At Least One Metallization Level Formed Of Diverse Conductive Layers Patents (Class 438/625)
  • Patent number: 11515255
    Abstract: The present disclosure relates to an integrated circuit having a conductive interconnect disposed on a dielectric over a substrate. A first liner is arranged along an upper surface of the conductive interconnect. A barrier layer is arranged along a lower surface of the conductive interconnect and contacts an upper surface of the dielectric. The barrier layer and the first liner surround the conductive interconnect. A second liner is located over the first liner and has a lower surface contacting the upper surface of the dielectric.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Jen Sung, Chih-Chiang Chang, Chia-Ho Chen
  • Patent number: 11355391
    Abstract: The present disclosure generally relates to methods for processing of substrates, and more particularly relates to methods for forming a metal gapfill. In one implementation, the method includes forming a metal gapfill in an opening using a multi-step process. The multi-step process includes forming a first portion of the metal gapfill, performing a sputter process to form one or more layers on one or more side walls, and growing a second portion of the metal gapfill to fill the opening with the metal gapfill. The metal gapfill formed by the multi-step process is seamless, and the one or more layers formed on the one or more side walls seal any gaps or defects between the metal gapfill and the side walls. As a result, fluids utilized in subsequent processes do not diffuse through the metal gapfill.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: June 7, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xi Cen, Feiyue Ma, Kai Wu, Yu Lei, Kazuya Daito, Yi Xu, Vikash Banthia, Mei Chang, He Ren, Raymond Hoiman Hung, Yakuan Yao, Avgerinos V. Gelatos, David T. Or, Jing Zhou, Guoqiang Jian, Chi-Chou Lin, Yiming Lai, Jia Ye, Jenn-Yue Wang
  • Patent number: 11315830
    Abstract: Techniques are provided to fabricate metal interconnects using liner planarization-free process flows. A sacrificial layer is formed on a dielectric layer, and the sacrificial and dielectric layers are patterned to form an opening in the dielectric layer. A conformal liner layer is deposited, and a metal layer deposited to form a metal interconnect in the opening. An overburden portion of the metal layer is planarized to expose an overburden portion of the liner layer. A first wet etch is performed to selectively remove the overburden portion of the liner layer. A second wet etch process is performed to selectively remove the sacrificial layer, resulting in extended portions of the liner layer and the metal interconnect extending above a surface of the dielectric layer. A dielectric capping layer is formed to cover the sidewall and upper surfaces of the extended portions of the liner layer and the metal interconnect.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: April 26, 2022
    Assignee: International Business Machines Corporation
    Inventors: Cornelius Brown Peethala, Kedari Matam, Chih-Chao Yang, Theo Standaert
  • Patent number: 11211317
    Abstract: A component carrier and a method of manufacturing the same are disclosed. The component carrier includes a stack having at least one electrically conductive layer structure and/or at least one electrically insulating layer structure, a component embedded in the stack, and at least one vertical through connection extending between two opposing main surfaces of and through the component.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: December 28, 2021
    Assignee: AT&S Austria Technologie & Systemtechnik Aktiengesellschaft
    Inventor: Mikael Tuominen
  • Patent number: 11183455
    Abstract: An interconnect structure of an integrated circuit (IC) in which dielectric material defines upper and lower cavities and a via cavity communicative with the upper and lower cavities at upper and lower ends thereof. The interconnect structure includes first conductive material filling the upper and lower cavities to form upper and lower lines, respectively and second conductive material filling the via cavity from the upper end thereof to the lower end thereof to form a via electrically communicative with the upper and lower lines.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: November 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Koichi Motoyama, Oscar van der Straten, Kenneth Chun Kuen Cheng, Joseph F. Maniscalco
  • Patent number: 11183650
    Abstract: A display substrate includes a first conductive layer on a base substrate, a first insulation layer on the first conductive layer, a second conductive layer on the first insulation layer, a second insulation layer on the second conductive layer, and a third conductive layer on the second insulation layer. The third conductive layer is connected to the first conductive layer and the second conductive layer through a contact hole passing through the first insulation layer, the second conductive layer, and the second insulation layer. A sidewall of the contact hole has a stepped shape.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 23, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Myounggeun Cha, Sanggun Choi, Meejae Kang, Sanggab Kim, Joon woo Bae, Thanh Tien Nguyen, Kyoungwon Lee, Yongsu Lee
  • Patent number: 11037874
    Abstract: An electronic device comprises an integrated circuit (IC) die including a first plurality of contact pads; and a plurality of stacked interconnect layers. The plurality of stacked interconnect layer include a first interconnect layer including a first conductive plane, a first vertical interconnect portion, and dielectric material isolating the first vertical interconnect portion from the first conductive plane; and a second interconnect layer including a second conductive plane contacting the first conductive plane, a second vertical interconnect portion contacting the first vertical interconnect portion, and the dielectric material isolating the second vertical interconnect portion from the second conductive plane; wherein the first and second vertical interconnect portions are included in a first vertical interconnect through the first and second conductive planes that contacts a first contact pad of the first plurality of contact pads.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: June 15, 2021
