And A Third Component C (i.e., An Additive Other Than A Saturated Hydrocarbon Or An Aromatic Hydrocarbon Free Of Aliphatic Or Cycloaliphatic Unsaturation) Patents (Class 502/118)
  • Patent number: 6383968
    Abstract: Process for the polymerization of olefins with a catalyst comprising a metallocene compound according to the formula and an aluminoxane comprising 0,5 to 15 mol % trialkylaluminium. Preferably the aluminoxane is methylaluminoxane and the trialkylaluminium is trimethylaluminium. The metallocene compound and/or the aluminoxane can be supported on a carrier material.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: May 7, 2002
    Assignee: DSM N.V.
    Inventors: Ramon H. A. M. Meijers, Maurits F. H. Van Tol, Mirko Kranenburg
  • Patent number: 6384159
    Abstract: The present invention relates to a process to produce polyethylene through homopolymerization or copolymerization of ethylene with alpha-olefins in the presence of a titanium amide catalyst supported by an organic polymer material, for the production of moldings, such as through extrusion, injection molding, film blowing, sintering under pressure or ram extrusion. The catalyst according to the present invention contains a partially chloromethylated styrene divinyl benzene copolymer as the organic polymer material, a complex compound supported by it, which contains Mg, Al and Ti.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: May 7, 2002
    Assignee: Buna Sow Leuna Olefinverbund GmbH
    Inventors: Jürgen Schellenberg, Heinz-Jürgen Kerrinnes, Gerd Fritzsche, Gerd Lohse
  • Patent number: 6372879
    Abstract: The present invention is based upon the discovery that nontitanyl oxalates can enhance the catalytic functionality of titanyl oxalate catalysts. This invention provides a novel catalytic composition containing a titanyl oxalate catalyst and a metallic oxalate catalyst enhancer and optionally containing a metallic cocatalyst such as an antimony based catalyst. A synergistic relationship has been discovered between titanyl oxalate catalyst and the catalyst enhancer. A synergistic relationship has also been discovered between the titanyl oxalate catalyst, catalyst enhancer and a metallic cocatalyst such as antimony oxide or antimony triacetate.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: April 16, 2002
    Assignee: ATOFINA Chemicals, Inc.
    Inventors: Conor M. Dowling, Bin Chen, Sri R. Seshadri
  • Patent number: 6369253
    Abstract: A method is provided for synthesizing metallocene compounds useful as polymerization catalysts and the like. The method involves (a) preparation of an amino alcohol-derived ligand by reacting a silane reactant with an amino alcohol in the presence of base, followed by (b) metallation of the ligand so provided. The metallocenes may be provided in chiral form when the amino alcohol contains an asymmetric center, and are thus useful in catalyzing stereospecific polymerization and other stereospecific bond formation reactions.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: April 9, 2002
    Assignee: SRI International
    Inventors: Robert B. Wilson Jr., Gary A. Koolpe
  • Patent number: 6355745
    Abstract: A process for preparing syndiotactic monovinylidene aromatic polymers comprising contacting one or more monovinylidene aromatic monomers with a catalyst composition comprising a Group 4 metal complex and an activating cocatalyst composition comprising an aluminoxane and an electrophilic borane compound.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: March 12, 2002
    Assignee: The Dow Chemical Company
    Inventors: Thomas H. Newman, Karen K. Borodychuk
  • Patent number: 6355592
    Abstract: A catalyst system comprising a Group 4 transition metal cation having bonded thereto (1) a single cyclopentadienyl ligand or polycyclic derivative thereof, (2) a Group 15 or 16 heteroatom ligand, said single cyclopentadienyl ligand or polycyclic derivative and said heteroatom ligand being covalently bound and bridged to each other, and (3) at least one other ligand selected from the group consisting of hydride, hydrocarbyl, substituted hydrocarbyl, and hydrocarbyl substituted organonometalloid radicals; (b) a compatible non-coordinating anion; (c) a Group 13 element, hydrolyzable Lewis acid compound. The catalyst system is useful for polymerizing olefins, diolefins, cyclic olefins or acetylenically unsaturated monomers, either alone or in combination with each other or with other polymerizable monomers.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: March 12, 2002
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Gregory George Hlatky, Howard William Turner, Jo Ann Marie Canich
  • Publication number: 20020010075
    Abstract: The invention relates to a process for the in-situ preparation of alkylated single-site transition metal catalysts by contacting a precatalyst with an alkylating agent in the polymerization system. The precatalyst, which is produced prior to introducing into the polymerization system, is obtained by contacting a transition metal complex and boron-containing ionizing agent, optionally, with a support.
