Generators Patents (Class 48/61)
  • Patent number: 8696774
    Abstract: A system is provided that comprises a gasifier with an enclosure disposed about a chamber, wherein the enclosure comprises a top wall, a bottom wall, and a side wall between the top and bottom walls. The gasifier also comprises an outlet disposed in the bottom wall, a first injector disposed in the top wall, and a second injector disposed in the side wall, wherein the first and second injectors are configured to inject fuel, oxygen, or a combination thereof, into the chamber.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 15, 2014
    Assignee: General Electric Company
    Inventor: Cliff Yi Guo
  • Patent number: 8696771
    Abstract: A compact integrated combustion reactor is described. In a preferred embodiment, the combustion catalyst is disposed in a staggered configuration such that the hot spot in an adjacent endothermic reaction chamber is substantially less than would occur with a conventional, unstaggered configuration. The integrated reactor may also include a methanation chamber for methanation of a reformate product. Systems containing reactant and product streams, and methods of conducting integrated combustion reactions are also described. A staggered catalyst conformation can be used more broadly for thermal chemical reactions requiring heat transfer in a layered device.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: April 15, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Daniel R. Palo, Jamelyn D. Holladay, Robert A. Dagle, Robert T. Rozmiarek
  • Patent number: 8696772
    Abstract: Systems and methods for producing hydrogen gas with a fuel processing system that includes a hydrogen-producing region that produces hydrogen gas from a feed stream and a heating assembly that consumes a fuel stream to produce a heated exhaust stream for heating the hydrogen-producing region. In some embodiments, the heating assembly heats the hydrogen-producing region to at least a minimum hydrogen-producing temperature. In some embodiments, the rate at which an air stream is delivered to the heating assembly is controlled to selectively increase or decrease the temperature of the heated exhaust stream. In some embodiments, the feed stream and the fuel stream both contain a carbon-containing feedstock and at least 25 wt % water. In some embodiments, the feed and fuel streams have the same composition.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 15, 2014
    Assignee: DCNS SA
    Inventors: David J. Edlund, Darrell J. Elliott, Alan E. Hayes, William A. Pledger, Curtiss Renn, Redwood Stephens, R. Todd Studebaker
  • Patent number: 8696773
    Abstract: In a reforming apparatus, for use in a fuel cell, for reforming a raw fuel into a hydrogen-rich reformed gas, a reformer generates the reformed gas from the raw fuel. A shift reactor reduces carbon monoxide contained in the reformed gas through a shift reaction. A selective oxidation unit reduces the carbon monoxide contained in the reformed gas that has passed through the shift reactor by performing selective oxidation on the carbon monoxide. A reforming reaction tube houses linearly the reformer, the shift reactor and the selective oxidation unit in this order.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 15, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Akira Fuju, Masataka Kadowaki, Kazumi Kobayashi, Kazuaki Nakajima, Yasushi Sato, Ken Samura
  • Patent number: 8690975
    Abstract: The invention provides a system designed for the complete conversion of carbonaceous feedstock into syngas and slag. The system comprises a primary chamber for the volatilization of feedstock generating a primary chamber gas (an offgas); a secondary chamber for the further conversion of processed feedstock to a secondary chamber gas (a syngas) and a residue; a gas-reformulating zone for processing gas generated within one or more of the chambers; and a melting chamber for vitrifying residue. The primary chamber comprises direct or indirect feedstock additive capabilities in order to adjust the carbon content of the feedstock. The system also comprises a control system for use with the gasification system to monitor and regulate the different stages of the process to ensure the efficient and complete conversion of the carbonaceous feedstock into a syngas product.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 8, 2014
    Assignee: Plasco Energy Group Inc.