    Assignee: Intel Corporation
    Inventors: Bok Eng Cheah, Jackson Chung Peng Kong, Jenny Shio Yin Ong, Seok Ling Lim
  • Patent number: 11004730
    Abstract: An interconnect structure and a method of forming are provided. The method includes forming an opening in a dielectric layer and an etch stop layer, wherein the opening extends only partially through the etch stop layer. The method also includes creating a vacuum environment around the device. After creating the vacuum environment around the device, the method includes etching through the etch stop layer to extend the opening and expose a first conductive feature. The method also includes forming a second conductive feature in the opening.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ching Tsai, Yi-Wei Chiu, Hung Jui Chang, Li-Te Hsu
  • Patent number: 10879289
    Abstract: A method for fabricating a semiconductor device is provided. The method includes forming a metal catalyst layer on an etching area of the semiconductor substrate; performing a wet etch process to the semiconductor substrate to etch the etching area of the semiconductor substrate under the metal catalyst layer, thereby forming a trench in the semiconductor substrate; and removing the metal catalyst layer from the semiconductor substrate after performing the wet etch process.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Yu Lin, Keng-Ying Liao, Huai-Jen Tung, Po-Zen Chen, Su-Yu Yeh, Chia-Yun Chen, Ta-Cheng Wei
  • Patent number: 10600728
    Abstract: A method of manufacturing a through-hole electrode substrate includes forming a plurality of through-holes in a substrate, forming a plurality of through-hole electrodes by filling a conductive material into the plurality of through-holes, forming a first insulation layer on one surface of the substrate, forming a plurality of first openings which expose the plurality of through-hole electrodes corresponding to each of the plurality of through-hole electrodes, on the first insulation layer and correcting a position of the plurality of first openings using the relationship between a misalignment amount of a measured distance value of an open position of a leaning through-hole among the plurality of through-holes and of a design distance value of the open position of the leaning through-hole among the plurality of through-holes with respect to a center position of the substrate.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: March 24, 2020
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Takamasa Takano
  • Patent number: 10553607
    Abstract: A method of forming an array of elevationally-extending strings of memory cells comprises forming and removing a portion of lower-stack memory cell material that is laterally across individual bases in individual lower channel openings. Covering material is formed in a lowest portion of the individual lower channel openings to cover the individual bases of the individual lower channel openings. Upper channel openings are formed into an upper stack to the lower channel openings to form interconnected channel openings individually comprising one of the individual lower channel openings and individual of the upper channel openings. A portion of upper-stack memory cell material that is laterally across individual bases in individual upper channel openings is formed and removed. After the removing of the portion of the upper-stack memory cell material, the covering material is removed from the interconnected channel openings.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 4, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Collin Howder, Justin B. Dorhout, Anish A. Khandekar, Mark W. Kiehlbauch, Nancy M. Lomeli
  • Patent number: 10361115
    Abstract: A method of forming an electrical transmission structure that includes forming an opening through an interlevel dielectric layer to expose at least one electrically conductive feature and forming a shield layer on the opening. A gouge is formed in the electrically conductive feature through the opening using a subtractive method during which the shield layer protects the interlevel dielectric layer from being damaged by the subtractive method. A contact is formed within the opening in electrical communication with the at least one electrically conductive feature.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Conal E. Murray, Chih-Chao Yang
  • Patent number: 10211349
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: February 19, 2019
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, David D. Smith, Peter John Cousins
  • Patent number: 10170358
    Abstract: A method of forming an electrical transmission structure that includes forming an opening through an interlevel dielectric layer to expose at least one electrically conductive feature and forming a shield layer on the opening. A gouge is formed in the electrically conductive feature through the opening using a subtractive method during which the shield layer protects the interlevel dielectric layer from being damaged by the subtractive method. A contact is formed within the opening in electrical communication with the at least one electrically conductive feature.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Conal E. Murray, Chih-Chao Yang
  • Patent number: 10109586
