By Wire Bonding Patents (Class 438/617)
  • Patent number: 7776735
    Abstract: The present invention relates to a semiconductor device in which electrodes formed on a semiconductor chip and electrodes formed on a wiring board are electrically connected via projecting elastic electrodes, and further relates to a mounting method of reducing a pressure applied to electrodes formed on a substrate or underlying wirings when a semiconductor chip and a wiring board are bonded.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: August 17, 2010
    Assignees: Renesas Technology Corp., Oki Semiconductor Co., Ltd., Sanyo Electric Co., Ltd., Sharp Kabushiki Kaisha, Sony Corporation, Kabushiki Kaisha Toshiba, NEC Corporation, Fujitsu Limited, Panasonic Corporation, Rohm Co., Ltd.
    Inventors: Tadatomo Suga, Toshihiro Itoh
  • Patent number: 7776653
    Abstract: A device has a first semiconductor chip (101) with contact pads in an interior first set (102) and a peripheral second set (103). A deformed sphere (104) of non-reflow metal such as gold is placed on each contact pad of the first and second sets. At least one additional deformed sphere (105) is placed on the first set pads, forming column-shaped spacers. The first chip is attached to a substrate (110) with a chip attachment location and a third set of contact pads (112) near the location. Low profile bond wires (130) span between the pads of the third set and the second set. A second semiconductor chip (140) of a size has a fourth set of contact pads (141) at locations matching the first set pads. The second chip is placed over the first chip so that the fourth set pads are aligned with the spacers on the matching first set pads, and at least one edge of the second chip overhangs the sphere on at least one pad of the second set.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: August 17, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: David N Walter, Duy-Loan T Le, Mark A Gerber
  • Patent number: 7772045
    Abstract: A method and device relating the electrical interconnection of angularly disposed conductive is disclosed. Conventional wire bonding equipment is used to apply a wire ball on a first conductive surface in an electronic assembly. A conductive wire is drawn up vertically and terminated such that the central portion of the wire is proximal the second conductive surface. The electronic assembly is reoriented with respect to the travel of the capillary whereby a stitch bond is defined upon the second conductive surface to define an interconnect wire and a terminal wire portion, which terminal wire portion is removed.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: August 10, 2010
    Inventor: Randy Wayne Bindrup
  • Patent number: 7772107
    Abstract: Methods of forming a semiconductor package including a single-sided substrate are disclosed. In a first embodiment of the present invention, a substrate may include a conductive layer on a top surface of the substrate, i.e., on the same side of the substrate as where the die are mounted. In a second embodiment of the present invention, a substrate may include a conductive layer on a bottom of the substrate, i.e., on the opposite side of the substrate as where the die are mounted.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: August 10, 2010
    Assignee: SanDisk Corporation
    Inventors: Cheemen Yu, Hem Takiar, Chih-Chin Liao
  • Patent number: 7757385
    Abstract: A method for fabricating a semiconductor component with a through wire interconnect includes the step of providing a substrate having a circuit side, a back side, and a through via. The method also includes the steps of: threading a wire through the via, forming a contact on the wire on the back side, forming a bonded contact on the wire on the circuit side, and then severing the wire from the bonded contact. The through wire interconnect includes the wire in the via, the contact on the back side and the bonded contact on the circuit side. The contact on the back side, and the bonded contact on the circuit side, permit multiple components to be stacked with electrical connections between adjacent components. A system for performing the method includes the substrate with the via, and a wire bonder having a bonding capillary configured to thread the wire through the via, and form the contact and the bonded contact.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: David R. Hembree
  • Patent number: 7754597
    Abstract: A method for fabricating a bonding pad 45 includes disposing a droplet L including a liquid containing a conductive material on a substrate P by a droplet ejection method and solidifying the disposed droplet L to forms the pad. The bonding pad 45 formed has a cylindrical shape and includes a concave part 47.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: July 13, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Naoyuki Toyoda
  • Patent number: 7750468