    Inventors: Andreas Tsangaris, Marc Bacon
  • Patent number: 8690974
    Abstract: A pyrolytic hydrogen generator comprising a pressure vessel containing a plurality of cardboard receptacles for the thermally decomposable hydrogen generating material and an associated ignition system. Also, a modular pellet tray assembly for use in the generator comprises a plurality of trays having pellet holders and associated igniters and held in a stack by support rods that also provide electrical connectivity to the trays. Also, a pellet tray assembly comprises a plurality of pellet holders, wherein some of more outwardly disposed pellet holders contain only outwardly facing vents and are fired first. Also, the generator has an array of hydrogen generating elements arranged side by side and separated from one another into cells by partitioning provided with directional venting that only permits laterally exiting gases to vent outwardly. Alternatively, the elements can be separated into cells by a baffle system comprising gas confining and gas venting elements, which may be heat conductive.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: April 8, 2014
    Assignee: Qinetiq Limited
    Inventors: Darren Paul Scattergood, Graham Manton, Gareth Thomas Flegg, Robert John Vere Churton, Philip Nicholas Barnes, William Ranulf Slee
  • Patent number: 8690976
    Abstract: A fuel reformer is provided that is capable of improving endurance and performance. The fuel reformer includes a first burner having a first-burner first end, a first-burner second end, and a first opening formed in the first-burner first end; a second burner surrounding the first burner and having a second-burner second end, a second-burner second end, and a second opening in the second-burner first end, wherein the second-burner second end is coupled to the first-burner second end to communicate a fluid. The reforming reactor is configured to generate heat from the first and second burners, and has a fuel supply including a nozzle unit in the first burner and supplies a second oxidation fuel from the outside to the first burner. A first oxidation fuel is introduced into the first opening and flows through the first burner in a first direction and flows through the second burner in a third direction opposite to the first direction.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: April 8, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: In-Hyuk Son
  • Patent number: 8690973
    Abstract: There is described a reactor for entrained flow gasification for operation with dust-type or liquid fuels, wherein a number of gasification burners are disposed away from the reactor axis, with the center line of a gasification burner having an oblique position that is other than parallel to the reactor axis, it being possible for said oblique position to extend at different angles up to an angle of 90°. The center line does not necessarily have to intersect the reactor axis; rather the center line can pass the reactor axis at a predetermined distance. This arrangement is associated with a significant reduction in the unwanted discharge of dust-type fine slag, which is difficult to utilize, in conjunction with the possibility of reducing the reactor diameter due to its structure.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 8, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Volker Kirchhübel, Matthias Köhler, Manfred Schingnitz
  • Patent number: 8691115
    Abstract: A system and process for modulating the carbon content of ash produced by a biomass gasification process, for example, to selected levels chosen by an operator, through the controlled injection of steam and controlled introduction of warm air during processing of a biomass feedstock. The system and process include delivering a carbon-containing biomass feedstock to a gasification reactor and producing a syngas and an ash from the biomass feedstock, and regulating the carbon content of the ash between a level at which carbon not present in the ash and a second level at which carbon is present in the ash. The regulating step entails selectively decreasing the moisture level of the biomass feedstock prior to the biomass feedstock being delivered to the gasification reactor and thereby increasing the carbon content of the ash, or increasing a moisture level of a mixture of the biomass feedstock, ash and gases within the gasification reactor and thereby decrease the carbon content of the ash.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 8, 2014
    Assignee: Indiana University Research and Technology Corporation
    Inventor: Peter James Schubert
  • Patent number: 8690972
    Abstract: A hydrogen production system (X1) according to the present invention includes a reforming apparatus (Y1) having a vaporizer (1) and a reforming reactor (2), and a PSA apparatus (5). In the vaporizer (1) a mixed material (hydrocarbon-based material, water, and oxygen) is heated and vaporized. In the reforming reactor (2), steam reforming reaction and partial oxidation reaction of the hydrocarbon-based material take place at a time, so that reformed gas (containing hydrogen) is led out from the vaporized mixed material. In the PSA apparatus (5), the reformed gas is introduced into an adsorption tower loaded with an adsorbing agent, so that an unnecessary component in the gas is adsorbed by the adsorbing agent and hence hydrogen-rich gas is led out of the tower, while the unnecessary component is desorbed from the adsorbing agent, so that hydrogen-containing desorbed gas that contains the unnecessary component and hydrogen remaining in the tower is discharged out of the tower.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: April 8, 2014
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Yoshinori Takata, Masanori Miyake, Toshihiko Sumida
  • Publication number: 20140090296