    Abstract: Methods are devices are provided in which interconnection structures are formed using metal reflow techniques. For example, a method to fabricate a semiconductor device includes forming an opening in an ILD (inter-level dielectric) layer. The opening includes a via hole and a trench. A layer of diffusion barrier material is deposited to cover the ILD layer and to line the opening with the diffusion barrier material. A layer of first metallic material is deposited on the layer of diffusion barrier material to cover the ILD layer and to line the opening with the first metallic material. A reflow process is performed to allow the layer of first metallic material to reflow into the opening and at least partially fill the via hole with the first metallic material. A layer of second metallic material is deposited to at least partially fill a remaining portion of the opening in the ILD layer.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: October 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Conal E. Murray, Chih-Chao Yang
  • Patent number: 10096544
    Abstract: The present disclosure provides an interconnect structure for a semiconductor device. The interconnect structure includes a first metal layer that contains a first metal line. The interconnect structure includes a dielectric layer located over the first metal layer. The dielectric layer contains a first sub-via electrically coupled to the first metal line and a second sub-via electrically coupled to the first sub-via. The second sub-via is different from the first sub-via. The interconnect structure includes a second metal layer located over the dielectric layer. The second metal layer contains a second metal line electrically coupled to the second sub-via. No other metal layer is located between the first metal layer and the second metal layer.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: October 9, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Ming Lai, Wen-Chun Huang, Ru-Gun Liu, Pi-Tsung Chen
  • Patent number: 9985207
    Abstract: A method of producing an electronic device including the steps of: (i) providing a body including a first, conductive element separated from a first surface of said body by a portion of said body; (ii) removing a selected portion of said body to define a recess in said body extending from said first surface and via which a portion of said first element is exposed; and (iii) putting into said recess a liquid medium carrying a first material; wherein said first material is preferentially deposited on the exposed inner surface of said body defining said recess, and wherein the deposited first material is used to provide a connection between said first element and a second conductive element located within said body or later deposited over said first surface of said body.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: May 29, 2018
    Assignee: FLEXENABLE LIMITED
    Inventors: Carl Hayton, Henning Sirringhaus, Timothy Von Werne, Shane Norval
  • Patent number: 9917051
    Abstract: Conductive structures and method of manufacture thereof are disclosed. A barrier layer can line the first recess of a substrate. A first seed layer can be formed on the barrier layer and line a bottom of the first recess and partially line sidewalls of the recess. A first conductive material can partially fill the first recess to form a second recess. The top surface of the first conductive material can coincide with a vertical extent of the first seed layer and have a depression formed therein. A second seed layer can be formed on the barrier layer and line the second recess. A second conductive material can fill the second recess.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: March 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pin-Wen Chen, Chih-Wei Chang
  • Patent number: 9287212
    Abstract: A semiconductor device is disclosed. The device includes a substrate, a first dielectric layer disposed over the substrate and a metal structure disposed in the first dielectric layer and below a surface of the first dielectric layer. The metal structure has a such shape that having an upper portion with a first width and a lower portion with a second width. The second width is substantially larger than the first width. The semiconductor device also includes a sub-structure of a second dielectric positioned between the upper portion of the metal structure and the first dielectric layer.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: March 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yuan Ting, Chung-Wen Wu
  • Patent number: 9231038
    Abstract: EL display has a luminescence unit having a luminescence layer being disposed between a pair of electrodes and a thin film transistor array unit controlling luminescence of the luminescence unit. An interlayer insulation film is disposed between the luminescence unit and the transistor array unit. An anode of the luminescence unit is connected electrically to the thin film transistor array via a contact hole of the interlayer insulation film. The thin film transistor array further has a current supplying relaying electrode that is connected to the anode of the luminescence unit via the contact hole of the interlayer insulation film. A diffusion prevention film is formed on the boundary face of the anode of the luminescence unit and the relaying electrode.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: January 5, 2016
    Assignee: JOLED INC
    Inventors: Yasuharu Shinokawa, Ken Ito
  • Patent number: 9209128
    Abstract: A method of forming an integrated circuit assembly includes forming an insulator layer on a preliminary semiconductor assembly. The preliminary semiconductor assembly includes a semiconductor substrate having a first side and a second side opposite the first side, a semiconductor circuitry layer formed on the first side of the semiconductor substrate, and a conductive via extending through the semiconductor substrate from the semiconductor circuitry layer to the second side. The insulator is formed on the second side and an end of the conductive via. The method includes forming a polymer layer on the insulator layer, removing a quantity of the polymer layer sufficient to expose the end of the conductive via through the insulator layer, and forming a conductive contact on the polymer layer and the end of the conductive via.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: December 8, 2015
    Assignees: International Business Machines Corporation, HITACHI CHEMICAL DUPONT MICROSYSTEMS, L.L.C.