    Type: Application
    Filed: August 2, 2001
    Publication date: January 24, 2002
    Inventor: Shaotian Wang
  • Patent number: 6340652
    Abstract: Catalysts for polymerization of &agr;-olefin, composed of a transition metal compound, an inorganic silicate or an ion exchangeable layer compound other than silicate, and optionally an organoaluminum compound, are described.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: January 22, 2002
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Toshihiko Sugano, Naoshi Iwama, Eiji Isobe, Toru Suzuki, Yasuo Maruyama, Satoshi Hayakawa, Hisashi Shoda, Masami Kashimoto, Taku Kato, Takayuki Aoshima, Sugio Nishimura, Yoshinori Suga, Stefan Sieber
  • Patent number: 6335405
    Abstract: Catalysts for olefin polymerization comprising (a) a compound of a transition metal of Groups 8 to 10 of the Periodic Table, (b) clay, a clay mineral or an ion-exchanging layered compound, (c) a silane compound, and optionally (d) an organic aluminium compound and/or (e) an alkylating agent, and those comprising (a) a compound of a transition metal of Groups 8 to 10 of the Periodic Table, (b) clay, a clay mineral or an ion-exchanging layered compound, (d) an organic aluminium compounds and optionally (e) an alkylating agent have high activity, though not containing a large amount of aluminoxane. Using the catalysts, high-quality olefin polymers with good morphology are produced efficiently. The amount of the residual metal to remain in the polymers produced is small.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: January 1, 2002
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Fumio Okuda, Haruhito Sato, Toshiya Abiko
  • Publication number: 20010053742
    Abstract: A process is provided to modify an olefin production catalyst system which comprises contacting an olefin production catalyst system with ethylene prior to use. A second embodiment of the invention comprises contacting an aluminum alkyl and a pyrrole-containing compound prior to contacting a chromium containing compound and prior to contacting an olefin. A process also is provided to trimerize and/or oligomerize olefins with the novel, modified olefin catalyst production systems. These modified olefin production catalyst systems can produce less solids, such as, for example, polymer, during a trimerization reaction.
    Type: Application
    Filed: December 18, 1998
    Publication date: December 20, 2001
    Inventors: RONALD D. KNUDSEN, JEFFREY W. FREEMAN
  • Patent number: 6329313
    Abstract: The present invention relates to a supported chemical compound of the formula (I) in which Ac+ is a cation, c is an integer from 1 to 10, b is an integer ≧0, T is a support, y is an integer ≧1, a is an integer from 0 to 10, where a·y=c·b, and N is a unit of the formula (II)  in which R independently at each occurrence is an identical or different substituent of M1 such as a halogen atom or a C1-C40 carbon-containing group, such as a C1-C40-alkyl, C1-C40-haloalkyl, C6-C40-aryl, C6-C40-haloaryl, C7-C40-arylalkyl or C7-C40-halo-arylalkyl group, X independently at each occurrence is identical or different and is a C1-C40 carbon-containing group, for example a divalent, carbon-containing group such as a C1-C40-alkylene, C1-C40-haloalkylene, C6-C4-arylene, C6-C40-haloarylene, C7-C40-arylalkylene or C7-C40-halo-arylalkylene, C2-C40-alkynylene, C2-C40-haloalkynylene, C2-C40-alkenylene or C2-C40haloalkenylene group, or a trivalent, carbo
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: December 11, 2001
    Assignee: Basell Polyolefine GmbH
    Inventors: Cornelia Fritze, Frank Küber, Hans Bohnen
  • Publication number: 20010049331
    Abstract: The invention is directed to organometallic catalysts prepared by a process comprising a) combining nucleophilic group-containing particulate support material with an arylboron or arylaluminum Lewis acid compound in the presence of a Lewis base compound; b) contacting the product of a) with a trialkylaluminum compound before combining said product with a metal precursor compound capable of activation for olefin polymerization by said product a); and, c) combining the product of b) with said metal precursor compound. These catalyst compositions are suitable for addition reactions of ethylenically and acetylenically unsaturated monomers. The invention includes a polymerization process of combining or contacting olefinically unsaturated monomers with the invention catalyst composition. Use of the invention catalyst to polymerize &agr;-olefins is exemplified.