    Abstract: A semiconductor device includes: a semiconductor substrate that has an integrated circuit, a passivation film formed above the integrated circuit, and an electrode electrically connected to the integrated circuit, the passivation film having an uneven surface, the electrode having at least a portion exposed through the passivation film; a first resin layer that is disposed on the passivation film; a second resin layer that covers the passivation film and the first resin layer; and a wiring that extends from the electrode to a first part of the second resin layer above the first resin layer, the electrode passing on a second part of the second resin layer above the passivation film.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: July 6, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Tatsuhiko Asakawa
  • Patent number: 7749889
    Abstract: The present invention relates to a manufacturing method of a semiconductor device having a size approximately same as the size of a semiconductor chip when viewed in a plan view, in which the semiconductor chip is flip-chip bonded to a wiring pattern, and an object of the invention is to provide the manufacturing method of a semiconductor device which allows reduction in the number of process steps to realize the minimization of manufacturing cost. An insulating resin 13 is formed so as to cover a plurality of internal connection terminals 12 and a surface of a plurality of semiconductor chips 11 on which the plurality of internal connection terminals are provided, then a metal layer 33 for forming a wiring pattern is formed over the insulating resin 13, and by pressing the metal layer 33, the metal layer 33 and the plurality of internal connection terminals 12 are pressure-bonded.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: July 6, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Takaharu Yamano, Tadashi Arai
  • Patent number: 7745259
    Abstract: A layered chip package includes: a main body including a plurality of layer portions; wiring disposed on a side surface of the main body; a plurality of first terminals disposed on a top surface of the main body; and a plurality of second terminals disposed on a bottom surface of the main body. Each layer portion includes a semiconductor chip, an insulating portion covering at least one side surface of the semiconductor chip, and a plurality of electrodes connected to the semiconductor chip. Each electrode has an end face surrounded by the insulating portion and located at the side surface of the main body on which the wiring is disposed. The wiring is connected to the end faces of the plurality of electrodes of the plurality of layer portions, and to the plurality of first and second terminals.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 29, 2010
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Tatsuya Harada, Nobuyuki Okuzawa, Satoru Sueki
  • Patent number: 7745942
    Abstract: A semiconductor die has conductors encapsulated in a dielectric material disposed on the active surface extending across the active surface from bond pads to one or more peripheral edges where the conductor ends are disposed at a side surface of the dielectric material. Stacks of such semiconductor dice, wherein one of the dice is configured with discrete conductive elements projecting from the active surface, and the exposed ends of the dice in the stack are connected with vertical interconnects. A probe card is disclosed having bond wires extending from one or more central contacts between one or more peripheral contacts to the edge of the probe card. A probe card having an upper layer bearing contacts and at least one window therethrough, a lower layer bearing conductive traces with ends exposed through the at least one window, and conductors extending from at least some of the contacts to conductive trace ends is also provided. Methods of making the foregoing structures are disclosed.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: June 29, 2010
    Assignee: Micron Technology, Inc.
    Inventor: David R. Hembree
  • Patent number: 7745322
    Abstract: A wire bond interconnection between a die pad and a bond finger includes a support pedestal at a bond site of the lead finger, a ball bond on the die pad, and a stitch bond on the support pedestal, in which a width of the lead finger at the bond site is less than a diameter of the support pedestal. Also, a semiconductor package including a die mounted onto and electrically connected by a plurality of wire bonds to a substrate, in which each of the wire bonds includes a wire ball bonded to a pad on the die and stitch bonded to a support pedestal on a bond site on a lead finger, and in which the width of the lead finger at the bond site is less than the diameter of the support pedestal.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: June 29, 2010
    Assignee: Chippac, Inc.
    Inventors: Hun-Teak Lee, Jong-Kook Kim, Chul-Sik Kim, Ki-Youn Jang, Rajendra D. Pendse
  • Patent number: 7741208
    Abstract: A wedge wedge wire loop is formed with the steps: a) lowering the capillary onto the first connection point and applying a predefined bond force and ultrasound for producing a wedge connection on the first connection point, b) raising the capillary by a predetermined distance D1 in an essentially vertical direction, c) moving the capillary laterally and downwards in order to bend the wire and press it against the wedge connection, d) raising the capillary and moving the capillary in order to form a wire loop and to attach the wire to the second connection point, and e) tearing off the wire.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 22, 2010
    Assignee: Oerlikon Assembly Equipment Ltd.
