By Wire Bonding Patents (Class 438/617)
  • Patent number: 8507318
    Abstract: Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: August 13, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong, Choon Kuan Lee, Wang Lai Lee, Roslan Bin Said
  • Patent number: 8481420
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an integrated circuit die having an active side and a passive side; providing a contact pad having a top side oriented in a same direction as the passive side; connecting an inner bond wire to the contact pad and the integrated circuit die; and molding a stacking structure around the contact pad, the inner bond wire, and the integrated circuit die with the passive side and the top side exposed, and the stacking structure having a top structure surface on top and adjacent to or below the integrated circuit die, and a horizontal member under the integrated circuit die and forming a cavity.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 9, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: Jong-Woo Ha, DaeSik Choi, Byoung Wook Jang
  • Patent number: 8476762
    Abstract: A structure and a method of manufacturing a Pb-free Controlled Collapse Chip Connection (C4) with a Ball Limiting Metallurgy (BLM) structure for semiconductor chip packaging that reduce chip-level cracking during the Back End of Line (BEOL) processes of chip-join cool-down. An edge of the BLM structure that is subject to tensile stress during chip-join cool down is protected from undercut of a metal seed layer, caused by wet etch of the chip to remove metal layers from the chip's surface and solder reflow, by an electroplated barrier layer, which covers a corresponding edge of the metal seed layer.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter
  • Patent number: 8450849
    Abstract: An electrical conductor is connected to a first microcircuit element having a first connector site axis and a second microcircuit having a second connector site axis. The first microcircuit and the second microcircuit are separated by and operatively associated with a first electrical insulator layer. The conductor and the first microcircuit element are separated by and operatively associated with a second electrical insulator layer. At least one of the first electrical insulator layer and the second electrical insulator layer comprise a polymeric material. The microcircuit includes a UBM and solder connection to a FBEOL via opening. Sufficiently separating the first connector site axis and the second connector site axis so they are not concentric, decouples the UBM and solder connection to the FBEOL via opening. This eliminates or minimizes electromigration and the white bump problems. A process comprises manufacturing the microcircuit.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Minhua Lu, Eric D. Pefecto, David L. Questad, Sudipta K. Ray
  • Patent number: 8432028
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate having a base substrate top side; mounting a base integrated circuit over the base substrate top side, the base integrated circuit having an active side opposite an inactive side with the inactive side facing the base substrate top side; attaching a peripheral interconnect to the base substrate top side and a device peripheral pad of the base integrated circuit at the active side; mounting an interposer over the base integrated circuit and the peripheral interconnect, the interposer having an interposer top side and a window; and attaching a central interconnect to the interposer top side and a device central pad of the base integrated circuit at the active side, the central interconnect through the window.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: April 30, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: JinGwan Kim, KyuWon Lee, MoonKi Jeong, SunYoung Chun, JiHoon Oh
  • Patent number: 8420430
    Abstract: A fabrication method of a package structure having at least an MEMS element is provided, including: preparing a wafer having electrical connection pads and the at least an MEMS element; disposing lids for covering the at least an MEMS element, the lids having a metal layer formed thereon; electrically connecting the electrical connection pads and the metal layer with bonding wires; forming an encapsulant for covering the lids, bonding wires, electrical connection pads and metal layer; removing portions of the encapsulant to separate the bonding wires each into first and second sub-bonding wires, wherein top ends of the first and second sub-bonding wires are exposed, the first sub-bonding wires electrically connecting to the electrical connection pads, and the second sub-bonding wires electrically connecting to the metal layer; forming metallic traces on the encapsulant for electrically connecting to the first sub-bonding wires; forming bumps on the metallic traces; and performing a singulation process.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 16, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chi-Hsin Chiu, Chih-Ming Huang, Chang-Yueh Chan, Hsin-Yi Liao, Chun-Chi Ke
  • Patent number: 8420523
    Abstract: The present invention relates to a chip packaging method and structure, in which bonding pads provided on the chip are connected by a plurality of metal wires via bonding, each of the metal wires is bending in the middle part to be higher than a predetermined height, and its ends are respectively electrically connected with two of the bonding pads. A molding layer is packaged on the chip and the molding layer is higher than the predetermined height. The molding layer is sliced at the predetermined height. Two upper breakpoints of each metal wire are exposed and a substrate is attached onto the molding layer. A plurality of circuit contacts of the substrate are respectively electrically coupled with the upper breakpoints. Whereby, the invention is capable of reducing the length of the metal wires in order to improve transmission speed, but also to reduce the volume of the packaging structure.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: April 16, 2013
    Assignee: Kun Yuan Technology Co., Ltd.