    Type: Application
    Filed: November 19, 1999
    Publication date: December 6, 2001
    Inventor: MAIN CHANG
  • Patent number: 6316558
    Abstract: A polyolefin of a high molecular weight is produced by using a catalyst comprising a transition metal compound represented by General Formula (1):
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: November 13, 2001
    Assignee: Tosoh Corporation
    Inventors: Toshiyuki Kaneko, Ryuji Ikeda, Akihiro Yano, Morihiko Sato
  • Publication number: 20010039241
    Abstract: Complexes of magnesium and titanium alkoxides useful as olefin polymerization procatalyst precursors, procatalysts containing the complexes, and their use as a catalyst component for the polymerization of olefin monomers are disclosed. The complexes are prepared by reacting a magnesium alkoxide and a titanium alkoxide in the presence of a clipping agent to form a solid complex. The solid complex then can be used to form a procatalyst by contacting it with a halogenating agent, optionally a tetravalent titanium halide, and optionally an electron donor. The procatalyst then can be converted to an olefin polymerization catalyst by contacting it with a cocatalyst and optionally a selectivity control agent.
    Type: Application
    Filed: June 20, 2001
    Publication date: November 8, 2001
    Inventor: Robert Charles Job
  • Patent number: 6313238
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising a titanium compound, having at least a Ti-halogen bond and an electron donor compound supported on a Mg halide, in which said electron donor compound is selected from esters of malonic acids of formula (I): wherein R1 is a C5-C20 linear or branched alkyl, a C5-C20 cycloalkyl, a C7-C20 arylalkyl or alkylaryl group; R2 and R3, equal to or different from each other, are C1-C3 alkyl, cycloalkyl. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give high yields and polymers having high insolubility in xylene.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: November 6, 2001
    Assignee: Basell Technology Company bv
    Inventors: Giampiero Morini, Giulio Balbontin, John Chadwick, Antonio Cristofori, Enrico Albizzati
  • Patent number: 6300271
    Abstract: This invention provides a compositions that are useful for polymerizing at least one monomer into at least one polymer.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: October 9, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Shirley J. Martin, Kathy S. Collins, James L. Smith, Gil R. Hawley, Christopher E. Wittner, Michael D. Jensen
  • Patent number: 6294497
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising a titanium compound, having at least a Ti-halogen bond and an electron donor compound supported on a Mg halide, in which said electron donor compound is selected from esters of malonic acids of formula (I): wherein R1 is H or a C1-C20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group; R2 is a C1-C20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group; R3 and R4 the same or different are C4-C20 linear or branched alkyl, alkylcycloalkyl, primary arylalkyl or primary alkylaryl. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give high yields and polymers having high insolubility in xylene.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: September 25, 2001
    Assignee: Montell Technology Company bv
    Inventors: Giampiero Morini, Giulio Balbontin, John Chadwick, Antonio Cristofori, Enrico Albizzati
  • Publication number: 20010023231
    Abstract: The present invention relates to components of catalysts for the polymerization of olefins comprising a metallocene compound and a magnesium halide which have particular values of porosity and surface area. In particular the components of the invention have surface area (BET) greater than about 50 m2/g, porosity (BET) greater than about 0.15 cm3/g and porosity (Hg) greater than 0.3 cm3/g, with the proviso that when the surface area is less than about 150 m2/g, the porosity (Hg) is less than about 1.5 cm3/g. The components of the invention are particularly suitable for the preparation of catalysts for the gas-phase polymerization of &agr;-olefins.