    Abstract: A quench ring assembly for a high-temperature vessel includes a main structural sub-assembly coupled to at least one lower wall tube. The quench ring assembly also includes a flow control sub-assembly coupled to the main structural sub-assembly and extending circumferentially therethrough. The quench ring assembly further includes a wear sub-assembly removably coupled to the main structural sub-assembly. The wear sub-assembly includes a heat shield canopy extending over the flow control sub-assembly.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: David Clark Talcott
  • Patent number: 8685119
    Abstract: A method and system for producing synthesis gas comprising CO, CO2, and H2 from a carbonaceous stream using an oxygen containing stream. A stream containing a carbonaceous material, and a stream containing oxygen are injected into a gasification reactor, where the carbonaceous stream is partially oxidized to obtain a raw synthesis gas. The raw synthesis gas is removed from the gasification reactor and directed into a quenching section wherein a liquid, preferably water, is injected in the form of a mist.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: April 1, 2014
    Assignee: Shell Oil Company
    Inventors: Robert Erwin Van Den Berg, Franciscus Gerardus Van Dongen, Thomas Paul Von Kossak-Glowczewski, Henrik Jan Van Der Ploeg, Pieter Lammert Zuideveld
  • Patent number: 8685122
    Abstract: Provided is a fuel gasification equipment capable of sufficiently contacting particulates of a solid fuel with a bed material without scattering and reliably completing pyrolysis of the solid fuel to achieve improvement in cold gas efficiency and in C and H conversion rates and reforming of tar in a gasification gas. A fuel supply pipe 14 is connected to a side surface of a gasification furnace 2 at a position lower than an upper surface of a fluidized bed 1 for supplying the solid fuel into the fluidized bed 1. Confluence promoting means 15 is provided to allow the solid fuel supplied from the fuel supply pipe 14 into the fluidized bed 1 to join a flow of the bed material supplied from the downcomer 7 to an inner bottom of the fluidized bed 1.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: April 1, 2014
    Assignee: IHI Corporation
    Inventors: Takahiro Murakami, Satoko Aoki, Toshiyuki Suda, Hidehisa Tani
  • Patent number: 8685121
    Abstract: An optimized gasification/vitrification processing system having a gasification unit which converts organic materials to a hydrogen rich gas and ash in communication with a joule heated vitrification unit which converts the ash formed in the gasification unit into glass, and a plasma which converts elemental carbon and products of incomplete combustion formed in the gasification unit into a hydrogen rich gas.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: April 1, 2014
    Assignee: Inentec Inc.
    Inventors: Jeffrey E. Surma, James A Batdorf
  • Patent number: 8685120
    Abstract: A method of producing a synthetic gas (syngas) includes injecting a plurality of reactant streams into a gasification reactor via at least one injection device having a plurality of injection annuli, an inner portion that extends annularly about a centerline extending through the at least one injection device, and an outer portion extending substantially annularly about the inner portion. At least a portion of the outer portion is oriented obliquely with respect to the at least one injection device centerline. The method also includes mixing at least a portion of each of the streams together such that a plurality of recirculation zones is defined by the streams. The method further includes producing a syngas within the recirculation zones via mixing at least a portion of each of the streams. The injection device includes an inner portion that extends annularly about a centerline extending through the injection device.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: April 1, 2014
    Assignee: General Electric Company
    Inventors: Kenneth M. Sprouse, Shahram Farhangi, Robert M. Saxelby
  • Patent number: 8673036
    Abstract: A gasifier includes a combustion chamber in which a fuel is burned to produce a syngas and a particulated solid residue. A quench chamber having a liquid coolant is disposed downstream of the combustion chamber. A dip tube couples the combustion chamber to the quench chamber. The syngas is directed from the combustion chamber to the quench chamber via the dip tube to contact the liquid coolant and produce a cooled syngas. A draft tube surrounds the dip tube such that an annular passage is formed between the draft tube and the dip tube. An asymmetric or symmetric faceted baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the baffle so as to remove entrained liquid content from the cooled syngas before the cooled syngas is directed through the exit path.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
  • Patent number: 8673233
    Abstract: A solid reactant sheet, a solid reactant stack, and a fuel cartridge are provided. The solid reactant sheet comprises an adhesive film and a plurality of solid reaction particles. The adhesive film has a first surface, a second surface opposite to the first surface, and a plurality of through holes connected between the first surface and the second surface. The plurality of solid reaction particles are adhered to the first surface, and the solid reaction particles react with a reactant for generating a gas. Furthermore, a solid reactant stack and a fuel cartridge are also provided.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: March 18, 2014
    Assignee: Young Green Energy Co.
    Inventors: Hsuan-Yi Lu, Chih-Lin Ho
  • Patent number: 8673222
    Abstract: A hydrogen generator of the present invention includes: a reformer (1) including a reforming catalyst (1A) containing nickel and configured to generate a hydrogen-rich fuel gas by using a raw material and steam; a temperature detector (12) configured to detect a temperature of the reforming catalyst (1A); a purge gas supplying device (7) configured to supply a purge gas to the reformer (1); and a controller (13). When the temperature detected by the temperature detector (12) is a first predetermined temperature or higher, the controller (13) purges the reformer (1) with the purge gas supplied from the purge gas supplying device (7).
