And A Third Component C (i.e., An Additive Other Than A Saturated Hydrocarbon Or An Aromatic Hydrocarbon Free Of Aliphatic Or Cycloaliphatic Unsaturation) Patents (Class 502/118)
  • Publication number: 20040106513
    Abstract: The present invention relates to a catalyst composition for polymerization of olefins comprising: (a) a solid catalyst pre cursor comprising at least one vanadium compound, at least one magnesium compound and a polymeric material or a solid catalyst precursor comprising at least one vanadium compound, at least one further transition metal compound and/or at least one alcohol, at least one magnesium compound and a polymeric material; and (b) a cocatalyst comprising at least one aluminum compound; and to a method for preparing a catalyst composition according to the present invention, comprising the steps of: (a) combining the components of the solid catalyst precursor; and (b) activating the catalyst precursor with aluminum compound.
    Type: Application
    Filed: January 8, 2004
    Publication date: June 3, 2004
    Inventors: Akhlaq A. Moman, Khalid Al-Bahily, Atieh Abu-Raqabah, John Ledford, Orass M Hamed
  • Publication number: 20040102310
    Abstract: A solid catalyst component for olefin polymerization comprising titanium, magnesium and a compound of the general formula (I) 1
    Type: Application
    Filed: September 30, 2003
    Publication date: May 27, 2004
    Inventors: Nobuhiro Yabunouchi, Takanori Sadashima, Hideo Funabashi
  • Publication number: 20040102590
    Abstract: Processes of producing fluorided catalyst compounds and process of producing polyolefins using these catalyst compounds are disclosed. An embodiment of the process includes contacting a nitrogenous metallocene compound with a fluoriding agent, which preferably includes a fluorided anhydrous acid, for a time sufficient to form a fluorided metallocene catalyst compound.
    Type: Application
    Filed: August 25, 2003
    Publication date: May 27, 2004
    Inventors: Laughlin G. McCullough, Donna Jean Crowther
  • Publication number: 20040097772
    Abstract: The invention relates to a catalyst system for the selective trimerisation of olefins, which system is based on a titanium complex of formula (Cp-B(R)nAr)TiR13, wherein:
    Type: Application
    Filed: August 21, 2003
    Publication date: May 20, 2004
    Inventors: Patrick Jozef Wilhelmus Deckers, Bart Hessen
  • Publication number: 20040092679
    Abstract: There are provided a process for producing a catalyst for &agr;-olefin polymerization, which comprises the step of contacting (1) a solid catalyst component having Ti, Mg and a halogen as essential components, (2) an organoaluminum compound and (3) a compound having a —C—O—C—O—C— bond group in a closed ring structure with one another; and a process for producing an &agr;-olefin polymer, which comprises the step of homopolymerizing or copolymerizing an &agr;-olefin in the presence of a catalyst for &agr;-olefin polymerization produced by the above process.
    Type: Application
    Filed: November 5, 2003
    Publication date: May 13, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Shin-Ichi Kumamoto
  • Publication number: 20040092678
    Abstract: The present invention relates to an improved supported Ziegler-Natta catalyst especially useful for the olefin polymerisation, said catalyst comprising a carrier, an organomagnesium compound, a borate compound, and one transition metal compound.
    Type: Application
    Filed: December 11, 2003
    Publication date: May 13, 2004
    Inventor: Stephen John Dossett
  • Publication number: 20040087435
    Abstract: Supported catalyst composition for polymerization of olefins comprising: (i) a titanium compound, a magnesium compound and at least one electron donor compound; (ii) a chlorine containing polymer support; and (iii) a cocatalyst comprising at least one aluminum compound, wherein the magnesium loading on the final catalyst is between about 0.20 and 6% by weight.