    Type: Application
    Filed: September 10, 1997
    Publication date: September 20, 2001
    Inventors: MARIO SACCHETTI, STEFANO PASQUALI, GABRIELE GOVONI
  • Patent number: 6291384
    Abstract: An ethylene-alpha-olefin copolymerization catalyst is prepared by impregnating a silica calcined at elevated temperature sequentially with an organomagnesium compound such as dialkylmagnesium compound, a silane compound which is free of hydroxyl groups, such as tetraethyl orthosilicate. A transition metal component such as titanium tetrachloride is then incorporated into the support. Unexpectedly, the calcination temperature of the silica used to prepare the catalyst precursors has a strong influence on polymer product properties. By increasing the calcination temperature of the silica from 600° to 700° C. or higher temperatures, a catalyst precursor when activated produced ethylene/1-hexene copolymers with narrower molecular weight distributions (MWD) as manifested by a decrease of resin MFR values of ˜3-4 units. Activation of this catalyst precursor with a trialkylaluminum compound results in a catalyst system which is effective for the production of ethylene copolymers.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: September 18, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin
  • Patent number: 6291386
    Abstract: The invention relates to a process for the in-situ preparation of alkylated single-site transition metal catalysts by contacting a precatalyst which comprises halogen, alkoxy or amido group, with an alkylating agent in the polymerization system. The precatalyst, which is produced prior to introducing into the polymerization system, is obtained by contacting a transition metal complex and boron-containing ionizing agent, optionally, with a support.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: September 18, 2001
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Publication number: 20010021687
    Abstract: A solid catalyst component for olefin polymerization obtained by contacting a titanium compound having a titanium-halogen bond and an ester compound simultaneously, or a mixture of a titanium compound (A) having a titanium-halogen bond and an ester compound (B), with a solid catalyst component precursor (C) containing a magnesium atom, a titanium atom and a hydrocarbyloxy group.
    Type: Application
    Filed: May 10, 2001
    Publication date: September 13, 2001
    Inventors: Shin-Ichi Kumamoto, Eiji Nakaishi, Makato Satoh
  • Patent number: 6288182
    Abstract: A catalyst composition has a catalyst component which includes a metallocene transition metal compound, a magnesium compound, a hydroxyl containing compound, and a polymeric material. The catalyst component may also include asilicon compound and an aluminum compound. The catalyst component is combined with a cocatalyst and used in olefin polymerization.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: September 11, 2001
    Assignee: Saudi Basic Industries Corporation
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Patent number: 6284701
    Abstract: The new metallocene catalysts according to the present invention are prepared by reacting a metallocene compound with a compound having at least two functional groups. The metallocene compound is a transition metal compound, which is coordinated with a main ligand such as cyclopentadienyl group, and an ancillary ligand. The functional groups in the compound are selected from the group consisting of a hydroxyl group, an alkyl or aryl magnesium halide, a thiol group, a primary amine group, a secondary amine group, a primary phosphorous group, a secondary phosphorous group, etc. The metallocene catalysts according to the present invention have a structure in which an ancillary ligand of a metallocene compound is bonded to the functional groups of a compound having at least two functional groups. A structure of the metallocene catalysts can be varied with the type of a metallocene compound and a compound having at least two functional groups, and the molar ratio of each reactant.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: September 4, 2001
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Keun-Byoung Yoon, Seok Chang, Won-Cheol Jung, Yi-Yeol Lyu
  • Patent number: 6274529
    Abstract: A catalytic system with an increased activity for the (co)polymerization of alpha-olefins comprises a catalyst of the metallocene type, which is capable of polymerizing olefins without aluminoxane, and a weak coordinating compound, which, when used in a polymerization process, enables a higher productivity than an analogous process carried out with the metallocene type catalyst per se.
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: August 14, 2001
    Assignee: Enichem S.p.A.
    Inventors: Roberto Fusco, Luca Longo, Antonio Proto, Diego Vigliarolo, Gianfranco Guglielmetti, Liliana Gila
  • Patent number: 6271165
    Abstract: This invention relates to supported and nonsupported catalyst components comprising (a) an ionic compound comprising (a)(1) a cation and (a)(2) an anion having up to 100 nonhydrogen atoms and the anion containing at least one subtituent comprising a moiety having an active hydrogen reacted with (c) an organometal or metalloid compound wherein the metal or metalloid is selected from Groups 2, 12, 13, or 14 of the Periodic Table of the Elements, and, optionally, (b) a transition metal compound, (d) a support material, and/or a diluent. Included are methods for preparation of the catalyst components, catalysts, reaction products and dispersions thereof, as well as polymerization process using the catalyst.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: August 7, 2001
    Assignee: The Dow Chemical Company
    Inventors: Grant B. Jacobsen, Pierre H. H. Loix, Theo J. P. Stevens
  • Patent number: 6258925
    Abstract: The present invention is based upon the discovery that nontitanyl oxalates can enhance the catalytic functionality of titanyl oxalate catalysts. This invention provides a novel catalytic composition containing a titanyl oxalate catalyst and a metallic oxalate catalyst enhancer and optionally containing a metallic cocatalyst such as an antimony based catalyst. A synergistic relationship has been discovered between titanyl oxalate catalyst and the catalyst enhancer. A synergistic relationship has also been discovered between the titanyl oxalate catalyst, catalyst enhancer and a metallic cocatalyst such as antimony oxide or antimony triacetate.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: July 10, 2001
    Assignee: ATOFINA Chemicals, Inc.