    Inventors: Marit Seidel, Jan Mattmueller
  • Publication number: 20100148364
    Abstract: A semiconductor device includes: a substrate having an external electrode formed thereon, the external electrode being capable of being electrically connected to an outside; and a semiconductor element having a surface electrode formed thereon, the surface electrode being made from an electrically conducting paste, the semiconductor element being mounted on the substrate, the external electrode being electrically connected by wire bonding to the surface electrode via a connecting member. This provides (i) a semiconductor device including: a substrate having an external electrode capable of being electrically connected to an outside; and a semiconductor element having a surface electrode made from an electrically conducting paste, the semiconductor device allowing for assured bonding reliability and a simplified means or step of connecting the surface electrode to the external electrode, and (ii) a method for producing the semiconductor device.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 17, 2010
    Inventor: Masahiro OKITA
  • Patent number: 7728443
    Abstract: A method for fabricating a semiconductor component with a through wire interconnect includes the step of providing a substrate having a circuit side, a back side, and a through via. The method also includes the steps of: threading a wire through the via, forming a contact on the wire on the back side, forming a bonded contact on the wire on the circuit side, and then severing the wire from the bonded contact. The through wire interconnect includes the wire in the via, the contact on the back side and the bonded contact on the circuit side. The contact on the back side, and the bonded contact on the circuit side, permit multiple components to be stacked with electrical connections between adjacent components. A system for performing the method includes the substrate with the via, and a wire bonder having a bonding capillary configured to thread the wire through the via, and form the contact and the bonded contact.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventor: David R. Hembree
  • Patent number: 7719123
    Abstract: There is provided a method of manufacturing a semiconductor device. The method includes the successive steps of: (a) providing a semiconductor substrate; (b) forming a plurality of semiconductor chips having electrode pads on the semiconductor substrate; (c) forming internal connection terminals on the electrode pads; (d) forming an insulating layer on the plurality of semiconductor chips to cover the internal connection terminals; (e) forming a metal layer on the insulating layer; (f) pushing a whole area of the metal layer to bring the metal layer into contact with upper end portions of the internal connection terminals; (g) pushing portions of the metal layer which contact the upper end portions of the internal connection terminals, thereby forming first recesses in the internal connection terminals, and thereby forming second recesses in the metal layer; and (h) forming wiring patterns by etching the metal layer.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: May 18, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Takuya Kazama
  • Patent number: 7718471
    Abstract: A semiconductor package has a substrate with a plurality of contact pads. A first semiconductor die is mounted to the substrate. First wire bonds are formed between each of the center-row contact pads of the first semiconductor die and the substrate contact pads. The first wire bonds include an electrically insulative coating formed over the shaft that covers a portion of a surface of a bumped end of the first wire bonds. An epoxy material is deposited over the first semiconductor die. A second semiconductor die is mounted to the epoxy material. Second wire bonds are formed between each of the center-row contact pads of the second semiconductor die and the substrate contact pads. The second wire bonds include an electrically insulative coating formed over the shaft of the second wire bonds that covers a portion of a surface of a bumped end of the second wire bonds.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: May 18, 2010
    Assignee: White Electronic Designs Corporation
    Inventor: James Zaccardi
  • Patent number: 7713861
    Abstract: The method mainly contains the following steps. First, an UBM is formed on a top side of a semiconductor's I/O pad. An isolative layer and a metallic foil are sequentially arranged in this order on the UBM. Then, a via is formed to expose the top surface of the UBM. Subsequently, a thin metallic layer is formed in the via and a resist is formed on the metallic foil. Then, by using the metallic foil and the thin metallic layer as an electrode to conduct electrical current, a metallic bump is formed using electroplating in the via on the top side of the UBM. Finally, the resist and the metallic foil are removed and the formation of the metallic bump is completed. Optionally coating on bump may be needed for certain chosen bump materials.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: May 11, 2010
    Inventor: Wan-Ling Yu
  • Patent number: 7713860
    Abstract: The method mainly contains the following steps. First, an UBM is formed on a top side of a semiconductor's I/O pad. An isolative layer and a metallic foil are sequentially arranged in this order on the UBM. Then, a via is formed to expose the top surface of the UBM. Subsequently, a thin metallic layer is formed in the via and a resist is formed on the metallic foil. Then, by using the metallic foil and the thin metallic layer as an electrode to conduct electrical current, a metallic bump is formed using electroplating in the via on the top side of the UBM. Finally, the resist and the metallic foil are removed and the formation of the metallic bump is completed.