    Type: Application
    Filed: December 18, 2003
    Publication date: May 6, 2004
    Inventors: Mansour I. Taftaf, Serajudin F. Ahmed
  • Publication number: 20040087434
    Abstract: The present invention relates to chromium(III) complexes defined by following formula: 1
    Type: Application
    Filed: April 28, 2003
    Publication date: May 6, 2004
    Inventors: Luis Mendez Llatas, Encarna Sanz Gil, Jose Sancho Royo, Miguel Angel Esteruelas Rodrigo, Ana Margarita Lopez De Lama, Montserrat Olivan Esco, Enrique Onate Rodriguez
  • Patent number: 6730758
    Abstract: Described are solid olefin polymerization catalysts that have, inter alia, very high productivities as shown by a standard test procedure for measuring this property or characteristic, and excellent morphology. Such particulate catalysts can be prepared by prepolymerizing a controlled amount of vinylolefin with a Group 4 metallocene-alurinnoxane solution, in which the original metallocene ingredient used in the process has in its molecular structure at least one polymerizable olefinic substituent. These particulate catalysts do not contain, and thus are not produced in the presence of, a preformed support such as an inorganic compound (silica or etc.) or a preformed particulate polymeric support.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 4, 2004
    Assignee: Albemarle Corporation
    Inventor: Steven P. Diefenbach
  • Publication number: 20040077490
    Abstract: Process for the polymerization of olefins CH=CHR, in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, carried out in the presence of a catalyst component (A) comprising Mg, Ti and halogen as essential elements and of a catalyst component (B) capable to produce, under the same polymerization conditions, a polymer with an average particle size lower than that obtainable with the said catalyst component A. The said process provides polymers with increased bulk density.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 22, 2004
    Inventors: Gianni Collina, Ofelia Fusco, Eduardo Chicote Carrion, Alberto Gil, Volker Dolle, Horst Klassen, Karl-Heinz Kagerbauer
  • Publication number: 20040072678
    Abstract: Allyl polyalkylcyclopentadienyl complex of a metal of group 4 of the periodic table, and its use in the preparation of a catalytic composition for the (co) polymerization of &agr;-olefins. said complex is advantageously stable in solution and rapidly forms catalytic compositions with a high activity without the necessity of effecting alkylating pretreatment.
    Type: Application
    Filed: November 12, 2003
    Publication date: April 15, 2004
    Inventors: Anna Sommazzi, Giampietro Borsotti, Francesco Masi, Roberto Santi, Valentina Bricco
  • Publication number: 20040072677
    Abstract: The present invention relates to a multinuclear metallocene catalyst for olefin polymerization and a process for olefin polymerization using the same, in which the multinuclear metallocene catalyst for olefin polymerization comprises, as a main catalyst, a transition metal compound that contains at least two metal atoms in the groups III to X of the periodic table as central metals and a ligand having a cyclopentadienyl structure bridging between the two metal atoms, and, as a cocatalyst, an aluminoxane compound, an organoaluminum compound or a bulky compound reactive to the transition metal compound to impart a catalytic activity to the transition metal compound.
    Type: Application
    Filed: July 29, 2003
    Publication date: April 15, 2004
    Inventors: Min-Hyung Lee, Sung-Jin Park, Seong-Kyun Kim, Young-Jo Kim, Yong-Gyu Han, Young-Kyu Do, Ki-Ho Choi, Seung-Woong Yoon, Bo-Geun Song, Han-Seock Cho
  • Publication number: 20040067844
    Abstract: A process to produce a polymer is provided. The process comprising contacting a treated solid oxide compound, an organometal compound, and an organoaluminum compound in the presence of an alpha olefin under polymerization conditions to produce the polymer.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 8, 2004
    Inventors: Gil R. Hawley, Max P. McDaniel, Christopher E. Wittner, Michael D. Jensen, Joel L. Martin, Elizabeth A. Benham, Anthony P. Eaton, Kathy S. Collins
  • Publication number: 20040063862
    Abstract: The present invention provides a prepolymerized olefin polymerization catalyst and olefin polymerization method using the same. More particularly, the present invention provides a prepolymerized catalyst that is encapsulated with macromonomers produced by polymerizing olefin monomers with a vinyl-terminated polysiloxane compound in the presence of a solid titanium catalyst for olefin polymerization having been previously surface treated with silane compounds containing two or more vinyl groups, and a method for producing polyolefin having a high melt strength using the catalyst.