    Inventors: Cheng-Ho Hsu, Kuei Pin Wan
  • Patent number: 8415245
    Abstract: Height control of a capillary is performed in a stitch bonding (2nd bond) in a wire bonding, so that a thickness of a stitch portion can be controlled, thereby ensuring a bonding strength at the stitch portion and achieving an improvement in a bonding reliability. Also, the stitch portion has a thick portion, and a wire and a part (? portion) of a bonding region of an inner lead is formed to a lower portion of the thick portion, thereby sufficiently ensuring a thickness of the stitch portion and a bonding region.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 9, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuki Takata, Kaori Sumitomo, Hiroshi Horibe, Hideyuki Arakawa
  • Patent number: 8410603
    Abstract: A semiconductor device includes a semiconductor substrate having an upper surface, a lower surface, a first side and a second side, wherein the lower surface has a slope so that the first side is thicker than the second side, and a circuit pattern including a bonding pad on the upper surface of the semiconductor substrate.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 2, 2013
    Assignee: SK Hynix Inc.
    Inventor: Jin Ho Bae
  • Patent number: 8389398
    Abstract: A method of making a semiconductor device comprises providing a carrier, forming a first conductive layer extending above a surface of the carrier, providing a substrate, disposing the first conductive layer into a first surface of the substrate, removing the carrier, forming a second conductive layer extending above the first surface of the substrate to create a vertical offset between the first conductive layer and second conductive layer, and forming a plurality of first bumps over the first conductive layer and second conductive layer. The method further includes the steps of disposing a third conductive layer into a second surface of the substrate opposite the first surface of the substrate, forming a fourth conductive layer extending above the second surface of the substrate to create a vertical offset between the third conductive layer and fourth conductive layer, and forming a plurality of second bumps.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 5, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KiYoun Jang, SungSoo Kim, YongHee Kang
  • Patent number: 8387238
    Abstract: The present invention discloses methods and apparatuses for the separations of IC fabrication and assembling of separated IC components to form complete IC structures. In an embodiment, the present fabrication separation of an IC structure into multiple discrete components can take advantages of dedicated IC fabrication facilities and achieve more cost effective products. In another embodiment, the present chip assembling provides high density interconnect wires between bond pads, enabling cost-effective assembling of small chip components. In an aspect, the present process provides multiple interconnect wires in the form of a ribbon between the bond pads, and then subsequently separates the ribbon into multiple individual interconnect wires.
    Type: Grant
    Filed: June 14, 2009
    Date of Patent: March 5, 2013
    Inventor: Jayna Sheats
  • Patent number: 8378507
    Abstract: A wiring substrate and a semiconductor chip mounted on the wiring substrate are connected together via a bonding wire. The distance from each end of the semiconductor chip to a wire bond pad provided on the wiring substrate is smaller than the height of the semiconductor chip.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 19, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Satoshi Itaya, Dai Sasaki, Mitsuaki Katagirl
  • Patent number: 8373283
    Abstract: The adhesive composition of the invention comprises (A) a thermoplastic resin with a Tg of no higher than 100° C. and (B) a thermosetting component, wherein the (B) thermosetting component includes (B1) a compound with an allyl group and (B2) a compound with a maleimide group.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: February 12, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Takashi Masuko, Shigeki Katogi
  • Patent number: 8372741