    Inventors: Conor M. Dowling, Sri R. Seshadri
  • Patent number: 6258744
    Abstract: The present invention relates to a catalyst system based on fulvene cyclopentadienyl metal complexes, to a method of producing said catalyst system and to the use thereof for the polymerization and copolymerization of olefins and/or dienes.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: July 10, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Rüdiger Beckhaus, Jürgen Heinrichs, Sigurd Becke
  • Patent number: 6255244
    Abstract: A catalyst for polymerization of olefins or styrenes, which is prepared by contacting (A) a transition metal compound, (B) at least one material selected from the group consisting of oxygen-containing compounds and compounds which react with a transition metal compound to form an ionic complex, and optionally (C) an alkylating agent with each other, and contacting these materials (A), (B) and (C) with an adsorbing substance (D), during or after the contact of materials (A), (B) and (C) with each other, followed by removing the adsorbing substance (D) from the contacted materials (A), (B) and (C).
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: July 3, 2001
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventor: Nobuhiro Yabunouchi
  • Patent number: 6255246
    Abstract: Boratabenzene cocatalysts, especially novel pentafluorophenyl boratabenzenes, are useful cocatalysts or activators with metallocenes. They are less expensive than prior art activators, are soluble and offer more irreversible reactions. Compositions comprise at least one metallocene catalyst and at least one dihydroboratabenzene or anion thereof. Processes include polymerizations with metallocenes in the presence of a boratabenzene cocatalyst.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: July 3, 2001
    Assignee: The Dow Chemical Company
    Inventors: David D. Devore, Francis J. Timmers, David R. Neithamer
  • Patent number: 6228791
    Abstract: The present invention is a solid catalyst component for polymerization of olefins prepared by contacting a magnesium compound, a tetravalent halogen-containing titanium compound, a diester of an aromatic dicarboxylic acid, an aromatic hydrocarbon and an organic aluminum compound containing a hydroxyl group represented by the following general formula (R1CO2)mAl(OH)3-m or aluminum hydroxide. The catalyst for polymerization of olefins comprising said solid catalyst component, an organic aluminum compound represented by the general formula R2pAlQ3-p and an organic silicon compound represented by the general formula R3qSi(OR4)4-q can retard the rate of forming a polymer having a low molecular weight or a low stereoregular polymer which is soluble in a polymerization solvent in slurry polymerization and can obtain a high stereoregular polymer in a high yield, and also can obtain a copolymer having an excellent property in a high yield in the copolymerization of olefins.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: May 8, 2001
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Takuo Kataoka, Masayoshi Saito, Isa Nishiyama
  • Patent number: 6221802
    Abstract: The invention comprises a catalyst support containing an &agr;-olefin polymer which is in the form of particles of mean size from 5 to 350 &mgr;m in which the pore volume generated by the pores of radius from 1,000 to 75,000 Å is at least 0.2 cm3/g. A catalyst usable for the polymerization of &agr;-olefins, including a compound containing at least one transition metal belonging to groups IIIb, IVb, IVb and VIb of the Periodic Table, bound in or on this support, is also described.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: April 24, 2001
    Assignee: Solvay Polyolefins Europe-Belgium
    Inventors: Jean-Louis Costa, Vincent Laurent, Philippe Francois, Dirk Vercammen
  • Patent number: 6214759