    Type: Application
    Filed: November 3, 2003
    Publication date: April 1, 2004
    Inventors: Young-Soo Koo, Yong Chun, Young-Jun Lee, Ho-Sang Son, Ki-Su Ro
  • Publication number: 20040063570
    Abstract: A catalyst solid for olefin polymerization comprising
    Type: Application
    Filed: October 22, 2002
    Publication date: April 1, 2004
    Inventors: Carsten Suling, Wolf Spaether, Nicola Paczkowski, Joachim Rosch, Joachim Wulff-Doring, Wolfgang Bidell
  • Publication number: 20040063573
    Abstract: The present invention provides a novel chelated catalyst for olefin polymerization and an olefin polymerization method using the chelated catalyst. The catalyst of the invention is a liquid titanium compound chelated with an imidazole ligand. The method for olefin polymerization of the present invention is performed using the liquid titanium compound as a main catalyst component.
    Type: Application
    Filed: November 3, 2003
    Publication date: April 1, 2004
    Inventor: Gap-Goung Kong
  • Publication number: 20040063572
    Abstract: Disclosed is a preparation method of titanium catalyst for olefin polymerization, the method comprising (1) preparing magnesium compound solution by resolving non-deoxidative magnesium halide and IIIA group atom compound in a solvent mixture of cyclic ether, at least one alcohol, phosphorus compound and organosilane with or without hydrocarbon solvent; (2) reacting said magnesium compound solution with titanium compound, silicon compound, tin compound or mixture thereof to produce a support; and (3) reacting said support with titanium compound and electron donor to produce solid complex titanium catalyst, wherein the particle size and particle size distribution f said catalyst are regulated by controlling solubility of the reactants in said steps (2) and/or (3).
    Type: Application
    Filed: June 30, 2003
    Publication date: April 1, 2004
    Inventors: ll Seop Kim, Moon Young Shin, Ki Su Ro
  • Publication number: 20040058803
    Abstract: A Ziegler-Natta type catalyst component can be produced by a process comprising contacting a magnesium dialkoxide compound with a halogenating agent to form a reaction product A, and contacting reaction product A with a first, second and third halogenating/titanating agents. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Publication number: 20040054101
    Abstract: This process for preparing a catalyst support for the homopolymerization or copolymerization of ethylene and &agr;-olefins is characterized in that at least one organochlorine compound and a premix of at least one alkylmagnesium and of at least one organoaluminum compound chosen from aluminoxanes, aluminosiloxanes and alkylaluminums are reacted together, in the presence of at least one aliphatic diether as electron donor.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 18, 2004
    Inventors: Thierry Saudemont, Jean Malinge, Jean-Loup Lacombe
  • Publication number: 20040054102
    Abstract: A catalyst is used which comprises a cocatalyst component wherein a non-coordinating ion-containing compound is chemically bonded to a fine particulate carrier, together with a metallocene compound and a specific hydrocarbon. There are provided an olefin polymerization catalyst which produces olefin polymers containing few solvent-soluble components without a wider molecular weight distribution, and which exhibits no significant reduction in activity even after storage, as well as olefin polymerization catalyst components and a method for their storage, and a process for production of propylene polymers using them.
    Type: Application
    Filed: June 18, 2003
    Publication date: March 18, 2004
    Inventors: Satoru Ishigaki, Shinji Hinokuma
  • Publication number: 20040053774
    Abstract: The present invention provides a method for producing a new catalyst of high catalytic activity and superior catalyst morphology for homo- or co-polymerization of ethylene, or more particularly a method for producing a titanium solid complex catalyst supported on a carrier containing magnesium, wherein said catalyst of high polymerization activity is capable of producing polymers of high bulk density.