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: March 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Akinari Nakamura, Takayuki Urata, Shigeki Yasuda, Akinori Yukimasa
  • Patent number: 8673034
    Abstract: Methods and systems for a gasifier system are provided. The gasifier system includes a gasifier including a syngas cooler configured to transfer heat from a reaction zone of the gasifier to a flow of fluid through the syngas cooler, a reaction vessel coupled in flow communication with the syngas cooler wherein the reaction vessel is adapted to receive the flow of fluid and generate heat in an exothermic shift reaction. The system also includes a heat exchanger coupled in flow communication with the reaction vessel, the heat exchanger adapted to produce relatively high pressure steam using the generated heat.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Aaron John Avagliano, Paul Steven Wallace
  • Patent number: 8673231
    Abstract: The present invention describes a vertical cylindrical exchanger-reactor for carrying out endothermic reactions, comprising a shell enclosing a plurality of tubes inside which the reactive fluid moves, said tubes being of the bayonet type, and the heat transfer fluid, in this case hot gases, being channeled inside chimneys surrounding said bayonet tubes. The bayonet tubes and the chimneys are suspended from the upper dome of the reactor. This reactor may operate with a pressure difference between the tube side and the shell of up to 100 bars. The hot gases are admitted into the reactor at temperatures of up to 1300° C.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 18, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Fabrice Giroudiere, Willi Nastoll, Beatrice Fischer, Didier Pavone, Herve Lavieu, Daniel Gonnet, Jean-Noel Leroux
  • Patent number: 8673035
    Abstract: In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 18, 2014
    Assignees: The Regents of the University of Colorado, a body corporate, Alliance for Substainable Energy, LLC
    Inventors: Alan W Weimer, Jaimee K Dahl, Allan A Lewandowski, Carl Bingham, Karen J Raska Buechler, Willy Grothe
  • Patent number: 8668751
    Abstract: A system includes a first cross-flow filter configured to remove at least a first portion of a liquid from a fuel slurry to increase a concentration of a solid fuel in the fuel slurry. The system also includes a gasifier configured to generate a syngas from the fuel slurry.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 11, 2014
    Assignee: General Electric Company
    Inventors: Anindra Mazumdar, Pradeep Stanley Thacker
  • Patent number: 8668752
    Abstract: The present invention provides a gas generator that may be used for startup and shutdown of a fuel cell. In one non-limiting embodiment, the gas generator may include a nitrogen generator structured to receive air, extract oxygen (O2) from the air and discharge the balance in the form of a nitrogen-rich gas; a merging chamber structured to receive a hydrocarbon fuel and the nitrogen-rich gas and to discharge a feed mixture containing both the hydrocarbon fuel and the nitrogen-rich gas; and a catalytic reactor structured to receive the feed mixture and to catalytically convert the feed mixture into a reducing gas.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: March 11, 2014
    Assignee: Rolls-Royce Fuel Cell Systems (US) Inc.
    Inventors: Mark Vincent Scotto, Daniel P. Birmingham, Crispin L. DeBellis, Mark Anthony Perna, Gregory C. Rush
  • Patent number: 8669013
    Abstract: The present invention relates to processes and apparatuses for generating electrical power from certain non-gaseous carbonaceous feedstocks through the integration of catalytic hydromethanation technology with fuel cell technology.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: March 11, 2014
    Assignee: Greatpoint Energy, Inc.