    Inventors: Paul S. Andry, Sarah H. Knickerbocker, Ron R. Legario, Cornelia K. Tsang, Melvin P. Zussman
  • Patent number: 9196591
    Abstract: A method of forming a semiconductor structure includes forming a recess within a silicon substrate of an IC chip near a circuit of the IC chip. A metal layer is formed in the recess and the IC chip is exposed to an oxygen-containing environment to initiate the oxidation of a portion of the silicon substrate below the metal layer and adjacent to the circuit. The oxidation process consumes the portion of the silicon substrate below the metal layer forming a silicon dioxide layer that damages the circuit and causes the IC chip to be inoperable. The time to oxidize the portion of the silicon substrate below the metal layer and damage the circuit represents the shelf life of the IC chip.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: November 24, 2015
    Assignee: International Business Machines Corporation
    Inventor: Effendi Leobandung
  • Patent number: 9111938
    Abstract: A structure having a diffusion barrier positioned adjacent to a sidewall and a bottom of an opening being etched in a layer of dielectric material. The structure also having a metal liner positioned directly on top of the diffusion barrier, a seed layer positioned directly on top of the metal liner, wherein the seed layer is made from a material comprising copper, a copper material positioned directly on top of the seed layer, a metallic cap positioned directly on top of and selective to the copper material, and a capping layer positioned directly on top of and adjacent to the metallic cap.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: August 18, 2015
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES, INC., Renesas Electronics Corporation, STMICROELECTRONICS, INC.
    Inventors: Frieder H. Baumann, Tibor Bolom, Chao-Kun Hu, Koichi Motoyama, Chengyu Niu, Andrew H. Simon
  • Patent number: 9099344
    Abstract: A method of electroplating includes forming a seed region to be electroplated on a first portion of a substrate, forming a ground plane on a second portion of a substrate, electrically isolating the ground plane from the seed region, electroplating the region, wherein electroplating includes causing the ground plane and the region to make electrical connection, and then removing the ground plane region on the second portion of the substrate, but not removing the electrical isolation. This creates a structure having a substrate, a passivation layer on the substrate, and at least one electroplated, metal region on the substrate such that there is contiguous contact between the metal region and the passivation layer. And, after an additional flip-chip assembly to a bond pad/heat sinking chip, results in a device having a bond pad chip having bond pads, solder beads formed on the bond pads, and a component connected to the bond pads by the solder beads.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: August 4, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Clifford F. Knollenberg, Mark R. Teepe, Christopher Chua
  • Patent number: 9064819
    Abstract: This disclosure relates to a post-etch treating method. An opening is formed by etching a stacked structure of a dielectric layer, an intermediate layer and a metal hard mask layer arranged in order from bottom to top. The treating method sequentially comprises steps of: performing a first cleaning process on the stacked structure with the opening so as to remove at least a part of the metal hard mask layer; and performing a second cleaning process on the stacked structure with the opening so as to remove etching residues.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 23, 2015
    Assignee: Semiconductor Manufacturing Internation (Beijing) Corporation
    Inventors: Haiyang Zhang, Minda Hu, Junqing Zhou, Dongjiang Wang
  • Patent number: 9054161
    Abstract: A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes providing a substrate and depositing a conductive layer on the substrate. A patterned hard mask and a catalyst layer are formed on the conductive layer. The method further includes growing a plurality of carbon nanotubes (CNTs) from the catalyst layer and etching the conductive layer by using the CNTs and the patterned hard mask as an etching mask to form metal features.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: June 9, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Fu Yeh, Hsiang-Huan Lee, Chao-Hsien Peng, Hsien-Chang Wu
  • Patent number: 9034664
    Abstract: A method of repairing hollow metal void defects in interconnects and resulting structures. After polishing interconnects, hollow metal void defects become visible. The locations of the defects are largely predictable. A repair method patterns a mask material to have openings over the interconnects (and, sometimes, the adjacent dielectric layer) where defects are likely to appear. A local metal cap is formed in the mask openings to repair the defect. A dielectric cap covers the local metal cap and any recesses formed in the adjacent dielectric layer.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Junjing Bao, Samuel S. Choi, Ronald G. Filippi, Naftali E. Lustig, Andrew H. Simon
  • Patent number: 9006095