    Type: Application
    Filed: October 27, 2003
    Publication date: March 18, 2004
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Publication number: 20040048990
    Abstract: The application describes a mixed olefin polymerization catalyst composition comprising a support, a reaction product of at least one first organometallic compound and a first activator capable of rendering the first organometallic compound active for insertion polymerization, and at least one second organometallic compound, the activator incapable of rendering the second organometallic compound active for polymerization of the monomers. The mixed catalyst composition can be used to prepare a first polymer component in a first polymerization reactor stage and then, when an effective activator is added for the second organometallic compound, the catalyst composition can be used to prepare a second polymer composition that is homogeneously blended with the first polymer component.
    Type: Application
    Filed: July 7, 2003
    Publication date: March 11, 2004
    Inventors: Jeffrey L. Brinen, Charles Cozewith
  • Publication number: 20040048989
    Abstract: Blends of two or more polyethylenes are made by reacting ethylene with an oligomerization catalyst that forms &agr;-olefins, and two polymerization catalysts, one of which under the process conditions copolymerizes ethylene and &agr;-olefins, and the other of which under process conditions does not readily copolymerize ethylene and &agr;-olefins. The blends may have improved physical properties and/or processing characteristics.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 11, 2004
    Inventors: Lin Wang, Maria Spinu, Joel David Citron
  • Publication number: 20040048738
    Abstract: Catalyst component for the polymerization of olefins obtainable by contacting: (i) a magnesium halide, or a suitable precursor; (ii) a monofunctional electron donor compound (MD) selected from ethers, esters, amines or ketones, used in such amounts to have Mg/MD molar ratios of at least 50; (iii) a titanium compound of formula Ti(ORI)n-yXy, where n is the valence of titanium, y is a number between 1 and n, X is halogen, and RI is a C1-C15 hydrocarbon group and, optionally, (iv) an electron donor compound (ED). The said catalyst component shows improved activity in the polymerization of olefins.
    Type: Application
    Filed: February 26, 2003
    Publication date: March 11, 2004
    Inventors: Gianni Collina, Ofelia Fusco, Diego Brita
  • Publication number: 20040048736
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component. This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Application
    Filed: May 29, 2003
    Publication date: March 11, 2004
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Publication number: 20040048991
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 11, 2004
    Applicant: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Publication number: 20040043892
    Abstract: Process for preparing an olefin polymerisation catalyst component comprising magnesium halide, titanium halide and a carboxylic acid ester electron donor, in which the precursors of its constituents are reacted in solution from which the component is eventually precipitated, this precipitation being accompanied by co-precipitation of one or more oligoesters of the carboxylic acid formed in a controlled manner. The component is employed, together with an organometallic co-catalyst, for polymerisation of C2-C1-0 &agr;-olefins.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 4, 2004
    Inventors: Timo Leinonen, Peter Denifl
  • Patent number: 6699813
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an lanthanide compound, (b) an alkylating agent, (c) a nickel-containing compound, and optionally (d) a halogen-containing compound, with the proviso that the halogen-containing compound must be present where none of the lanthanide compound, the alkylating agent, and the nickel-containing compound contain a labile halogen atom.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: March 2, 2004
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Yoichi Ozawa, Koji Masaki, David Lawson
  • Publication number: 20040038806
    Abstract: The present invention relates to a catalyst composition for polymerization of olefins and copolymerization of olefins with alpha-olefins comprising (a) catalyst precursor comprising at least one Ziegler-Natta compound, at least one metallocene compound, at least one titanate compound and/or at least one alcohol compound, a magnesium compound and a polymeric material, and (b) a cocatalyst comprising of an alkylaluminum compound, aluminoxane compound or mixtures thereof; and to a process for polymerization of olefins and copolymerization of olefins with alpha olefins using a catalyst composition according to the present invention.
    Type: Application
    Filed: July 8, 2003
    Publication date: February 26, 2004
    Inventors: Akhlaq Moman, Orass Hamed, Atieh Abu-Raqabah, Khalid Al-Bahily
  • Publication number: 20040039139
    Abstract: An olefin polymerization catalyst is described which includes: (A) a solid catalyst component being prepared by copulverizing a magnesium compound, an aluminum compound, an electron donor and a titanium compound, and (B) an organoaluminum compound. The present invention is also directed to a process for preparing polyolefins using the aforesaid catalyst system to polymerize olefins.