    Abstract: The present invention relates to a method for producing a Ti/V supported catalyst useful in polymerization of ethylene and copolymerization of ethylene and &agr;-olefin. The method includes a treatment, by a titanium compound and a vanadium compound, of the magnesium-containing carrier, which is obtained by reaction of an organomagnesium compound of the structure of MgPh2.nMgCl2.mR2O (n=0.37˜0.7; m≧1; R2O=ether; Ph=phenyl) with an organic chloride compound in a mole ratio of organic chloride compound/Mg≧0.5, at −20˜80° C. According to the method for producing the catalyst, it is possible to provide a catalyst which can control the distribution of molecular weight, and when polymerization is performed using this catalyst, it is possible to restrain the inactivation and to secure a sufficient activity. Moreover, the polymer produced by the use of this catalyst proves to have a high bulk density and an adjusted particle size distribution.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: April 10, 2001
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Ho-Sik Chang, Youn-Kyung Kang
  • Patent number: 6214950
    Abstract: A process for preparation of polyolefins using an olefin polymerization catalyst comprising (A) a solid catalyst component and (B) an organometallic compound component. The solid catalyst component (A) is prepared by a process comprising the steps of: (I) obtaining a solid (A-1) by reacting: (i) an organomagnesium component soluble in a hydrocarbon solvent and represented by the formula (M1)&agr;(Mg)&bgr;(R1)p(R2)q(OR3)r; and (ii) an Si—H bond-containing chlorosilane compound represented by the formula: HaSiClbR44−(a+b), in a ratio of from 0.01 to 100 mol (ii) per mol (i); (II) reacting the solid (A-1) with an alcohol (A-2) in a ratio of from 0.05 to 20 mol of the alcohol per mol of C—Mg bonds contained in the solid (A-1), to form a reaction product; and (III) reacting the reaction product with a titanium compound (A-4). The solid catalyst component (A) is adjusted to have an alkoxy group/titanium molar ratio of 2.4 or lower and an alkoxy group/magnesium molar ratio of 0.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 10, 2001
    Inventor: Nozaki Takashi
  • Patent number: 6211106
    Abstract: A catalyst composition for preparing high-syndiotacticity polystyrene polymers which comprises: (a) a titanium complex represented by the following formula of TiR′1R′2R′3R′4 or TiR′1R′2R′3, wherein R′1, R′2, R′3, and R′4 are, independently, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a hydrogen atom, or a halogen atom; (b) a cyclopentadienyl complex represented by the following formula: wherein R1-R13 are, independently, alkyl group, aryl group, silyl group, halogen atom, or hydrogen atom; Ra and Rb are, independently, alkyl group, aryl group, alkoxy, aryloxy group, cyclopentadienyl group, hydrogen atom, or halogen atom; and Xa is a Group IIA element and Xb is a Group IIIA element.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: April 3, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Yi-Chun Chen, Sheng Te Yang, Meei-Hwa Wang, Shian-Jy Wang
  • Patent number: 6201079
    Abstract: A propylene polymer made using a magnesium halide-supported, titanium-containing solid catalyst component having a broad processing window is produced by incorporating into the polymerization catalyst system a selected alkyl methyldimethoxysilane, preferably isobutylmethyl-dimethoxysilane. Useful articles made from such resin include OPP film.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: March 13, 2001
    Assignee: BP Amoco Corporation
    Inventors: Jerome Anthony Streeky, Bruce Howard Bersted, John William Blake, Daan Feng, Charles Richard Hoppin, Benjamin Samuel Tovrog
  • Patent number: 6200921
    Abstract: The objective of the present invention is to provide a solid catalyst component and a catalyst for polymerization of olefins, which shows a high activity, can lower the rate of forming a polymer having a low molecular weight or a low stereoregular polymer which is soluble in a polymerization solvent and can obtain a high stereoregular polymer in a high yield. The present invention is a solid catalyst component(A) for polymerization of olefins prepared by contacting (a) dialkoxymagnesium, (b) a titanium compound, (c) a diester of an aromatic dicarboxylic acid, (d) an aromatic hydrocarbon and (e) an organic silicon compound containing a hydroxyl group, and a catalyst for polymerization of olefins prepared from the solid catalyst component (A) , an organic aluminum compound (B) represented by the general formula R2pAlQ3-p and an organic silicon compound (C) represented by the general formula R3qSi(OR4)4-q.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: March 13, 2001
    Assignee: Toho Titanium Co., Ltd.