    Type: Grant
    Filed: October 13, 2007
    Date of Patent: May 11, 2010
    Inventor: Wan-Ling Yu
  • Patent number: 7709296
    Abstract: An integrated optical I/O and semiconductor chip with a direct liquid jet impingement cooling assembly are disclosed. Contrary to other solutions for packaging an optical I/O with a semiconductor die, this assembly makes use of a metal clad fiber, e.g. copper, which will actually enhance cooling performance rather than create a design restriction that has the potential to limit cooling capability.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Casimer M. DeCusatis, Michael J. Ellsworth, Jr.
  • Publication number: 20100090330
    Abstract: Provided is a thin semiconductor device using a thin metal wire and having a low top portion. The semiconductor device of the present invention has a structure in which a bonding pad 55 of a semiconductor chip 54 and an electrode 53B are connected to each other via a thin metal wire 51, and the thin metal wire 51 forms a curve portion 57. Specifically, the thin metal wire 51 exhibits the curve portion 57 from a first bond, and is provided with a linear second extending portion 60 with an end portion thereof being a first bend portion 59. A second bend portion 61 is located lower than a top portion 58 of the curve portion 57.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 15, 2010
    Applicants: SANYO ELECTRIC CO., LTD., SANYO SEMICONDUCTOR CO., LTD.
    Inventor: Isao Nakazato
  • Patent number: 7696003
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, a microelectronic component assembly includes a microelectronic component, a substrate, and at least one bond wire. The substrate has a reduced-thickness base adjacent terminals of the microelectronic component and a body having a contact surface spaced farther from the microelectronic component than a bond pad surface of the base. The bond wire couples the microelectronic component to a bond pad carried by the bond pad surface and has a maximum height outwardly from the microelectronic component that is no greater than the height of the contact surface from the microelectronic component.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: April 13, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Eric Swee Seng Tan, Edmund Kwok Chung Low
  • Patent number: 7682962
    Abstract: A method for fabricating a semiconductor component with a through wire interconnect includes the step of providing a substrate having a circuit side, a back side, and a through via. The method also includes the steps of: threading a wire through the via, forming a contact on the wire on the back side, forming a bonded contact on the wire on the circuit side, and then severing the wire from the bonded contact. The through wire interconnect includes the wire in the via, the contact on the back side and the bonded contact on the circuit side. The contact on the back side, and the bonded contact on the circuit side, permit multiple components to be stacked with electrical connections between adjacent components. A system for performing the method includes the substrate with the via, and a wire bonder having a bonding capillary configured to thread the wire through the via, and form the contact and the bonded contact.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventor: David R. Hembree
  • Patent number: 7674701
    Abstract: Methods of forming interconnections for an electronic device including a substrate may be provided. For example, first and second patterned layers may be formed on the substrate wherein an opening in the first and second patterned layers exposes portions of the substrate, wherein the first and second patterned layers have different compositions, and wherein the first patterned layer is between the second patterned layer and the substrate. A metal layer may be formed on the second patterned layer and on portions of the substrate exposed through the opening in the first and second patterned layers. The second patterned layer and portions of the metal layer thereon may be removed while maintaining portions of the metal layer on the portions of the substrate exposed through the opening. After removing the second mask layer, solder may be provided on the metal layer.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: March 9, 2010
    Assignee: Amkor Technology, Inc.
    Inventor: Glenn A. Rinne
  • Patent number: 7674704
    Abstract: The present invention provides a semiconductor device capable of suppressing an increase in electrical resistance of a narrow interconnect, while keeping reliability of a wide interconnect from being degraded. A semiconductor device comprises a plurality of interconnect layers, and an interconnect in at least one interconnect layer among the plurality of interconnect layers contains an impurity, and the wider the interconnect in the at least one interconnect layer is, the higher concentration of the impurity the interconnect contains.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: March 9, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Toshiyuki Takewaki
  • Publication number: 20100048017
    Abstract: An aluminum wire is bonded to a silicon electrode by a wedge tool pressing the aluminum wire against the silicon electrode. In this way, a firmly bonded structure is obtained by sequentially stacking aluminum, aluminum oxide, silicon oxide, and silicon.