    Abstract: A microelectronic assembly includes a substrate having a first and second opposed surfaces. A microelectronic element overlies the first surface and first electrically conductive elements can be exposed at at least one of the first surface or second surfaces. Some of the first conductive elements are electrically connected to the microelectronic element. Wire bonds have bases joined to the conductive elements and end surfaces remote from the substrate and the bases, each wire bond defining an edge surface extending between the base and the end surface. An encapsulation layer can extend from the first surface and fill spaces between the wire bonds, such that the wire bonds can be separated by the encapsulation layer. Unencapsulated portions of the wire bonds are defined by at least portions of the end surfaces of the wire bonds that are uncovered by the encapsulation layer.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: February 12, 2013
    Assignee: Invensas Corporation
    Inventors: Reynaldo Co, Laura Mirkarimi
  • Patent number: 8373281
    Abstract: A semiconductor element mounted on an insulating resin layer formed on a wiring layer is sealed by a sealing resin. On the wiring layer, a protruding electrode protruding to the side of the semiconductor element and a protruding section are integrally formed with the wiring layer, respectively. The protruding electrode is electrically connected to an element electrode of the semiconductor element by penetrating the insulating resin layer. The protruding section is arranged to surround the semiconductor element along the four sides of the semiconductor element, and is embedded in the sealing resin up to a position above a section where the protruding electrode and the element electrode are bonded.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: February 12, 2013
    Inventors: Hajime Kobayashi, Mayumi Nakasato, Ryosuke Usui, Yasuyuki Yanase, Koichi Saito
  • Patent number: 8373177
    Abstract: An LED light source can include protection members to protect bonding wires. The LED can include a substrate including electrode patterns, a sub mount substrate located on the substrate, at least one flip LED chip mounted on the sub mount substrate and a phosphor rein covering the LED chip. The bonding wires can connect each of the electrode patterns to conductor patterns connecting to electrodes of the LED chip. The protection members can be located so as to surround both sides of the bonding wires. In addition, because each height of the protection members is higher than each maximum height of the bonding wires and is lower than a height of the phosphor resin, the protection members can protect the bonding wires from external pressure while the light flux is not reduced. Thus, the disclosed subject matter can provide a reliable LED light source having a favorable light distribution.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: February 12, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Hiroshi Kotani, Takahiko Nozaki
  • Patent number: 8357563
    Abstract: A method for die stacking is disclosed. In one embodiment a first die is formed overlying a substrate. A first wire is bonded to the first die and to a bond finger of the substrate, wherein the first wire is bonded to the bond finger with a first bond. A first stitch bump is formed overlying the first stitch bond, wherein the first stitch bump is formed from a molten ball of conductive material. A second die is formed overlying the first die. A second wire is bonded to the second die and to the first stitch bump, wherein the second wire is bonded to the first stitch bump with a second bond.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: January 22, 2013
    Assignee: Spansion LLC
    Inventors: Lai Nguk Chin, Foong Yue Ho, Wong Kwet Nam, Koo Eng Luon, Sally Foong, Kevin Guan
  • Patent number: 8337735
    Abstract: Solder mold plates and methods of manufacturing the solder mold plates are provided herein. The solder mold plates are used in controlled collapse chip connection processes. The solder mold plate includes a plurality of cavities. At least one cavity of the plurality of cavities has a different volume than another of the cavities in a particular chip set site. The method of manufacturing the solder mold plate includes determining susceptible white bump locations on a chip set. The method further includes forming lower volume cavities on the solder mold plate which coincide with the susceptible white bump locations, and forming higher volume cavities on the solder mold plate which coincide with less susceptible white bump locations.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: December 25, 2012
    Assignee: Ultratech, Inc.