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a workpiece including a conductive feature formed in a first insulating material and a second insulating material disposed over the first insulating material. The second insulating material has an opening over the conductive feature. The method includes forming a graphene-based conductive layer over an exposed top surface of the conductive feature within the opening in the second conductive material, and forming a carbon-based adhesive layer over sidewalls of the opening in the second insulating material. A carbon nano-tube (CNT) is formed in the patterned second insulating material over the graphene-based conductive layer and the carbon-based adhesive layer.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Yi Yang, Ming Han Lee, Hsiang-Huan Lee, Hsien-Chang Wu
  • Publication number: 20150069489
    Abstract: According to an embodiment, a non-volatile storage device includes a first layer, a second layer formed on the first layer, a stacked body including a plurality of conductive films stacked on the second layer, and a semiconductor pillar which penetrates the stacked body and the second layer and reaches the first layer. The semiconductor pillar includes a semiconductor film formed along an extending direction of the semiconductor pillar, and a memory film which covers a periphery of the semiconductor film. The memory film includes a first portion formed between the stacked body and the semiconductor film and a second portion formed between the second layer and the semiconductor film. An outer periphery of the second portion in a plane perpendicular to the extending direction is wider than an outer periphery of the first portion on a second layer side of the stacked body.
    Type: Application
    Filed: March 2, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaaki HIGUCHI, Masaru KITO, Masao SHINGU
  • Patent number: 8975749
    Abstract: A method of making a semiconductor device includes forming a dielectric layer over a semiconductor substrate. The method further includes forming a copper-containing layer in the dielectric layer, wherein the copper-containing layer has a first portion and a second portion. The method further includes forming a first barrier layer between the first portion of the copper-containing layer and the dielectric layer. The method further includes forming a second barrier layer at a boundary between the second portion of the copper-containing layer and the dielectric layer wherein the second barrier layer is adjacent to an exposed portion of the dielectric layer. The first barrier layer is a dielectric layer, and the second barrier layer is a metal oxide layer, and a boundary between a sidewall of the copper-containing layer and the first barrier layer is free of the second barrier layer.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Wei Liu, Zhen-Cheng Wu, Cheng-Lin Huang, Po-Hsiang Huang, Yung-Chih Wang, Shu-Hui Su, Dian-Hau Chen, Yuh-Jier Mii
  • Patent number: 8969196
    Abstract: A semiconductor device can include an insulation layer on that is on a substrate on which a plurality of lower conductive structures are formed, where the insulation layer has an opening. A barrier layer is on a sidewall and a bottom of the opening of the insulation layer, where the barrier layer includes a first barrier layer in which a constituent of a first deoxidizing material is richer than a metal material in the first barrier layer and a second barrier layer in which a metal material in the second barrier layer is richer than a constituent of a second deoxidizing material. An interconnection is in the opening of which the sidewall and the bottom are covered with the barrier layer, the interconnection is electrically connected to the lower conductive structure.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Park, Gil-Heyun Choi, Byung-Lyul Park, Jong-Myeong Lee, Zung-Sun Choi, Hye-Kyung Jung
  • Patent number: 8956918
    Abstract: A method for manufacturing a chip arrangement in accordance with various embodiments may include: placing a chip on a carrier within an opening of a metal structure disposed over the carrier; fixing the chip to the metal structure; removing the carrier to thereby expose at least one contact of the chip; and forming an electrically conductive connection between the at least one contact of the chip and the metal structure.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 17, 2015
    Assignee: Infineon Technologies AG
    Inventor: Petteri Palm
  • Publication number: 20150041982
    Abstract: Some implementations provide a semiconductor device (e.g., die) that includes a substrate, several metal layers and dielectric layers coupled to the substrate, a pad coupled to one of the plurality of metal layers, a first metal redistribution layer coupled to the pad, and a second metal redistribution layer coupled to the first metal redistribution layer. The second metal redistribution layer includes a cobalt tungsten phosphorous material. In some implementations, the first metal redistribution layer is a copper layer. In some implementations, the semiconductor device further includes a first underbump metallization (UBM) layer and a second underbump metallization (UBM) layer.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Christine Sung-An Hau-Riege, You-Wen Yau, Kevin Patrick Caffey, Lizabeth Ann Keser, Gene H. McAllister, Reynante Tamunan Alvarado, Steve J. Bezuk, Damion Bryan Gastelum
  • Patent number: 8951814
