trenched isolation regions, such as, for example, shallow trench isolation regions.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: September 11, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Joseph M. Ryan, Damon E. VanGerpen
  • Patent number: 7262110
    Abstract: In general, the present invention discloses at least one trench isolation region formed in a semiconductor substrate to electrically and/or optically isolate at least one active region from another active region. The at least one trench isolation region comprises a bottom portion and first and second trench sidewalls. At least one trench sidewall is adjacent a doped region. The at least one sidewall adjacent a doped region has a higher impurity dopant concentration than impurity doped regions surrounding the at least one trench isolation region.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Joohyun Jin
  • Patent number: 7259074
    Abstract: The present invention provides a trench isolation method in a flash memory device, by which stability and reliability of the device are enhanced in a manner of forming a pad oxide layer thick in the vicinity of an edge of a trench isolation layer.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: August 21, 2007
    Assignee: Dongbu Hitek Co., Ltd.
    Inventors: Sung Mun Jung, Jum Soo Kim
  • Patent number: 7259078
    Abstract: Disclosed herein is a method for forming an isolation film of a semiconductor memory device. According to the disclosure, in a pre-treatment cleaning process performed before a tunnel oxide film is formed, a SC-1 cleaning process is performed at a temperature ranging from 60° C. to 70° C. Therefore, oxide films in a cell region and a peripheral region are recessed even in the SC-1 cleaning process as well as a DHF cleaning process. A DHF cleaning time can be thus reduced. Accordingly, the method can minimize loss of a silicon substrate by DHF and can thus control the depth of a moat.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: August 21, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seung Cheol Lee, Sang Wook Park, Pil Geun Song
  • Patent number: 7256100
    Abstract: A semiconductor substrate including a first region, a second region larger than the first region and an isolation region is provided. A mask layer is selectively formed on the first and second regions. A trench is formed on the isolation region. A first isolation material is deposited on the entire surface so that the trench is filled with the first material and the first material covers the first and second regions. The first material is subjected to a chemical mechanical polish so that the mask layer formed on the first region is exposed while the mask layer formed on the second region is still covered by the first material. Then, a second insulation material is deposited on the exposed mask layer and the first material. Finally, the second material is subjected to the chemical mechanical polish so that mask layer formed on the first and second regions is substantially exposed.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: August 14, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hiromi Ogasawara
  • Publication number: 20070166953
    Abstract: A method of fabricating a transistor of a semiconductor device comprises forming first and second trenches for gates in a substrate; forming a liner layer on innerwalls of the first and second trenches; forming first and second epitaxial gate electrodes by performing an epitaxial growth on the first and second trenches comprising the liner layers therein; forming isolation structures in the substrate, wherein the isolation structures contact the first and second epitaxial gate electrodes, respectively; forming a gate insulation layer and a gate electrode over a region of the substrate between the first and second epitaxial gate electrodes; and forming source and drain regions in the substrate disposed in respective edge regions of the gate electrode and overlapping the gate electrode.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 19, 2007
    Inventor: Hyung Sun Yun
  • Patent number: 7241665
    Abstract: A method for forming an isolation structure on a semiconductor substrate includes opening a portion of a pad oxide layer overlying the substrate using a process gas including an etchant gas and a polymer-forming gas. A portion of the substrate exposed by the opening step is etched to form a trench having a first slope and a second slope. The first slope is greater than 45 degrees, and the second slope is less than 45 degrees. The trench is filled to form the isolation structure.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: July 10, 2007
    Assignee: SilTerra Malaysia Sdn. Bhd.
    Inventors: Inki Kim, Sang Yeon Kim, Min Paek, Ch'ng Toh Ghee, Ramakrishnan Rajagopal, Chiew Sin Ping, Wan Gie Lee, Choong Shiau Chien, Charlie Tay, Chang Gi Lee, Hitomi Watanabe, Naoto Inoue
  • Patent number: 7235459
    Abstract: The invention includes methods of forming trench isolation in the fabrication of integrated circuitry, methods of fabricating integrated circuitry including memory circuitry, and integrated circuitry such as memory integrated circuitry.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 7229895
    Abstract: A method of forming a buried digit line is disclosed. Sacrificial spacers are formed along the sidewalls of an isolation trench, which is then filled with a sacrificial material. One spacer is masked while the other spacer is removed and an etch step into the substrate beneath the removed spacer forms an isolation window. Insulating liners are then formed along the sidewalls of the emptied trench, including into the isolation window. A digit line recess is then formed through the bottom of the trench between the insulating liners, which double as masks to self-align this etch. The digit line recess is then filled with metal and recessed back, with an optional prior insulating element deposited and recessed back in the bottom of the recess.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: June 12, 2007
    Assignee: Micron Technology, Inc
    Inventor: David H. Wells