    Type: Application
    Filed: November 6, 2009
    Publication date: February 25, 2010
    Applicant: Panasonic Corporation
    Inventors: Masanori MINAMIO, Hiroaki FUJIMOTO, Atsuhito MIZUTANI, Hisaki FUJITANI, Toshiyuki FUKUDA
  • Publication number: 20100047934
    Abstract: A method for fabricating a semiconductor component with an encapsulated through wire interconnect includes the steps of providing a substrate having a first side, a second side and a substrate contact; forming a via in the substrate contact and the substrate to the second side; placing a wire in the via; forming a first contact on the wire proximate to the first side and a second contact on the wire proximate to the second side; and forming a polymer layer on the first side leaving the first contact exposed. The polymer layer can be formed using a film assisted molding process including the steps of: forming a mold film on tip portions of the bonding members, molding the polymer layer, and then removing the mold film to expose the tip portions of the bonding members. The through wire interconnect provides a multi level interconnect having contacts on opposing sides of the semiconductor substrate.
    Type: Application
    Filed: October 19, 2009
    Publication date: February 25, 2010
    Inventors: David R. Hembree, Alan G. Wood
  • Patent number: 7667321
    Abstract: A wire bond circuit device has a circuit die in which substantially all of the input/output (I/O) pads are disposed along the outermost row of pads. A substrate onto which the die is disposed has wedges that are similarly arranged in rows, with the wedges used to carry I/O placed closest to the circuit die. As a result, lowest-tiered bond wire is used to connect the I/O-related pads to their respective wedges.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 23, 2010
    Assignee: Agere Systems Inc.
    Inventors: Ashley Rebelo, Todd Snider
  • Patent number: 7666716
    Abstract: The present invention provides a semiconductor package and a fabrication method thereof. The method includes the steps of: providing a chip carrier module having a plurality of chip carriers, disposing a plurality of electrical connecting points on the chip carriers, performing chip mounting and molding on the chip carrier module to form an encapsulant encapsulating the semiconductor chip, exposing the electrical connecting points from the encapsulant; forming a patterned circuit layer on the encapsulant, electrically connecting the patterned circuit layer to the electrical connecting points, cutting and separating the chip carriers to form a plurality of semiconductor packages each having a circuit layer formed on the encapsulant such that the circuit layer provides extra electrical connecting points and thereby enhances electrical performance of electrical products. During a package stacking process, no package is limited by the design of another package below.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: February 23, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Cheng-Hsu Hsiao
  • Patent number: 7665056
    Abstract: Various embodiments of the present invention relate to a method, system, and computer program product for dynamic placement of various bond fingers on an integrated circuit (IC) package. This is achieved by determining the placement of selected bond fingers. Subsequently, bond fingers and bond wires are identified, which have been affected due to the placement of the selected bond fingers. Further, the placement of the selected and the affected bond fingers is determined based on clearance rules and the affected bond fingers and bond wires. This facilitates the dynamic placement of the various bond fingers in interaction with the user. Further, the user is provided with full interactive access and control over the method and system.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: February 16, 2010
    Assignee: Cadence Design Systems, Inc.
    Inventors: Tyler James Lockman, James A. Dean, Jean-Marc Ng Wing Keng
  • Patent number: 7659146
    Abstract: Performing electrolysis plating to a wiring is made possible, aiming at the increasing of pin count of a semiconductor device. Package substrate 3 by which ring shape common wiring 3p for electric supply was formed in the inner area of bonding lead 3j in device region 3v of main surface 3a is used. Since a plurality of first plating lines 3r and fourth plating lines 3u for electric supply connected to common wiring 3p can be arranged by this, the feeder for electrolysis plating can be arranged to all the land parts on the back. Hereby, it becomes possible to perform electrolysis plating to the wiring of main surface 3a of package substrate 3, and the back surface. Even if the land part of plural lines is formed covering the perimeter of the back surface, electrolysis plating can be performed to the all land parts. As a result, electrolysis plating can be performed to a wiring, aiming at the increasing of pin count of a semiconductor device.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: February 9, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Tetsuharu Tanoue
  • Patent number: 7655552
    Abstract: A method, comprising bonding a first wire to a single die bond pad to form a first bond, bonding the first wire to a bond post to form a second bond, bonding a second wire to the first bond, and coupling the second wire to the bond post.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Mark Allen Gerber
  • Patent number: 7656045
    Abstract: A bond pad for an electronic device such as an integrated circuit makes electrical connection to an underlying device via an interconnect layer. The bond pad has a first layer of a material that is aluminum and copper and a second layer, over the first layer, of a second material that is aluminum and is essentially free of copper. The second layer functions as a cap to the first layer for preventing copper in the first layer from being corroded by residual chemical elements. A wire such as a gold wire may be bonded to the second layer of the bond pad.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: February 2, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chu-Chung Lee, Kevin J. Hess
  • Publication number: 20100007009
    Abstract: A copper bonding wire includes a line portion and a non-spherical block portion. The non-spherical block portion is physically connected to the line portion, and the cross-sectional area of the non-spherical block portion is bigger than that of the line portion.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 14, 2010
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING INC.