    Abstract: A device and method for providing access to a signal of a flip chip semiconductor die. A hole is bored into a semiconductor die to a test probe point. The hole is backfilled with a conductive material, electrically coupling the test probe point to a signal redistribution layer. A conductive bump of the signal redistribution layer is electrically coupled to a conductive contact of a package substrate. An external access point of the package substrate is electrically coupled to the conductive contact, such that signals of the flip chip semiconductor die are accessible for measurement at the external access point.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: February 10, 2015
    Assignee: NVIDIA Corporation
    Inventors: Brian S. Schieck, Howard Lee Marks
  • Patent number: 8951900
    Abstract: The present disclosure is directed to, among other things, an illustrative method that includes forming an opening in a dielectric material of a contact level of a semiconductor device, and selectively depositing a conductive material in the opening to form a contact element therein, the contact element extending to a contact area of a circuit element and having a laterally restricted excess portion formed outside of the opening and above the dielectric material. The disclosed method further includes forming a sacrificial material layer above the dielectric material and the contact element, the sacrificial material layer surrounding the laterally restricted excess portion. Additionally, the method includes planarizing a surface topography of the contact level in the presence of the sacrificial material so as to remove the laterally restricted excess portion from above the dielectric material.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: February 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Axel Preusse, Norbert Schroeder, Uwe Stoeckgen
  • Patent number: 8889543
    Abstract: A method of fabricating a semiconductor device includes forming switching devices on a substrate. A lower structure is formed in the substrate having the switching devices. A lower conductive layer is formed on the lower structure. Sacrificial mask patterns are formed on the lower conductive layer. Lower conductive patterns are formed by etching the lower conductive layer using the sacrificial mask patterns as an etch mask. An interlayer insulating layer is formed on the substrate having the lower conductive patterns. Interlayer insulating patterns are formed by planarizing the interlayer insulating layer until the sacrificial mask patterns are exposed. Openings exposing the lower conductive patterns are formed by removing the exposed sacrificial mask patterns. Upper conductive patterns self-aligned with the lower conductive patterns are formed in the openings.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Min Baek, In-Sun Park, Jong-Myeong Lee, Jong-Won Hong, Hei-Seung Kim, Jung-Soo Yoon
  • Patent number: 8877632
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for providing void-free filled interconnect structures in a dielectric layer of a package assembly. In one embodiment, the method for providing a void-free filled interconnect structure may include forming a through hole through a layer of a package substrate, and depositing a conductive material to fill the through hole. Depositing the conductive material may be performed while gradually increasing a current density of the conductive material and correspondingly changing a flow rate of the conductive material. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: November 4, 2014
    Assignee: Intel Corporation
    Inventors: Amanda E. Schuckman, Mark S. Hlad
  • Patent number: 8841210
    Abstract: According to one embodiment, a semiconductor device manufacturing method includes: forming a film to be a first metal layer on a substrate where an element portion is formed; forming a first insulating layer provided with an opening on the film to be the first metal layer; forming a second metal layer in the opening of the first insulating layer; eliminating the first insulating layer; eliminating the film to be the first metal layer with the second metal layer used as a mask so as to form the first metal layer; and forming an electrode portion by covering exposed surfaces of the first metal layer and the second metal layer with a third metal layer including a metal of a smaller ionization tendency than the metal of the second metal layer.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: September 23, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomomi Kuraguchi
  • Publication number: 20140225265
    Abstract: Interconnect packaging technology for direct-chip-attach, package-on-package, or first level and second level interconnect stack-ups with reduced Z-heights relative to ball technology. In embodiments, single or multi-layered interconnect structures are deposited in a manner that permits either or both of the electrical and mechanical properties of specific interconnects within a package to be tailored, for example based on function. Functional package interconnects may vary one of more of at least material layer composition, layer thickness, number of layers, or a number of materials to achieve a particular function, for example based on an application of the component(s) interconnected or an application of the assembly as a whole. In embodiments, parameters of the multi-layered laminated structures are varied dependent on the interconnect location within an area of a substrate, for example with structures having higher ductility at interconnect locations subject to higher stress.