    Inventors: Charles Allen Powell, Pattabhi K. Raman, Earl T. Robinson, Avinash Sirdeshpande
  • Patent number: 8663348
    Abstract: A method of assembling an injection device for use in a reactor injector feed assembly includes extending the injection device at least partially into a cavity. The injection device includes a plurality of substantially concentric conduits coupled to a modular tip that includes a plurality of cooling channels and a plurality of substantially annular nozzles defined therein. The method also includes coupling at least one coolant distribution device in flow communication with the plurality of cooling channels to facilitate removing heat from an outer surface of the injection device.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 4, 2014
    Assignee: General Electric Company
    Inventors: Kenneth M. Sprouse, Shahram Farhangi, Robert M. Saxelby, David R. Matthews
  • Patent number: 8652223
    Abstract: In various systems and processes, synthesis gas generation may be combined. A partial oxidation reactor (POX) and a gas convectively heated steam/hydrocarbon catalytic reformer (GHR) may be combined to produce synthesis gas. In some implementations, a partial oxidation reactor, a gas convectively heated steam/catalytic reformer, and a waste hat boiler may be combined to produce synthesis gas.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: February 18, 2014
    Assignee: GTLpetrol LLC
    Inventor: Rodney J. Allam
  • Patent number: 8647401
    Abstract: A gasification system and method for converting organic materials into a usable syngas are provided. The gasification system includes a kiln for receiving a feedstock; a means for heating the kiln; a steam reforming reactor; and means for inductively heating the steam reforming reactor to drive the gasification reactions. In one preferred embodiment, the fuel processing system includes a steam reforming reactor that is at least partially filled with thermal transmitters which receive electromagnetic energy and generate heat within the steam reforming reactor. The organic material to be used as feedstock may include but will not be limited to petrochemical streams, refinery streams, natural gas, crude oil, coal, plastics, municipal wastes, toxic and hazardous wastes, biomass, medical wastes, and automobile wastes. The syngas that is produced in this process may consist primarily of hydrogen, carbon monoxide, carbon dioxide and methane.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: February 11, 2014
    Assignee: Shaw Intellectual Property Holdings, Inc.
    Inventors: John Self, Robert A. Olexy, Steve Cochran
  • Patent number: 8647403
    Abstract: Methods and systems for gasifier fines recycling system are provided. The system includes a gasifier slag removal system configured to separate first fines from a particulate slag removed from a gasifier by at least one of settling and filtering, a second fines handling system configured to receive second fines from a source other than the gasifier, and an injection system configured to mix the first fines and the second fines and a fuel for injection into the gasifier.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventor: Paul Steven Wallace
  • Patent number: 8641991
    Abstract: The present invention is generally directed to methods and systems for processing biomass into usable products, wherein such methods and systems involve an integration into conventional refineries and/or conventional refinery processes. Such methods and systems provide for an enhanced ability to utilize biofuels efficiently, and they can, at least in some embodiments, be used in hybrid refineries alongside conventional refinery processes.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: February 4, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: William L. Schinski
  • Patent number: 8641789
    Abstract: A reformer reactor is provided for converting hydrocarbon fuel into hydrogen rich gas by auto-thermal reaction process. The reformer reactor has a preferably cylindrically shaped, double wall housing with an inner wall and an outer wall and two side faces, wherein the inner wall and the two side faces form a reaction chamber. Additionally, the inner wall is charged with a first electric charge which prevents the hydrocarbon fuel molecules injected into the reaction chamber by a fuel inlet from hitting the warm inside surfaces of the reaction chamber and burn to soot, subsequently.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: February 4, 2014
    Assignee: Powercell Sweden AB
    Inventors: Bård Lindström, Lars Pettersson, Staffan Lundgren
  • Patent number: 8636817
    Abstract: The present invention provides a gas generator that may be used for startup and shutdown of a fuel cell. In one non-limiting embodiment, the gas generator may include a nitrogen generator structured to receive air, extract oxygen (O2) from the air and discharge the balance in the form of a nitrogen-rich gas; a merging chamber structured to receive a hydrocarbon fuel and the nitrogen-rich gas and to discharge a feed mixture containing both the hydrocarbon fuel and the nitrogen-rich gas; and a catalytic reactor structured to receive the feed mixture and to catalytically convert the feed mixture into a reducing gas.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: January 28, 2014
    Assignee: Rolls-Royce Fuel Cell Systems (US) Inc.