    Inventor: Takuo Kataoka
  • Patent number: 6194339
    Abstract: An ethylene polymerization catalyst and a catalyst system which provides an ethylene copolymer which, when formed into a film, is characterized by the combination of high stiffness and impact strength. The ethylene polymerization catalyst is formed by contacting a support with an organosilicon compound. The so-treated support is thereupon contacted, in a second step, with a dialkylmagnesium compound or complex. In a third step, the product of the second step is contacted with an alcohol or silane compound. This product, in turn, in a fourth step, is contacted with a transition metal compound. Finally, in a fifth and concluding step, the product of the fourth step is contacted with a Group 13 metal-containing compound. The second and third, as well as the third and fourth contacting steps may be reversed.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: February 27, 2001
    Assignee: Equistar Chemicals, LP
    Inventor: William J. Sartain
  • Patent number: 6184170
    Abstract: This invention relates generally to metallocene catalyst systems and to methods for their production and use. Specifically, this invention relates to a method for preparing metallocene catalyst systems using olefin additives which promote catalyst activity.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: February 6, 2001
    Assignee: Exxon Chemical Patents, Inc.
    Inventor: Main Chang
  • Patent number: 6180554
    Abstract: The present invention relates to a catalyst system comprising: a) an organoaluminum compound, b) a metal compound selected from subgroups IV to VI of the periodic system, c) a reactivator in a molar ratio of 0.5 to 100 relative to compound b), wherein said reactivator comprises a characterized in that a mono- or dihalocarboxylic acid alkyl ester of the following formula: wherein X is a C1-6 alkyl or C1-6 alkoxy group, Y is Cl, Br or H, Z is Cl or Br and R is a C1-6 alkyl group.
    Type: Grant
    Filed: June 22, 1999
    Date of Patent: January 30, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Martin Hoch, Johannes-Rudolf Jansen, Thomas Essert, Andreas Sattler, J{umlaut over (u)}rgen Schneider
  • Patent number: 6165929
    Abstract: A process is provided to produce a composition of matter. The process comprises contacting at least one organometal compound, at least one solid mixed oxide compound, and at least one organoaluminum compound to produce the composition.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: December 26, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Shirley J. Martin, Kathy S. Collins, Marvin M. Johnson
  • Patent number: 6156690
    Abstract: The present invention provides a solid catalyst component for polymerization of olefins obtained by allowing a solid component and an alcohol to come in contact with each other, wherein the solid component is prepared by allowing a magnesium compound, a titanium compound and an electron donor compound to come in contact with each other, and also provides a catalyst for polymerization of olefins made of the solid catalyst component, an organic aluminum compound represented by the general formula R.sup.1.sub.p AlQ.sub.3-p and an organic silicon compound represented by the general formula R.sup.2.sub.q Si(OR.sup.3).sub.4-q. By using the catalysts in a polymerization of olefins, polyolefins excellent in stereoregularity can be obtained in high yield.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: December 5, 2000
    Assignee: Toho Titanium Co., Ltd.
    Inventor: Motoki Hosaka
  • Patent number: 6152543
    Abstract: A catalyst system suitable for the polymerization of C.sub.2 -C.sub.10 -alk-1-enes comprising, as active ingredients, a complex compound of metals in Sub-groups IV and V of the Periodic Table and an oligomeric alumoxan compound is obtained by a procedure in which metals in Sub-groups IV and V of the Periodic Table are mixed with the oligomeric alumoxan compound and the resulting mixture is then applied to finely divided polymer. The catalyst system of the invention can be isolated after manufacture and is particularly suitable for the gas-phase polymerization of C.sub.2 -C.sub.10 -alk-1-enes.
    Type: Grant
    Filed: June 4, 1992
    Date of Patent: November 28, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Rueger Schlund, Bernhard Rieger
  • Patent number: 6147025
    Abstract: A metallocene catalyst is provided which comprises the product obtained by combining (a) a metallocene procatalyst, preferably one containing a bridging group possessing at least two bulky groups, and (b) a cation-generating cocatalyst. A process for activating a metallocene procatalyst is also provided which comprises combining the metallocene procatalyst with the components of a cation-generating cocatalyst.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: November 14, 2000
    Assignee: Uniroyal Chemical Company, Inc,
    Inventors: Daniel J. Gillis, Richard Karpeles
  • Patent number: 6136744
    Abstract: A cation-generating cocatalyst is provided for activating a metallocene procatalyst. The cocatalyst comprises (1) a metal- and/or metalloid-containing first component, e.g., an aluminum compound, (2) a neutral metal- and/or metalloid-containing second component, e.g., a borane compound, and (3) an anionic metal- and/or metalloid-containing third component, e.g., a metal containing borate.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: October 24, 2000
    Assignee: Uniroyal Chemical Company, Inc.