    Type: Application
    Filed: March 29, 2012
    Publication date: August 14, 2014
    Inventors: Rajen S. Sidhu, Ashay A. Dadi, Martha A. Dudek
  • Patent number: 8796858
    Abstract: A virtually substrate-less composite power semiconductor device (VSLCPSD) and method are disclosed. The VSLCPSD has a power semiconductor device (PSD), a front-face device carrier (FDC) made out of a carrier material and an intervening bonding layer (IBL). Both carrier and IBL material can be conductive or non-conductive. The PSD has back substrate portion, front semiconductor device portion with patterned front-face device metallization pads and a virtually diminishing thickness TPSD. The FDC has patterned back-face carrier metallizations contacting the front-face device metallization pads, patterned front-face carrier metallization pads and numerous parallelly connected through-carrier conductive vias respectively connecting the back-face carrier metallizations to the front-face carrier metallization pads. The FDC thickness TFDC is large enough to provide structural rigidity to the VSLCPSD.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: August 5, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Tao Feng, Yueh-Se Ho
  • Publication number: 20140187037
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of semiconductor structures over a substrate, forming an interlayer dielectric layer over the semiconductor structures, etching the interlayer dielectric layer, and defining open parts between the semiconductor structures to expose a surface of the substrate, forming sacrificial spacers on sidewalls of the open parts, forming conductive layer patterns in the open parts, and causing the conductive layer patterns and the sacrificial spacers to reach each other, and defining air gaps on the sidewalls of the open parts.
    Type: Application
    Filed: March 16, 2013
    Publication date: July 3, 2014
    Applicant: SK HYNIX INC.
    Inventors: Il-Cheol RHO, Jong-Min LEE
  • Patent number: 8765605
    Abstract: A method for manufacturing semiconductor devices includes the steps of annealing an insulating layer and forming a barrier layer including a metal element over the insulating layer. The insulating layer includes a fluorocarbon (CFx) film. The barrier layer is formed by a high-temperature sputtering process after the annealing step.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 1, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masahiro Horigome, Takuya Kurotori, Yasuo Kobayashi, Takaaki Matsuoka, Toshihisa Nozawa
  • Patent number: 8765600
    Abstract: A semiconductor device having a gate on a substrate with source/drain (S/D) regions adjacent to the gate. A first dielectric layer overlays the gate and the S/D regions, the first dielectric layer having first contact holes over the S/D regions with first contact plugs formed of a first material and the first contact plugs coupled to respective S/D regions. A second dielectric layer overlays the first dielectric layer and the first contact plugs. A second contact hole formed in the first and second dielectric layers is filled with a second contact plug formed of a second material. The second contact plug is coupled to the gate and interconnect structures formed in the second dielectric layer, the interconnect structures coupled to the first contact plugs. The second material is different from the first material, and the second material has an electrical resistance lower than that of the first material.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Long Chang, Chih-Ping Chao, Chun-Hung Chen, Hua-Chao Tseng, Jye-Yen Cheng, Harry-Hak-Lay Chuang
  • Patent number: 8736054
    Abstract: A wiring structure for a semiconductor device includes a multilayer metallization having a total thickness of at least 5 ?m and an interlayer disposed in the multilayer metallization with a first side of the interlayer adjoining one layer of the multilayer metallization and a second opposing side of the interlayer adjoining a different layer of the multilayer metallization. The interlayer includes at least one of W, WTi, Ta, TaN, TiW, and TiN or other suitable compound metal or a metal silicide such as WSi, MoSi, TiSi, and TaSi.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 27, 2014
    Assignee: Infineon Technologies AG
    Inventors: Manfred Schneegans, Jürgen Förster
  • Patent number: 8735280