    Inventor: Lewis S Goldmann
  • Patent number: 8334201
    Abstract: A method of fabricating a semiconductor device, including forming a circuit block in a peripheral edge portion of a semiconductor chip, forming a circuit block pad on the circuit block to provide an electrical interface for the circuit block, and forming a bonding pad laterally offset from the circuit block and the circuit block pad, the bonding pad being electrically connected to the circuit block pad and providing a bonding wire pad for the circuit block.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: December 18, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Tetsuya Katou
  • Patent number: 8309451
    Abstract: A semiconductor wafer contains a plurality of semiconductor die. The wafer has contact pads formed over its surface. A passivation layer is formed over the wafer. A stress buffer layer is formed over the passivation layer. The stress buffer layer is patterned to expose the contact pads. A metal layer is deposited over the stress buffer layer. The metal layer is a common voltage bus for the semiconductor device in electrical contact with the contact pads. An adhesion layer, barrier layer, and seed layer is formed over the wafer in electrical contact with the contact pads. The metal layer is mounted to the seed layer. Solder bumps or other interconnect structures are formed over the metal layer. A second passivation layer is formed over the metal layer. In an alternate embodiment, a wirebondable layer can be deposited over the metal layer and wirebonds connected to the metal layer.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: November 13, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Stephen A. Murphy, Yaojian Lin, Heap Hoe Kuan, Pandi Chelvam Marimuthu, Hin Hwa Goh
  • Patent number: 8309395
    Abstract: The invention relates to a method for fabricating a high-temperature compatible power semiconductor module in which a power semiconductor chip is bonded by means of a diffusion solder layer to a substrate and said substrate is bonded by means of silver sintered layer to a base plate, after which a bonding element is bonded to the top chip metallization. To prevent oxidation of the predefined bond area when producing the diffusion solder layer and the sintered silver layer 4? an anti-oxidation layer is applied to the top chip metallization at least in the region of the predefined bond area.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 13, 2012
    Assignee: Infineon Technologies AG
    Inventor: Reinhold Bayerer
  • Patent number: 8304293
    Abstract: Disclosed are systems and methods for improving the thermal performance of integrated circuit packages. Aspects of the present invention include improved thermal package structures and methods for producing the same through the application of one or more thermal spreaders in the package. In embodiments, a thermal spreader is incorporated in a semiconductor chip package between a semiconductor die and its die pad. By including a thermal spreader in an IC package, the package can handle higher levels of power while maintaining approximately the same temperature of the package or can reduce the temperature of the package when operating at the same power level, as compared to a package without a thermal spreader.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: November 6, 2012
    Assignee: Maxim Integrated, Inc.
    Inventors: Tarak A. Railkar, Steven D. Cate
  • Patent number: 8304847
    Abstract: An object of the present invention is to solve problems in that aluminum electrodes, aluminum wires, and I/O terminals are corroded by corrosive gasses when a pressure of a pressure medium containing corrosive matters such as exhaust gas is measured with a semiconductor sensor; and improve not only the corrosion resistance of the sensor chip but also the corrosion resistance of the portion particularly functioning as the pressure receiver. Each of the aluminum electrodes that is likely to be corroded portions is prevented from being corroded by forming a titanium-tungsten layer and gold layer on the aluminum electrode. The connecting wires are prevented from being corroded by corrosive matters by using gold wires. The I/O terminals are also prevented from being corroded by applying gold plating.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: November 6, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Toshiaki Kaminaga, Masahide Hayashi, Katsumichi Ueyanagi, Kazunori Saito, Mutsuo Nishikawa
  • Patent number: 8304337
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a device over a substrate including a bond wire pad row located between a perimeter of the substrate and the device; configuring the bond wire pad row to include three sided bond wire pads that horizontally overlap; and forming an interconnection between the device and the bond wire pad row.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: November 6, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Henry Descalzo Bathan, Jairus Legaspi Pisigan, Zigmund Ramirez Camacho
  • Patent number: 8298914
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer. Also provided is a tangible computer readable medium encoded with a program that comprises instructions for performing such a method.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Patent number: 8288876
    Abstract: Any two segments of a wire bonded on two bond pads at different elevations can be distinguished by a stationary node (or zero-displacement) during its second-mode vibration. In order to boost the natural frequency of such a bond wire to avoid a second-mode resonance occurring at the lowest frequency in the in-plane vibration, a wire can be optimized by connecting two equalized (shortest possible) wire segments to replace a wire consisting of a larger segment and a shorter segment. The purpose is to re-distribute a larger vibration movement in the longer segment with a lower stiffness of an arbitrary bond wire to two smaller equalized segments of an optimized wire to reduce an in-plane vibration to significantly improve the wire natural frequency and reliability in a harsh vibration environment such as over 30 kHz.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: October 16, 2012
    Assignee: Continental Automotive Systems, Inc.