    Inventors: Mark Vincent Scotto, Daniel P. Birmingham, Crispin L. DeBellis, Mark Anthony Perna, Gregory C. Rush
  • Patent number: 8636826
    Abstract: The present application is directed to a hydrophobic membrane assembly (28) used within a gas-generating apparatus. Hydrogen is separated from the reaction solution by passing through a hydrophobic membrane assembly (28) having a hydrophobic lattice like member (36) disposed within a hydrogen output composite (32) further enhancing the ability of the hydrogen output composite's ability to separate out hydrogen gas and prolonging its useful life.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: January 28, 2014
    Assignee: Societe BIC
    Inventors: Andrew J. Curello, Michael Curello, Constance R. Stepan
  • Patent number: 8636961
    Abstract: The present invention increases the amount of hydrogen produced or released from reactions between a metal hydride fuel and liquid reactant. The present invention also decreases the volume of a hydrogen generating cartridge by reducing the pH of the liquid reactant.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: January 28, 2014
    Assignee: Societe BIC
    Inventors: Anthony Sgroi, Jr., Constance R. Stepan, Andrew J. Curello, Michael Curello
  • Patent number: 8632615
    Abstract: The invention relates to a method and a system for producing synthetic gas from biomass by high temperature gasification, including: feeding raw material, carbonizing, pulverizing the charcoal, and transporting charcoal powder to the gasification furnace for gasification. Prior to pulverizing, the charcoal is reduced to a normal pressure by a decompression feeding system of charcoal, pulverized into powders, and transported to a supercharging feeding system of charcoal powder by normal pressure transport gas. The pressurized charcoal powder is transported to gasifier. The high-temperature charcoal at an outlet of carbonization furnace is cooled to 60-200° C. by a cooler, and transported into the decompression feeding system to be depressurized. The charcoal powder with pressurized is ejected to gasifier by an ejector, pyrolysis gas produced from carbonization furnace is used as carrier gas, and the ratio of solid to gas in the transportation pipe for charcoal powder is controlled at between 0.03 and 0.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 21, 2014
    Assignee: Wuhan Kaidi Engineering Technology Research Institute Co., Ltd.
    Inventors: Haiqing Zhang, Shirong Zhang, Qin Sun, Peng Qiu, Shenghua Zheng
  • Patent number: 8628595
    Abstract: A gasification reactor comprising a pressure shell, a reaction zone partly bounded by a vertically oriented tubular membrane wall, a horizontally directed burner having a burner head at which, in use, a combustion flame is discharged into said reaction zone, said burner protruding into the vertical wall part of the membrane wall via a burner muffle, said burner muffle comprising several vertically oriented, concentric and interconnected rings, wherein each successive ring has an increasing diameter relative to the preceding ring resulting in that the burner muffle has a muffle opening for the burner head at one end and a larger opening at its other—flame discharge—end, the rings comprising a conduit having an inlet end for a cooling medium and an outlet for used cooling medium and wherein the muffle opening for the burner head is located between the pressure shell and the membrane wall and wherein the burner muffle protrudes into the reaction zone.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: January 14, 2014
    Assignee: Shell Oil Company
    Inventors: Thomas Paul Von Kossak-Glowczewski, Henricus Gijsbertus Van Schie, Johannes Gerardus Maria Schilder
  • Patent number: 8623106
    Abstract: A fluid reforming apparatus of the present invention includes: a flow channel (30) in which a catalyst (1) is fixed to an inner wall; a fluid heating device (40) which heats a fluid to be reformed by the catalyst (1) and/or heats the catalyst (1) in the flow channel (30); catalyst temperature measuring devices (51, 52, 53, 54) which measure temperatures of the catalyst (1); and a pressure control device (10, 20, 60) which controls a pressure of the fluid in the flow channel so that the fluid can have a target pressure. The pressure control device (10, 20, 60) increases the target pressure when a difference between the temperatures of the catalyst (1) in a flow direction of the fluid exceeds a predetermined value during a period while the fluid in the flow channel (30) is being heated up to a target temperature.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: January 7, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kenzo Oshihara, Ryuuta Yamaguchi
  • Patent number: 8623107
    Abstract: In one embodiment, a gas hydrate conversion system is provided comprising a floating factory, an appendage for harvesting a gas hydrate from an oceanic hydrate deposit, and one or more storage tanks. The floating factory comprises one or more heat exchange assemblies, one or more heat pump assemblies and an engine. In another embodiment, a method for harvesting hydrocarbon hydrate deposits is provided, the method comprising providing a gas hydrate conversion system; inducing release of methane from an oceanic hydrate deposit; capturing the methane from a primary methane capture zone and/or a secondary methane capture zone; and converting the methane to hydrogen and carbon.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: January 7, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8617266
    Abstract: Disclosed herein is a hydrogen generating apparatus for producing hydrogen from a hydrocarbon feed through a steam reforming reaction, in which a pressure drop device is installed between a feed distributor and each of reactor tubes in order to prevent the feed from being unevenly distributed to the reactor tubes. In the hydrogen generating apparatus, the pressure drop device for artificially dropping the supply pressure of the feed is installed between the feed distributor and each of the reactor tubes which are concentrically arranged with respect to a heat source. Accordingly, if the feed is unevenly distributed, the pressure drop device can suppress an abnormal temperature rise in some of the reactor tubes to induce the smooth production of hydrogen and to greatly improve the operational safety of the hydrogen generating apparatus.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: December 31, 2013
    Assignee: SK Innovations Co., Ltd.