    Inventors: Hsiao Chuan CHANG, Tsung Yueh TSAI, Yi Shao LAI, Ho Ming TONG, Jian Cheng CHEN, Wei Chi YIH, Chang Ying HUNG, Cheng Tsung HSU, Chih Cheng HUNG
  • Publication number: 20100007034
    Abstract: A wirebond protector has an elongated shape that corresponds to the elongated array of wirebonds along the edge of a microelectronic device that connect a semiconductor die to electrical conductors on a substrate. In making the microelectronic device with wirebond protection, wirebonds are first formed in the conventional manner The wirebond protector is then attached to the device in an orientation in which it extends along the array of wirebonds to at least partially cover the wirebonds.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Applicant: AVAGO TECHNOLOGIES FIBER IP (SINGAPORE) PTE. LTD.
    Inventor: David J.K. Meadowcroft
  • Patent number: 7645695
    Abstract: A method of manufacturing a semiconductor element, includes forming a lower metal wiring layer and an interlayer insulating film on a substrate, forming an opening through the interlayer insulating film, such that the opening is in communication with an upper surface of the lower metal wiring layer, cleaning the opening, forming a metal wiring line protecting film in the opening, such that the metal wiring line protecting film covers the lower metal wiring layer, washing the opening to remove the metal wiring line protecting film, such that a top surface of the lower metal wiring layer is exposed, and drying the substrate.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: January 12, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-hwan Oh, Hong-seong Son, Sang-min Lee, Ju-hyuck Chung
  • Publication number: 20090321927
    Abstract: To provide a small, high-performance semiconductor device in which contact between adjacent wires is prevented for increased flexibility in designing a wiring layout, and an efficient method for manufacturing the semiconductor device. The semiconductor device includes a substrate 10 having an electrode 21A arranged on its surface; and a first semiconductor element 11A which includes an electrode 22 arranged on its surface and which is supported by the substrate 10, wherein a first wire 41 is connected through a first bump 31 to at least one of the electrodes over the substrate 10 and semiconductor element 11A (i.e., at least one of the electrodes 21 and 22), and a second wire 42 is connected through a second bump 32 to a bonding portion of the wire 41.
    Type: Application
    Filed: September 11, 2009
    Publication date: December 31, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Takao Nishimura, Yoshiaki Narisawa
  • Publication number: 20090321897
    Abstract: A method and/or an apparatus of power ring positioning to minimize crosstalk are disclosed. In one embodiment, a method includes generating an array of fingers between a power ring and a die, applying a signal wire between a bond pad of the die and a particular finger of the array of fingers, and applying a shielding wire between an adjacent bond pad and the power ring, such that the shielding wire is longer than the signal wire and does not couple to any of the array of fingers. The shielding wire may be placed between adjacent ones of the signal wire to minimize crosstalk between the adjacent ones of the signal wire.