    Type: Application
    Filed: August 27, 2003
    Publication date: February 26, 2004
    Applicant: Formosa Plastics Co., U.S.A.
    Inventors: Bing Lu, Honglan Lu, Chih-Jian Chen
  • Publication number: 20040038807
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises contacting an organometal compound, an organoaluminum compound, and a solid, wherein said solid is selected from the group consisting of titanium tetrafluoride, zirconium tetrafluoride, and a treated solid oxide compound.
    Type: Application
    Filed: May 23, 2003
    Publication date: February 26, 2004
    Inventors: Max P. McDaniel, Marvin M. Johnson, Bruce B. Randolph, Kathy S. Collins, Elizabeth A. Benham, Michael D. Jensen, Gil R. Hawley, Joel L. Martin
  • Publication number: 20040033888
    Abstract: A solid titanium complex catalyst for polymerization and copolymerization of ethylene is prepared by the process comprising: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with a phosphorus compound and a silicon compound having at least one alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst through recrystallization by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound. The solid titanium complex catalyst for polymerization and copolymerization of ethylene according to present invention exhibits high polymerization activity, and can be advantageously used in the polymerization and copolymerization of ethylene to produce polymers of high bulk density and narrow molecular weight distribution.
    Type: Application
    Filed: April 22, 2003
    Publication date: February 19, 2004
    Inventors: Chun-Byung Yang, Won-Young Kim, Ji-Yong Park, Weon Lee
  • Publication number: 20040033887
    Abstract: A method for making a solid catalyst component for use in a Ziegler-Natta catalyst includes combining a porous particulate support with a magnesium source in a hydrocarbon solvent to form a mixture, the magnesium source including a hydrocarbon soluble organomagnesium compound and a hydrocarbon insoluble anhydrous inorganic magnesium-halogen compound. The organomagnesium compound is halogenated and the mixture is reacted with a titanium compound or vanadium compound to form the solid catalyst component. The solid catalyst component is then recovered and combined with an organoaluminum cocatalyst to form a Ziegler-Natta catalyst which is advantageously used for the polymerization of olefins, particularly alk-1-enes such as ethylene, propylene, 1-butene, and the like. The catalyst can optionally include internal and external electron donors.
    Type: Application
    Filed: August 19, 2002
    Publication date: February 19, 2004
    Inventor: Wolf Spaether
  • Publication number: 20040029720
    Abstract: Methods for preparing olefin polymers, and catalysts for preparing olefin polymers are disclosed. The polymers can be prepared by contacting the corresponding monomers with a Group 8-10 transition metal catalyst and a solid support. The polymers are suitable for processing in conventional extrusion processes, and can be formed into high barrier sheets or films, or low molecular weight resins for use in synthetic waxes in wax coatings or as emulsions.
    Type: Application
    Filed: June 26, 2003
    Publication date: February 12, 2004
    Applicant: Eastman Chemical Company
    Inventors: Peter Borden Mackenzie, Leslie Shane Moody, Christopher Moore Killian, Gino Georges Lavoie
  • Publication number: 20040030067
    Abstract: There are provided (I) a process for producing a catalyst for &agr;-olefin polymerization, which comprises the steps of:
    Type: Application
    Filed: March 26, 2003
    Publication date: February 12, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Jiro Mori, Tomoaki Tanaka, Yasunori Kaminaga
  • Publication number: 20040029719
    Abstract: A catalyst composition, and olefin polymerization process using same, formed from a mixture of a non-aluminoxane aluminum compound, an inorganic oxide and a transition metal bidentate or tridentate complex in certain prescribed proportions. The composition can be formed in a single step or in-situ in the polymerization reaction zone. The resultant catalyst has high activity and is capable of producing high molecular weight olefin products without reactor fouling.