    Inventor: Jen-Huang Albert Chiou
  • Patent number: 8278153
    Abstract: The present invention includes a temporary fixing step of temporarily fixing a semiconductor element on an adherend interposing an adhesive sheet therebetween, a wire-bonding step of bonding wires to the semiconductor element, and a step of sealing the semiconductor element with a sealing resin, and in which the loss elastic modulus of the adhesive sheet at 175° C. is 2000 Pa or more.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 2, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Sadahito Misumi, Takeshi Matsumura, Kazuhito Hosokawa, Hiroyuki Kondo
  • Patent number: 8278150
    Abstract: An apparatus and a method for packaging semiconductor devices. The apparatus includes a substrate strip component of a leadless three-dimensional stackable semiconductor package having mounting contacts on, for example, four peripheral edges. The substrate strip may either be fabricated for mounting a single electrical component (e.g., an integrated circuit die) or a plurality of substrate strips may be laid out in an X-Y matrix pattern which may later be singulated into individual package strip for leadless packages. Three-dimensional stacking is achieved by a bonding area on an uppermost portion of the sidewall. The sidewall of the strip is high enough to enclose an encapsulant covering a later mounted integrated circuit die and associated bonding wires.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: October 2, 2012
    Assignee: Atmel Corporation
    Inventor: Ken M. Lam
  • Patent number: 8269356
    Abstract: A semiconductor package has a semiconductor die disposed on a substrate. A bond wire is connected between a first bonding site on the semiconductor die and a second bonding site on the substrate. The first bonding site is a die bond pad; the second bonding site is a stitch bond. The second bonding site has a bond finger formed on the substrate, a conductive layer in direct physical contact with the bond finger, and a bond stud coupled to the bond wire and in direct physical contact with the conductive layer to conduct an electrical signal from the semiconductor die to the bond finger. The bond finger is made of copper. The conductive layer is made of copper or gold. The bond stud is made of gold and overlies a side portion and top portion of the copper layer.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 18, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: Rajendra D. Pendse, Byung Joon Han, Hun Teak Lee
  • Patent number: 8269346
    Abstract: A semiconductor device has an LSI chip including a semiconductor substrate, an LSI core section provided at a center portion of the semiconductor substrate and serving as a multilayered wiring layer of the semiconductor substrate, a first rewiring layer provided adjacent to an outer periphery of the LSI core section on the semiconductor substrate and including a plurality of wiring layers, a first pad electrode disposed at an outer periphery of the first rewiring layer, and an insulation layer covering the first pad electrode. The semiconductor device includes a second rewiring layer provided on the LSI chip and including a rewiring connected to the first pad electrode. The semiconductor device includes a plurality of ball electrodes provided on the second rewiring layer. The first rewiring layer is electrically connected to the LSI core section and the first pad electrode.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: September 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shoji Seta, Hideaki Ikuma, Yukihito Oowaki
  • Patent number: 8252632
    Abstract: The present invention enables improvement of bonding reliability of the conductive adhesive interposed between a semiconductor chip and a die pad portion. Provided is a semiconductor device, in which a silicon chip is mounted over the die pad portion integrally formed with a drain lead, has a source pad over the main surface and a drain electrode of a power MOSFET over the back side, and is bonded onto the die pad portion via an Ag paste. In the device, a source lead and the source pad are electrically coupled via an Al ribbon. Over the back surface of the silicon chip, an Ag nanoparticle coated film is formed, while another Ag nanoparticle coated film is formed over the die pad portion and lead (drain lead and source lead).
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: August 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Yuichi Yato, Takuya Nakajo, Hiroi Oka
  • Patent number: 8247272
    Abstract: A semiconductor package and a method for constructing the package are disclosed. The package includes a substrate and a die attached thereto. A first contact region is disposed on the substrate and a second contact region is disposed on the die. The first contact region, for example, comprises copper coated with an OSP material. A copper wire bond electrically couples the first and second contact regions. Wire bonding includes forming a ball bump on the first contact region having a flat top surface. Providing the flat top surface is achieved with a smoothing process. A ball bond is formed on the second contact region, followed by stitching the wire onto the flat top surface of the ball bump on the first contact region.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: August 21, 2012
    Assignee: United Test and Assembly Center Ltd.