    Type: Application
    Filed: July 23, 2009
    Publication date: December 31, 2009
    Inventors: Anwar Ali, Tauman T. Lau, Kalyan Doddapaneni
  • Patent number: 7632709
    Abstract: A method of manufacturing a wafer level package is disclosed. The method may include stacking an insulation layer over a wafer substrate; processing a via hole in the insulation layer; forming a seed layer over the insulation layer; forming a plating resist, which is in a corresponding relationship with a redistribution pattern, over the seed layer; forming the redistribution pattern, which includes a terminal for external contact, by electroplating; and coupling a conductive ball to the terminal. As multiple redistribution layers can be formed using inexpensive PCB processes, the manufacturing costs can be reduced, and the stability and efficiency of the process can be increased.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: December 15, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hyung-Jin Jeon, Sung Yi, Young-Do Kweon, Jong-Yun Lee, Joon-Seok Kang, Seung-Wook Park
  • Patent number: 7626650
    Abstract: The present invention provides a technique, by which it is possible to obtain a liquid crystal display panel with high precision by forming very fine pattern of electroconductive film through linking of the areas with different widths, and it is also possible to reduce the number of processes. Like a wide-width electroconductive film and a narrow-width electroconductive film, most of the surface of an underlying film UW of a thin-film transistor substrate SUB1 is turned to lyophobic portion RA, and only the narrow-width gate electrode forming area is turned to lyophilic portion FA. An electroconductive ink is dropped evenly to the gate electrode forming area of the lyophilic portion FA, and a wide-width gate line is formed on the gate line forming area GLA of lyophobic portion RA by direct drawing of IJ.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: December 1, 2009
    Assignee: Future Vision Inc.
    Inventor: Yoshikazu Yoshimoto
  • Patent number: 7621436
    Abstract: A wire bonding method including the steps of: descending a capillary 5 from above an external lead 1 to press a wire 10 to such an extent that the wire is not completely connected to the external lead 1, thus forming a thin part 16 in the wire; next ascending the capillary 5 and the thin part 16 to substantially the same height as a first bonding point A, then moving the capillary 5 in a direction away from the first bonding point A, thus making a linear wire portion 18 and then cutting the wire at the thin part 16; then connecting the end 19 (thin part) of the linear wire portion 18 and the wire tip end 20 at the lower end of the capillary 5 are connected to the external lead 1; and then separating the wire tip end 20 from the external lead 1.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: November 24, 2009
    Assignee: Kabushiki Kaisha Shinkawa
    Inventors: Tatsunari Mii, Toshihiko Toyama, Hiroaki Yoshino
  • Patent number: 7612895
    Abstract: An apparatus and a method for semiconductor wafer bonding provide in-situ and real time monitoring of semiconductor wafer bonding time. Deflection of the wafer edges during the last phase of the direct bonding process indicates the end of the bonding process. The apparatus utilizes a distance sensor to measure the deflection of the wafer edges and the bonding time is measured as the time between applying the force (bonding initiation) and completion of the bonding process. The bonding time is used as a real-time quality control parameter for the wafer bonding process.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: November 3, 2009
    Assignee: SUSS MicroTec Inc
    Inventors: Markus Gabriel, Matthew Stiles
  • Patent number: 7605478
    Abstract: Provided are a semiconductor package and a method of manufacturing the semiconductor package, and more particularly, a semiconductor package with bonding wires and a method of manufacturing the semiconductor package. The semiconductor package includes a substrate including a finger, at least one semiconductor chip stacked on the substrate, the semiconductor chip including a chip pad, and a wire which electrically connects the finger with the chip pad, wherein one end of the wire bonds with an upper surface and lateral surfaces of the finger.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 20, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Man Kim, Sun-Mo Yang, Chang-Hoon Han
  • Patent number: 7601628
    Abstract: Methods of forming wire and solder bonds are disclosed. In one embodiment, a method includes providing a structure including a wire bond metal region for the wire bond and a solder bond metal region for the solder bond, both regions covered by a silicon nitride layer over a silicon oxide layer; forming in a material a first opening to the silicon oxide layer over the wire bond metal region and a second opening exposing the solder bond metal region; forming the solder bond to the solder bond metal region while the wire bond metal region is covered; exposing the wire bond metal region including removing the silicon oxide layer to the wire bond metal region; and forming the wire bond to the wire bond metal region. Wire bonds and solder bonds can be made accessible on a single multi-part wafer (MPW) or on a single chip, if necessary, and can be formed substantially simultaneously.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: October 13, 2009
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter
  • Patent number: 7592246
    Abstract: An improved wire bond is provided with the bond pads of semiconductor devices and the lead fingers of lead frames or an improved conductive lead of a TAB tape bond with the bond pad of a semiconductor device. More specifically, an improved wire bond is described wherein the bond pad on a surface of the semiconductor device comprises a layer of copper and at least one layer of metal and/or at least a barrier layer of material between the copper layer and one layer of metal on the copper layer to form a bond pad.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 22, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 7582553