    Type: Application
    Filed: August 5, 2003
    Publication date: February 12, 2004
    Inventor: Keng Yu Shih
  • Publication number: 20040030064
    Abstract: The present invention provides a catalyst component used for homopolymerization or co-polymerization of ethylene, comprising at least one suitable electron donor compound supported on a composition containing magnesium and titanium, wherein the electron donor compound is selected from the group consisting of aliphatic ethers, alicyclic ethers, aromatic ethers, aliphatic ketones and alicyclic ketones, and wherein the composition containing magnesium and titanium is prepared by dissolving a magnesium compound into a solvent system to form a homogeneous solution and then contacting the solution with a titanium compound in the presence of a precipitation aid to precipitate the composition. The present invention also relates to a method for the preparation of said catalyst component and a catalyst comprising thereof, and to use of the catalyst in homopolymerization of ethylene or co-polymerization of ethylene with at least one C3-C8 &agr;-olefln.
    Type: Application
    Filed: June 5, 2003
    Publication date: February 12, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Zhiwu Wang, Zhong Tan, Tianyi Li, Xingbo Li, Kai Zhang, Peng Kou, Haixiang Cui, Zhengyang Guo, Liang Pan
  • Patent number: 6689849
    Abstract: The present invention provides a catalyst for bulk or vapor-phase polymerization having high polymerization activity during bulk or vapor-phase polymerization and providing an olefin polymer having excellent properties in melt flow rate and stereoregularity by adding a small amount of hydrogen. The catalyst for bulk or vapor-phase polymerization of an &agr;-olefin compound under a presence of hydrogen, the catalyst is made by contacting the following ingredients (A) to (C). (A) a solid catalyst ingredient, comprising: (a) a magnesium compound, (b) titanium tetrachloride, and (c) dialkyl phthalate (Each of the alkyl group denotes a straight-chain or branched-chain hydrocarbon group having a carbon number of 3 to 20.); (B) an organoaluminum compound; and (C) an organosilicon compound, which is expressed by the following general chemical formula (1).
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: February 10, 2004
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Takanori Sadashima, Masami Kanamaru, Tsuyoshi Ota, Hideo Funabashi
  • Publication number: 20040023793
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted treated solid oxide compound.
    Type: Application
    Filed: March 18, 2003
    Publication date: February 5, 2004
    Inventors: Max P. McDaniel, Kathy S. Collins, Anthony P. Eaton, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Publication number: 20040024147
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted fluorided solid oxide compound.
    Type: Application
    Filed: May 19, 2003
    Publication date: February 5, 2004
    Inventors: Max P. McDaniel, Kathy S. Collins, James L. Smith, Elizabeth A. Benham, Marvin M. Johnson, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Publication number: 20040018938
    Abstract: A catalyst composition prepared from (a) titanium tetrahydrocarbyloxide, (b) zirconium tetrahydrocarbyloxide, and (c) tetraalkyl ammonium hydroxide, wherein the molar ratio of Zr:Ti is from about 0.02:1 to about 5:1 and the molar ratio of TAAH:(Ti+Zr) is from about 0.05:1 to about 2:1.
    Type: Application
    Filed: October 11, 2002
    Publication date: January 29, 2004
    Inventor: John H. Eng
  • Patent number: 6683018
    Abstract: A process for the preparation of a supported catalyst system, an inorganic carrier material being reacted with a metal compound of the formula M1(R1)r(R2)5(R3)t(R4)u  I in the presence of an inert solvent in a first step and, in a subsequent step, the suspension thus obtained being reacted with a metallocene complex and a compound forming metallocenium ions, in which process the solvent is not removed after the first step and the subsequent step is carried out without isolation of the pretreated carrier material thus obtained.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: January 27, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Laurent Deloux, Peter Kölle, Ulrich Moll, Ursula Rief
  • Publication number: 20040014595
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from maleates of a particular formula. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
    Type: Application
    Filed: April 24, 2003
    Publication date: January 22, 2004
    Inventors: Giampiero Morini, Giulio Balbontin, Yuri V. Gulevich, Gianni Vitale
  • Publication number: 20040014909
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted fluorided silica-alumina.