    Inventors: Yong Chuan Koh, Jimmy Siat, Jeffrey Nantes Salamat, Lope Vallespin Pepito, Jr., Ronaldo Cayetano Calderon, Rodel Manalac, Pang Hup Ong, Kian Teng Eng
  • Patent number: 8247911
    Abstract: Provided is a bonding structure of a bonding wire and a method for forming the same which can solve problems of conventional technologies in practical application of a multilayer copper wire, improve the formability and bonding characteristic of a ball portion, improve the bonding strength of wedge connection, and have a superior industrial productivity. A bonding wire mainly composed of copper, and a concentrated layer where the concentration of a conductive metal other than copper is high is formed at a ball bonded portion. The concentrated layer is formed in the vicinity of the ball bonded portion or at the interface thereof. An area where the concentration of the conductive metal is 0.05 to 20 mol % has a thickness greater than or equal to 0.1 ?m, and it is preferable that the concentration of the conductive metal in the concentrated layer should be five times as much as the average concentration of the conductive metal at the ball bonded portion other than the concentrated layer.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: August 21, 2012
    Assignees: Nippon Steel Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Tomohiro Uno, Shinichi Terashima, Keiichi Kimura, Takashi Yamada, Akihito Nishibayashi
  • Patent number: 8242594
    Abstract: A chip package structure includes a circuit substrate, a chip, at least one bonding wire, and an adhesive layer. The circuit substrate has a bonding surface and at least one pad disposed on the bonding surface. The chip is disposed on the bonding surface of the circuit substrate and has an active surface away from the circuit substrate and at least one contact pad disposed on the active surface. The bonding wire is connected between the contact pad and the pad, such that the chip is electrically connected to the circuit substrate through the bonding wire. The bonding wire includes a copper layer, a nickel layer covering the copper layer, and a gold layer covering the nickel layer. The adhesive layer is disposed between the pad and the bonding wire and between the contact pad and the bonding wire and respectively covers two terminals of the bonding wire.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: August 14, 2012
    Assignee: Unimicron Technology Corp.
    Inventor: Chung-Pan Wu
  • Patent number: 8232656
    Abstract: Wire bonding method for reducing height of a wire loop in a semiconductor device, including a first bonding step of bonding an initial ball formed at a tip end of a wire onto a first bonding point using a capillary, thereby forming a pressure-bonded ball; a wire pushing step of pushing the wire obliquely downward toward the second bonding point at a plurality of positions by repeating a sequential movement for a plurality of times, the sequential movement including moving of the capillary substantially vertically upward and then obliquely downward toward the second bonding point by a distance shorter than a rising distance that the capillary has moved upward; and a second bonding step of moving the capillary upward and then toward the second bonding point, and bonding the wire onto the second bonding point by pressure-bonding.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: July 31, 2012
    Assignee: Kabushiki Kaisha Shinkawa
    Inventors: Tatsunari Mii, Shinsuke Tei, Hayato Kiuchi
  • Patent number: 8227341
    Abstract: An object is to prevent a failure, such as a wiring separation or a crack, in an insulating film under a copper wire, in a semiconductor device formed by wire-bonding the copper wire on a portion above the copper wiring. A semiconductor device according to the present invention includes a copper wiring formed above a semiconductor substrate, a plated layer formed so as to cover a top surface and side surfaces of the copper wiring, and a copper wire which is wire-bonded on the plated layer above the copper wiring.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 24, 2012
    Assignees: Semiconductor Components Industries, LLC, SANYO Semiconductor Co., Ltd.