    Abstract: The method of bonding flying leads is capable of efficiently supersonic-bonding the flying leads to pads of a board and improving bonding reliability therebetween. The method comprises the steps of: mechanically processing the board so as to form projections, which act as margins for deformation, in boding faces of the pads, on each of which the flying lead will be bonded, positioning the flying leads to correspond to the pads; and applying supersonic vibrations to a bonding tool so as to deform and crush the projections, whereby the flying leads are respectively bonded to the pads.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: September 1, 2009
    Assignee: Fujitsu Limited
    Inventors: Takashi Kubota, Kenji Kobae, Kimio Nakamura
  • Patent number: 7579267
    Abstract: A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) bonded to the substrate contact. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via bonded to the substrate contact, and a contact on the wire. A stacked semiconductor component includes the semiconductor substrate, and a second semiconductor substrate stacked on the substrate and bonded to a through wire interconnect on the substrate. A method for fabricating a semiconductor component with a through wire interconnect includes the steps of providing a semiconductor substrate with a substrate contact, forming a via through the substrate contact and part way through the substrate, placing the wire in the via, bonding the wire to the substrate contact, and then thinning the substrate from a second side to expose a contact on the wire.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: August 25, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, David R. Hembree
  • Patent number: 7579268
    Abstract: A method of manufacturing an integrated circuit including a first isolated chip electrically and mechanically connected via wafer bonding to a second isolated chip, wherein the active faces of the chips face one another, includes: forming metallic contact zones on active faces of first and second wafers, positioning and fixing the wafers one above another at a predetermined distance such that the active faces of the wafers face one another and the contact zones are aligned, placing the fixed wafers in a bath for electroless metal deposition onto the contact zones; and removing the fixed wafers in the event that the metal layers growing on the aligned contact zones of the first and second wafers have grown together.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 25, 2009
    Assignee: Infineon Technologies AG
    Inventor: Horst Theuss
  • Patent number: 7579217
    Abstract: An electrically and thermally enhanced die-up tape substrate ball grid array (BGA) package and die-up plastic substrate BGA package are described. A substrate that has a first surface and a second surface is provided. The stiffener has a first surface and a second surface. The second stiffener surface is attached to the first substrate surface. An IC die has a first surface and a second surface. The first IC die surface is mounted to the first stiffener surface. A plurality of solder balls is attached to the second substrate surface. In one aspect, a heat spreader is mounted to the second IC die surface. In another aspect, the stiffener is coupled to ground to act as a ground plane. In another aspect, the substrate has a window opening that exposes a portion of the second stiffener surface. The exposed portion of the second stiffener surface is configured to be coupled to a printed circuit board (PCB). In another aspect, a metal ring is attached to the first stiffener surface.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: August 25, 2009
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Rezaur Rahman Khan
  • Patent number: RE41355
    Abstract: The present invention provides a bonding pad structure for integrated circuit devices which allows the active circuits to be placed under bonding pads of the device without affecting the performance of the active circuits. The bonding pad structure is composed of at least two metal layers overlying the active circuits so that the bonding pad may be subjected to thermal and mechanical stresses without damaging the underlying active circuits. The metal layer underlying the bonding pad is patterned and etched forming an array of openings in the metal that may take any shape, e.g. slots, grid, circles. The present invention enables a reduction in the chip area and eliminates the parasitic resistance due to long interconnection wires between bonding pads and active regions.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: May 25, 2010
    Assignee: Intel Corporation
    Inventors: Gregory D. Sabin, William J. Gross, Jung-Yueh Chang
  • Patent number: RE41478
    Abstract: A semiconductor device comprising a semiconductor pellet mounted on a pellet mounting area of the main surface of a base substrate, in which first electrode pads arranged on the back of the base substrate are electrically connected to bonding pads arranged on the main surface of the semiconductor pellet. The base substrate is formed of a rigid substrate, and its first electrode pads are electrically connected to the second electrode pads arranged on its reverse side. The semiconductor pellet is mounted on the pellet mounting area of the main surface of the base substrate, with its main surface downward, and its bonding pads are connected electrically with the second electrode pads of the base substrate through bonding wires passing through slits formed in the base substrate.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: August 10, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Atsushi Nakamura, Kunihiko Nishi