    Inventors: Daniel J. Gillis, Richard Karpeles
  • Patent number: 6133187
    Abstract: A catalyst comprising a cocatalyst and a catalyst component obtained by contacting a silicon-containing metallocene compound with an inorganic support to chemically bond the metallocene compound to the inorganic support, wherein the silicon-containing metallocene compound has a formula (I): ##STR1## wherein: M is a metal selected from [the group consisting of] group 4, 5, or 6 of the periodic table;each X is independently selected from the group consisting of hydrogen, halogen, C.sub.1 -C.sub.10 alkyl, C.sub.1 -C.sub.10 alkoxy, C.sub.6 -C.sub.10 aryl, C.sub.6 -C.sub.10 aryloxy, C.sub.2 -C.sub.10 alkenyl, C.sub.7 -C.sub.40 arylalkyl, C.sub.7 -C.sub.40 alkylaryl, and C.sub.8 -C.sub.40 arylalkenyl;A.sub.1 and A.sub.2 are independently selected from the group consisting of cyclopentadienyl, substituted cyclopentadienyl, indenyl, fluorenyl, substituted indenyl, and substituted fluorenyl, wherein the substituents are independently C.sub.1 -C.sub.10 linear or branched alkyl, C.sub.5 -C.sub.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: October 17, 2000
    Assignee: Repsol Quimica S.A.
    Inventors: Wilfried Michiels Vega, Pilar Lafuente Canas, Antonio Munoz-Escalona Lafuente, Gerardo Hidalgo Llinas, Jose Sancho Royo, Luis Mendez Llatas
  • Patent number: 6124412
    Abstract: The present invention relates to a new olefin polymerization catalyst composition, and methods of preparing and methods of using the catalysts to polymerize various olefinic monomers in either gas or slurry phase reactions. The principal advance over the previous art of record involves using alumoxanes or combinations of alumoxanes as catalyst preactivators. Polymers prepared from these catalysts posses productivity increased as high as 40 percent. At the same time, the bulk density remains relatively constant. Additionally, the total amount of cocatalyst species needed to effectively practice the invention is relatively low.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: September 26, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Abdulmalik Bin-Taleb, Raju Raghavan, Abdulwhab Al-Sadoon
  • Patent number: 6124231
    Abstract: The present invention relates to a supported composition, to processes for its preparation and to its use for polymerizing olefins. The supported catalyst composition comprises at least one transition metal compound of subgroup 3, 4 or 5 of the ##STR1## Periodic Table of the Elements and at least one cocatalyst having the formula II in which R.sup.6 independently at each occurrence are a halogen atom or a C.sub.1 -C.sub.40 carbon-containing group, X is independently at each occurrence a C.sub.1 -C.sub.40 carbon containing group, M.sup.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: September 26, 2000
    Assignee: Targor GmbH
    Inventors: Cornelia Fritze, Frank Kuber, Hans Bohnen
  • Patent number: 6117956
    Abstract: The instant invention teaches a method for forming a syndiotactic 1,2-polybutadiene product having a higher syndiotacticity and a higher melting temperature than syndiotactic 1,2-polybutadiene produced using chromium catalysts known in the prior art. The method includes polymerizing 1,3-butadiene in solution with a solvent, in the presence of catalytically effective amounts of: (a) a chromium compound; (b) an organomagnesium compound; and, (c) a cyclic hydrogen phosphite.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: September 12, 2000
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6110858
    Abstract: Catalysts for olefin polymerization which consist essentially of a transition metal compound, a modified clay compound and an organic aluminum compound, wherein the modified clay compound comprises a reaction product of a clay mineral and a proton acid salt of a specific amine compound, as well as a method of polymerizing olefins using such catalysts. It is possible thereby to obtain olefin polymers with high productivity and low ash content.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: August 29, 2000
    Assignee: Tosoh Corporation
    Inventors: Toshiyuki Kaneko, Akihiro Yano
  • Patent number: 6107230
    Abstract: This invention provides compositions for polymerizing at least one monomer to produce a polymer. The compositions are produced by a process comprising contacting at least one organometal compound, at least one organoaluminum compound, and at least one treated solid oxide compound. The treated solid oxide compound is produced by a process comprising contacting at least one solid oxide compound with at least one electron-withdrawing anion source compound and at least one metal salt compound.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: August 22, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Marvin M. Johnson, James L. Smith, Elizabeth A. Benham, Gil R. Hawley, Christopher E. Wittner, Michael D. Jensen