    Inventors: Satoshi Onai, Minoru Akaishi, Hiroshi Ishizeki, Yoshiaki Sano
  • Patent number: 8225982
    Abstract: The invention discloses apparatus and methods for the formation of bond wires in integrated circuit assemblies by attaching two separate wires using a dual capillary bond head. The separate wires are preferably non-identical, for example, being of different gauges and/or material composition. According to a preferred embodiment of the invention, dual capillary bond head apparatus includes a rotatable ultrasonic horn with a pair of capillaries for selectably dispensing separate strands of bond wire and for forming bonds on bond targets. According to another aspect of the invention, a method is provided for dual capillary IC wirebonding including steps for using two dual capillary bond heads for contemporaneously attaching non-identical bond wires to selected bond targets on one or more IC package assemblies.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: July 24, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Rex W Pirkle, Sean M Malolepszy, David J Bon
  • Patent number: 8227918
    Abstract: A microcircuit article of manufacture comprises an electrical conductor electrically connected to both a first microcircuit element at a site comprising a first connector site having a first connector site axis and a second microcircuit element at a site comprising a second connector site having a second connector site axis. The first microcircuit element and the second microcircuit element are separated by and operatively associated with a layer comprising a first electrical insulator, whereas the conductor and the first microcircuit element are separated by and operatively associated with a layer comprising a second electrical insulator. At least one of the first electrical insulator layer and the second electrical insulator layer comprise a polymeric electrical insulator. In another embodiment, both electrical insulator layers comprise polymeric insulator layers. The microcircuit includes a UBM and solder connection to a FBEOL via opening.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Minhua Lu, Eric D. Pefecto, David L. Questad, Sudipta K. Ray
  • Patent number: 8216880
    Abstract: In semiconductor devices having a copper-based metallization system, bond pads for wire bonding may be formed directly on copper surfaces, which may be covered by an appropriately designed protection layer to avoid unpredictable copper corrosion during the wire bond process. A thickness of the protection layer may be selected such that bonding through the layer may be accomplished, while also ensuring a desired high degree of integrity of the copper surface.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 10, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Matthias Lehr, Frank Kuechenmeister
  • Patent number: 8216883
    Abstract: A method for manufacturing a semiconductor package system includes: providing a leadframe, having an open center, with leads adjacent to a peripheral edge of the leadframe; making a die support pad, formed without tie bars, separately from the leadframe; providing a coverlay tape for positioning the support pad centered within the leadframe; attaching a semiconductor die to the die support pad through a die attach adhesive, the semiconductor die being spaced from the leads; and connecting a bonding pad on the semiconductor die to one of the leads using a bonding wire.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: July 10, 2012
    Assignee: Stats Chippac Ltd
    Inventors: Zigmund Ramirez Camacho, Dioscoro A. Merilo, Lionel Chien Hui Tay
  • Patent number: 8207612
    Abstract: The present invention provides a semiconductor device and manufacturing method of the semiconductor device which can prevent breaks in an interlayer insulation film (12) and electrode (13) that arise with bonding while maintaining bonding strength. A semiconductor element (1) mounted on a semiconductor device including an interlayer insulation film (12) which has an aperture part (123) having an opening shape which is defined by an extension part (121) which covers the gate electrode (116) and extends in the first direction, a connection part (122), the extension part (121) and the connection part (122) which connects at fixed intervals in the first direction a pair of extension parts (121) which are adjacent to the second direction, and which exposes a main surface of a base region (112) and a main surface of an emitter region (113).
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: June 26, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Katsuyuki Torii, Arata Shiomi
  • Patent number: 8193024
    Abstract: The reliability of a photosensor-type semiconductor device is enhanced. The sealing step in a manufacturing process for the semiconductor device is carried out as described below. A molding die having an upper die and a lower die is prepared and a film is arranged between the upper die and the lower die. A lead frame in which first adhesive, a semiconductor chip, second adhesive 11, and a base material are mounted over the upper surface of each tab is arranged between the film and the lower die. The base material has an opening formed therein and the opening is covered with a protective sheet. The semiconductor chip has a light receiving area formed in its main surface. The upper die and the lower die are clamped to cause part of the base material to bite into the film. Thereafter, sealing resin is supplied to between the film and the lower die to form a blanket sealing body. Thus the photosensor-type semiconductor device without resin flash over the light receiving area is obtained.