    Inventors: Jin Hwan Bang, Young Dae Kim, Myung Jun Kim
  • Patent number: 8617265
    Abstract: A method and apparatus for generation of hydrogen. The apparatus includes a hydrogen reactor chamber (99) and a plurality of catalysts within the chamber (99) forming distinct zones or portions (200, 202, and 204), each zone or portion comprising a distinct catalyst or combination thereof. The plurality of catalysts include at least one of a high-activity steam reformation catalyst, coke resistant steam reformation catalyst and steam reformation catalyst that promotes a water gas shift reaction.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: December 31, 2013
    Assignee: Intelligent Energy, Inc.
    Inventor: Anand Chellappa
  • Patent number: 8617268
    Abstract: An equipment for carrying out a process for producing synthesis gas (S) from biomass, includes a storage unit (1) for biomass and means (3; 5, 6) to carry out pyrolysis and combustion of the biomass. The equipment further includes first or second heat exchanging means (7, 9; 15) to receive outgoing gases (CO2, N2 and H2O) from the means (3; 5, 6) to carry out pyrolysis and combustion of the biomass, a gas purification unit (10) to receive the outgoing gases (CO2, N2 and H2O) that are cooled in the first or second heat exchanging means (7, 9; 15), means (11) to supply a process gas (P) from the gas purification unit (10) to the first heat exchanging means (7, 9), and a reduction shaft (12) to carry out reduction of the process gas (P) discharged from the first heat exchanging means (7, 9).
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 31, 2013
    Assignee: Cortus AB
    Inventor: Rolf Ljunggren
  • Patent number: 8617294
    Abstract: Pressure swing adsorption (PSA) assemblies and hydrogen-producing fuel processing assemblies and/or fuel cell systems including the same. The PSA assemblies include, or are utilized with, combustion fuel stream supply systems that are adapted to regulate the flow of a byproduct stream from the PSA assembly for delivery to a heating assembly for use as a combustible fuel stream, such as to maintain at least a hydrogen-producing region of the fuel processing system at a hydrogen-producing temperature or range of temperatures. In some embodiments, the combustion fuel stream supply system is configured to ensure that the supply of combustible fuel from the PSA assembly to the heating assembly contains at least a sufficient fuel value, such as to maintain at least the hydrogen-producing region at or within a predetermined hydrogen-producing temperature or range of temperatures.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: December 31, 2013
    Assignee: DCNS SA
    Inventors: Patton M. Adams, Travis A. Bizjak, James A. Givens
  • Patent number: 8617267
    Abstract: A reformer having high durability and including a heating unit and a reforming unit. The heating unit has a hollow cylindrical shape or polygonal shape and a first combustor and a second combustor that receives and oxidizes heating unit fuel and anode off gas (AOG) at both ends thereof. The reforming unit includes a first reforming portion formed to surround the exterior of the heating unit, a second reforming portion formed to surround the exterior of the first reforming portion and a flow path portion connecting the first reforming portion and the second reforming portion to provide fluid communication therebetween. The flow path portion includes a pre-deformed portion extending along a direction substantially perpendicular to the central axis of the heating unit.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: December 31, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: In-Hyuk Son
  • Patent number: 8613782
    Abstract: A rotating heat regenerator is used to recover heat from the syngas at it exits the reactor vessel of a waste or biomass gasifier. In some embodiments, three or more streams are passed through the heat exchanger. One stream is the dirty syngas, which heats the rotating material. A second stream is a cold stream that is heated as it passes through the material. A third stream is a cleaning stream, which serves to remove particulates that are collected on the rotating material as the dirty syngas passes through it. This apparatus can also be used as an auto-heat exchanger, or it can exchange heat between separate flows in the gasifier process. The apparatus can also be used to reduce the heating requirement for the thermal residence chamber (TRC) used downstream from the gasification system.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: December 24, 2013
    Assignee: Inentec Inc.