    Type: Application
    Filed: May 23, 2003
    Publication date: January 22, 2004
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Publication number: 20040014594
    Abstract: Described herein is a prepolymerized catalyst encapsulated with macromolecular monomers which is prepared by adding olefin mononers and diene compounds to a solid complex titanium catalyst for olefin polymerization and then polymerizing, and also relates to a method for polymerization or copolymerization capable of preparing polyolefins with high melt strength by polymerizing the olefin by using said catalyst.
    Type: Application
    Filed: August 13, 2003
    Publication date: January 22, 2004
    Inventors: Young-Soo Ko, Ki-Su Ro, Young-Jun Lee, Yong Chun
  • Patent number: 6680360
    Abstract: There are provided a process for producing a catalyst for &agr;-olefin polymerization, which comprises the step of contacting (1) a solid catalyst component having Ti, Mg and a halogen as essential components, (2) an organoaluminum compound and (3) a compound having a —C—O—C—O—C— bond group in a closed ring structure with one another; and a process for producing an &agr;-olefin polymer, which comprises the step of homopolymerizing or copolymerizing an &agr;-olefin in the presence of a catalyst for &agr;-olefin polymerization produced by the above process.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: January 20, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Shin-ichi Kumamoto
  • Publication number: 20040009869
    Abstract: A method for increasing the solubility of a magnesium halide includes providing an electron donating solvent, contacting a magnesium halide with the solvent; and providing an electron donor compound to form a magnesium halide composition. The composition is characterized by a solubility in the electron donor solvent that does not decrease up to the boiling point of the solvent. A polymerization catalyst precursor composition comprises the product of mixing the magnesium halide composition with a transition metal compound. Active catalysts prepared from such precursors and a methods of polymerization using such catalysts are also disclosed.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Burkhard Eric Wagner, Robert James Jorgensen, Cynthia Anne Hepburn
  • Publication number: 20040010101
    Abstract: A spray-dried catalyst precursor composition and method of making a spray-dried catalyst precursor composition with an inert filler, magnesium, a transition metal, solvent, and one electron donor compound. The catalyst precursor composition is substantially free of other electron donor compounds, the molar ratio of the electron donor compound to magnesium is less than or equal to 1.9, and comprises spherical or substantially spherical particles having a particle size of from about 10 to about 200 &mgr;m. Catalysts made from the spray-dried catalyst precursors and polymerization methods using such catalysts are disclosed.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Burkhard Eric Wagner, Robert James Jorgensen
  • Publication number: 20040006186
    Abstract: A process to produce a first catalyst composition is provided. The process comprises contacting at least one first organometal compound and at least one activator to produce the first catalyst composition. The activator is selected from the group consisting of aluminoxanes, fluoro-organo borates, and treated solid oxide components in combination with at least one organoaluminum compound. In another embodiment of this invention, a process to produce a second catalyst composition for producing bimodal polymers is provided. The process comprises contacting at least one first organometal compound, at least one activator, and at least one second organometal compound to produce the second catalyst composition. The first and second catalyst compositions are also provided as well as polymerization processes using these compositions to produce polymers.
    Type: Application
    Filed: January 21, 2003
    Publication date: January 8, 2004
    Inventors: Michael D. Jensen, Max P. McDaniel, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Gil R. Hawley, Tony R. Crain, Martha J. Tanner
  • Patent number: 6673882
    Abstract: A method for making supported single-site catalysts useful for olefin polymerization is disclosed. An organometallic complex that contains a nitrogen-functional heterocyclic ligand is first prepared and reacted with an alumoxane. This product is then combined, preferably with high-intensity mixing, with a slurry of inorganic support, followed by solvent removal to give a supported catalyst. By introducing the alumoxane at the right time during preparation, and by judicious selection and chemical treatment of the inorganic support, one can make catalysts with high activity and good aging properties. The supported catalysts give olefin polymers with a favorable balance of physical properties, including low density, narrow molecular weight distribution, good melt-flow properties, and high bulk density.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: January 6, 2004
    Assignee: Equistar Chemicals, LP
    Inventor: Jia-Chu Liu