    Type: Grant
    Filed: December 26, 2009
    Date of Patent: June 5, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Atsushi Fujisawa
  • Patent number: 8187965
    Abstract: In the present invention, copper interconnection with metal caps is extended to the post-passivation interconnection process. Metal caps may be aluminum. A gold pad may be formed on the metal caps to allow wire bonding and testing applications. Various post-passivation passive components may be formed on the integrated circuit and connected via the metal caps.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: May 29, 2012
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Michael Chen, Chien-Kang Chou, Mark Chou
  • Patent number: 8187982
    Abstract: The invention permits a plurality of strips of resin adhesive film having a desired width and unwound from a single feeding reel to be simultaneously pasted on a solar cell. For this purpose, the invention comprises the steps of: unwinding a resin adhesive film sheet from a reel on which the resin adhesive film sheet is wound; splitting the unwound resin adhesive film into two or more film strips in correspondence to lengths of wiring material to bond; pasting the strips of resin adhesive film on an electrode of the solar cell; and placing the individual lengths of wiring material on the electrode of the solar cell having the plural strips of resin adhesive film pasted thereon and thermally setting the resin adhesive film by heating so as to fix together the electrode of the solar cell and the wiring material.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: May 29, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yousuke Ishii, Shingo Okamoto
  • Patent number: 8183684
    Abstract: Provided is a thin semiconductor device using a thin metal wire and having a low top portion. The semiconductor device of the present invention has a structure in which a bonding pad 55 of a semiconductor chip 54 and an electrode 53B are connected to each other via a thin metal wire 51, and the thin metal wire 51 forms a curve portion 57. Specifically, the thin metal wire 51 exhibits the curve portion 57 from a first bond, and is provided with a linear second extending portion 60 with an end portion thereof being a first bend portion 59. A second bend portion 61 is located lower than a top portion 58 of the curve portion 57.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: May 22, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Isao Nakazato
  • Patent number: 8181845
    Abstract: An electrical bond connection system between a first electrical contact surface and a second electrical contact surface having at least one first electrical conductor, which is bonded to at least one of the contact surfaces via at least one first bond connection. At least one additional second electrical conductor (9) is bonded to the first electrical conductor (8) via at least one second bond connection (10, 13), the two bond connections (10) being offset from one another. The present invention also relates to a method for manufacturing an electrical bond connection system existing between a first electrical contact surface and a second electrical contact surface.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: May 22, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Manfred Reinold, Immanuel Mueller
  • Patent number: 8168452
    Abstract: A method for manufacturing a semiconductor device, the semiconductor device including an integrated circuit having plural connection terminals arranged on a predetermined local region of the integrated circuit, plural metal bumps, and a wiring layer connected to at least a portion of the connection terminals via the plural metal bumps, the method includes the steps of a) measuring an impedance value of the predetermined local region of the integrated circuit, b) determining whether the measured impedance value matches a predetermined impedance value, c) determining positions of the plural metal bumps in accordance with the determination result of step b), d) forming the plural metal bumps on the positions determined in step c), and e) forming the wiring layer on the plural metal bumps.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: May 1, 2012
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Keigo Maki, Daisuke Ito
  • Patent number: 8163604
    Abstract: An integrated circuit package system includes a conductive substrate. A heat sink and a plurality of leads are etched in the substrate to define a conductive film connecting the heat sink and the plurality of leads to maintain their spatial relationship. A die is attached to the heat sink and wire bonded to the plurality of leads. An encapsulant is formed over the die, the heat sink, and the plurality of leads. The conductive film is etched away to expose the encapsulant and the bottom surfaces of the heat sink and the plurality of leads. Wave soldering is used to form solder on at least the plurality of leads. Multiple heat sinks and hanging leads are provided.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: April 24, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: You Yang Ong, Cheong Chiang Ng, Suhairi Mohmad
  • Patent number: RE43444
    Abstract: A semiconductor device comprising a semiconductor pellet mounted on a pellet mounting area of the main surface of a base substrate, in which first electrode pads arranged on the back of the base substrate are electrically connected to bonding pads arranged on the main surface of the semiconductor pellet. The base substrate is formed of a rigid substrate, and its first electrode pads are electrically connected to the second electrode pads arranged on its reverse side. The semiconductor pellet is mounted on the pellet mounting area of the main surface of the base substrate, with its main surface downward, and its bonding pads are connected electrically with the second electrode pads of the base substrate through bonding wires passing through slits formed in the base substrate.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 5, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Atsushi Nakamura, Kunihiko Nishi
  • Patent number: RE44148
    Abstract: A semiconductor device comprising a semiconductor pellet mounted on a pellet mounting area of the main surface of a base substrate, in which first electrode pads arranged on the back of the base substrate are electrically connected to bonding pads arranged on the main surface of the semiconductor pellet. The base substrate is formed of a rigid substrate, and its first electrode pads are electrically connected to the second electrode pads arranged on its reverse side. The semiconductor pellet is mounted on the pellet mounting area of the main surface of the base substrate, with its main surface downward, and its bonding pads are connected electrically with the second electrode pads of the base substrate through bonding wires passing through slits formed in the base substrate.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 16, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Atsushi Nakamura, Kunihiko Nishi