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar
  • Patent number: 8608814
    Abstract: Hydrogen-producing fuel processing assemblies and methods for delivering feedstock to a hydrogen-producing region of a hydrogen-producing fuel processing assembly. In some embodiments, the fuel processing assemblies include a feedstock delivery system that includes a pump assembly and a stall prevention mechanism that is adapted to reduce pressure in an outlet conduit during periods in which the pump assembly is not emitting a liquid outlet stream within or above a hydrogen-producing pressure range. In some embodiments, pressure in the outlet conduit is isolated from pressure in the hydrogen-producing region of the fuel processing assembly and is reduced during periods in which a liquid stream is not being pumped within or above a hydrogen-producing pressure range.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: December 17, 2013
    Assignee: DCNS SA
    Inventor: Vernon Wade Popham
  • Patent number: 8603203
    Abstract: A burner nozzle assembly includes: a nozzle plate having an anode off-gas (AOG) nozzle at the center of the nozzle plate and a plurality of oxidation fuel nozzles surrounding the AOG nozzle; and a channel unit coupling the AOG nozzle with an AOG introducer to allow an AOG to flow therebetween and coupling the oxidation fuel nozzles with an oxidation fuel introducer to allow an oxidation fuel to flow therebetween.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: December 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woo-Cheol Shin, In-Hyuk Son, Jin-Goo Ahn, Jong-Rock Choi, In-Seob Song
  • Patent number: 8603202
    Abstract: A device for producing a product gas from biomass includes a reactor which is delimited by a base part and reactor walls. The reactor walls include a circumferential wall and an upper wall. The reactor includes a supply opening for the supplying of biomass, and also at least one riser for the chemical conversion of supplied biomass to a product gas and a solid substance. The riser is attached within the circumferential wall and includes an upper end and a lower end. The reactor also has a discharge opening for the discharging of the product gas. The riser is fastened to at least one reactor wall. The base wall of the reactor has a through-opening through which the lower end of the riser movably extends.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: December 10, 2013
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Christiaan Martinus van der Meijden, Abraham van der Drift
  • Patent number: 8603204
    Abstract: The present invention relates to a device for generating a synthesis gas (SG) from biomass (BM) by entrained-flow gasification. The device comprises a treatment plant (1), in which the biomass (BM) is supplied to a coarse crushing device (2), which is connected downstream via a first lock (3) to a pressurized carbonization plant (4) for the hydrothermal generation of carbonization char (KK) from the biomass (BM). The carbonization plant (4) comprises at least one preheating device (5) and a carbonization reactor (6) arranged downstream of the preheating device (5) and is connected downstream via a second lock (11) to at least one solid-liquid separation device (12, 13) for providing a fuel. A drying device (16) for drying the fuel is provided downstream of the solid-liquid separation device (12, 13), with a crushing device (18) for crushing the fuel to form pulverized fuel (BS) having particle sizes in the range of 55 ?m to 500 ?m being connected downstream of the drying device.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: December 10, 2013
    Assignee: Linde AG
    Inventors: Dietmar Rüger, Olaf Schulze, Anton Althapp, Christian Eichhorn, Horst Kretschmer
  • Patent number: 8603205
    Abstract: Fuel processors, methods of using fuel processors, and the like, are disclosed.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: December 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Mark Varaday, F. Levent Degertekin
  • Patent number: 8597383
    Abstract: A catalytic membrane reactor assembly for producing a hydrogen stream from a feed stream having liquid hydrocarbons, steam, and an oxygen source through the use of an autothermal reforming reaction, a water-gas-shift reaction, and a hydrogen permeable membrane.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: December 3, 2013
    Assignees: Saudi Arabian Oil Company, The University of Queensland
    Inventors: Thang V. Pham, Sai P. Katikaneni, Jorge N. Beltramini, Moses O. Adebajo, Joao Carlos Diniz Da Costa, Gao Qing Lu
  • Patent number: 8597384
    Abstract: A system, in certain embodiments, includes a gasification cooling system having an annular seal with a bellows. For example, the gasification cooling system may include a housing with an inlet, an outlet, and an interior between the inlet and the outlet, wherein the interior has a throat adjacent the inlet, and the throat expands in a flow direction from the inlet toward the outlet. The annular seal may be disposed in the throat of the housing, wherein the annular seal includes the bellows.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: December 3, 2013
    Assignee: General Electric Company
    Inventors: Yasir Hafeez Abbasi, Cliff Yi Guo, Wade Albert Taber, Xinyuan Zhang