    Abstract: A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes providing a substrate. A conductive layer is deposited on the substrate. A patterned hard mask is formed on the conductive layer and then a patterned photoresist is formed on the patterned hard mask and the conductive layer. A local metal catalyst layer is formed on the conductive layer in the openings of the patterned photoresist. Carbon nanotubes (CNTs) are grown from the local metal catalyst layer. The conductive layer is etched by using the CNTs and the patterned hard mask as etching mask to form metal features. An inter-level dielectric (ILD) layer is deposited between metal features.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 27, 2014
    Inventors: Ching-Fu Yeh, Hsiang-Huan Lee, Chao-Hsien Peng, Hsien-Chang Wu
  • Patent number: 8728931
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 20, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20140131874
    Abstract: A semiconductor apparatus, electronic device, and method of manufacturing the semiconductor apparatus are disclosed. In one example, the semiconductor apparatus comprises a first semiconductor part that includes a first wiring, and a second semiconductor part that is adhered to the first semiconductor part and which includes a second wiring electrically connected to the first wiring. A metallic oxide is formed in at least one of the first wiring and the second wiring.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 15, 2014
    Applicant: SONY CORPORATION
    Inventors: Yoshihisa Kagawa, Naoki Komai
  • Patent number: 8722536
    Abstract: A circuit substrate uses post-fed top side power supply connections to provide improved routing flexibility and lower power supply voltage drop/power loss. Plated-through holes are used near the outside edges of the substrate to provide power supply connections to the top metal layers of the substrate adjacent to the die, which act as power supply planes. Pins are inserted through the plated-through holes to further lower the resistance of the power supply path(s). The bottom ends of the pins may extend past the bottom of the substrate to provide solderable interconnects for the power supply connections, or the bottom ends of the pins may be soldered to “jog” circuit patterns on a bottom metal layer of the substrate which connect the pins to one or more power supply terminals of an integrated circuit package including the substrate.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Daniel Douriet, Francesco Preda, Brian L. Singletary, Lloyd A. Walls
  • Patent number: 8709939
    Abstract: A multilevel interconnect structure in a semiconductor device and methods for fabricating the same are described. The multilevel interconnect structure in the semiconductor device includes a first insulating layer formed on a semiconductor wafer, a Cu interconnect layer formed on the first insulating layer, a second insulating layer formed on the Cu interconnect layer, and a metal oxide layer formed at an interface between the Cu interconnect layer and the second insulating layer. The metal oxide layer is formed by immersion-plating a metal, such as Sn or Zn, on the Cu interconnect layer and then heat-treating the plated layer in an oxidizing atmosphere.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: April 29, 2014
    Assignees: Semiconductor Technology Academic Research Center, National University Corporation Tohoku University
    Inventors: Junichi Koike, Yoshito Fujii, Jun Iijima, Noriyoshi Shimizu, Kazuyoshi Maekawa, Koji Arita, Ryotaro Yagi, Masaki Yoshimaru
  • Patent number: 8679967
    Abstract: The present invention provides apparatus, methods, and systems for fabricating memory lines and structures using double sidewall patterning for four times half pitch relief patterning. The invention includes forming features from a first template layer disposed above a substrate, forming half-pitch sidewall spacers adjacent the features, forming smaller features in a second template layer by using the half-pitch sidewall spacers as a hardmask, forming quarter-pitch sidewall spacers adjacent the smaller features, and forming conductor features from a conductor layer by using the quarter-pitch sidewall spacers as a hardmask. Numerous additional aspects are disclosed.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: March 25, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Roy E. Scheuerlein, Yoichiro Tanaka