And A Third Component C (i.e., An Additive Other Than A Saturated Hydrocarbon Or An Aromatic Hydrocarbon Free Of Aliphatic Or Cycloaliphatic Unsaturation) Patents (Class 502/118)
  • Patent number: 7071137
    Abstract: A method for making a Ziegler-Natta catalyst support includes the steps of contacting a fumed silica with a surface modifying agent such as a compound having the formula RMgX MgR?R? wherein R, R? and R? are each individually a moiety selected from an alkyl group, cycloalkyl, aryl or alkaryl group, and X is a halogen selected from the group consisting of chlorine, bromine and iodine, to provide a pretreated silica seeding agent. The pretreated silica seeding agent is then dispersed in a non-aqueous liquid magnesium halide/alkanol complex, and the magnesium halide is crystallized onto the silica particles to form catalyst support particles especially suitable for Ziegler-Natta catalysts.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: July 4, 2006
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Douglas D. Klendworth, Frank Wolf Spaether
  • Patent number: 7049263
    Abstract: There are provided a process for producing a catalyst for ?-olefin polymerization, which comprises the step of contacting (1) a solid catalyst component having Ti, Mg and a halogen as essential components, (2) an organoaluminum compound and (3) a compound having a —C—O—C—O—C— bond group in a closed ring structure with one another; and a process for producing an ?-olefin polymer, which comprises the step of homopolymerizing or copolymerizing an ?-olefin in the presence of a catalyst for ?-olefin polymerization produced by the above process.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: May 23, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Shin-ichi Kumamoto
  • Patent number: 7045478
    Abstract: The present invention relates to a catalyst for homo-polymerization or co-polymerization of ethylene, or more particularly to a solid complex titanium catalyst for homo-polymerization or co-polymerization of ethylene. The catalyst may be produced by preparing a magnesium solution by contact-reacting a magnesium halide compound with an alcohol. Reacting the solution with an ester compound and a boron compound. Then reacting the solution with a mixture of a titanium compound and a silicon compound.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: May 16, 2006
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun Byung Yang, Sang Yull Kim, Ho Yeoun Kim, Eun Ha Kim
  • Patent number: 7045481
    Abstract: Supported catalysts include a solid support such as silica that is functionalized to have inorganic acid functional groups attached thereto. Active catalyst particles are supported on the functionalized support material. The acid functionalized support material is made by reacting a solid support with an inorganic acid containing agent such as sulfuric acid or para-toluene sulfonic acid. An organic anchoring agent is used to form and anchor catalyst nanoparticles to the acid functionalized support material. The supported catalyst can be sized and shaped for use in any type of reactor, including a fixed bed or fluidized bed reactor. The methods of the present invention also include a process for the direct synthesis of hydrogen peroxide using the supported catalyst.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: May 16, 2006
    Assignee: Headwaters Nanokinetix, Inc.
    Inventors: Sukesh Parasher, Michael Rueter, Bing Zhou
  • Patent number: 7041757
    Abstract: A metallocene catalyst may be temporarily and reversibly passivated by contact with an effective amount of an unsaturated hydrocarbon passivating compound.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 9, 2006
    Assignee: Innovene USA LLC
    Inventors: Richard A. Hall, Jerome A. Streeky, Roger Uhrhammer
  • Patent number: 7041753
    Abstract: This invention provides oxide matrix compositions that can be utilized in catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. The oxide matrix composition comprises residual mineral components and an oxide precursor. The catalyst composition comprises contacting an organometal compound, an organoaluminum compound, and an oxide matrix composition. Processes for producing the oxide matrix composition and the catalyst composition are also provided.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 9, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Joseph S. Shveima, James L. Smith, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 7001862
    Abstract: The present invention relates to a catalyst composition for polymerization of olefins comprising: (a) a solid catalyst pre cursor comprising at least one vanadium compound, at least one magnesium compound and a polymeric material or a solid catalyst precursor comprising at least one vanadium compound, at least one further transition metal compound and/or at least one alcohol, at least one magnesium compound and a polymeric material; and (b) a cocatalyst comprising at least one aluminum compound; and to a method for preparing a catalyst composition according to the present invention, comprising the steps of: (a) combining the components of the solid catalyst precursor; and (b) activating the catalyst precursor with aluminum compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: February 21, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq A. Moman, Khalid Al-Bahily, Atieh Abu-Raqabah, John Ledford, Orass M. Hamed
  • Patent number: 6998449
    Abstract: A metallocene catalyst may be temporarily and reversibly passivated by contact with an effective amount of a passivating compound selected from the group of oxygen, oxygen-containing compounds, and nitrogen-containing compounds.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: February 14, 2006
    Assignee: BP Corporation North America
    Inventor: Brian S. Kimberley
  • Patent number: 6962889
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component having a substantially spherical shape and containing a titanium compound and a support made from a magnesium compound and an alkyl silicate. The catalyst system may further contain an organoaluminum compound and an organosilicon compound. Also disclosed are methods of making an impact copolymer involving polymerizing an olefin to provide a polyolefin matrix and polymerizing a polyolefin rubber using a solid titanium catalyst component containing a titanium compound and a support made from a magnesium compound and an alkyl silicate.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: November 8, 2005
    Assignee: Engelhard Corporation
    Inventors: Zhidong Zhu, Main Chang
  • Patent number: 6958375
    Abstract: The present invention is directed to a novel one-step method for forming a supported catalyst complex of high activity by substantially simultaneously contacting a bidentate or tridentate ligand forming compound, a transition metal compound and a chromium immobilized Lewis acid support-agglomerate. The catalyst can be formed prior to polymerization of olefins or within the polymerization reaction zone.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: October 25, 2005
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Rimantas Glemza
  • Patent number: 6953829
    Abstract: A catalyst system comprising at least one metallocene, at least one cocatalyst, at least one support material and, if desired, further organometallic compounds is described. The catalyst system can advantageously be used for the polymerization of olefins and displays a high catalyst activity and gives a good polymer morphology without it being necessary to use aluminoxanes such as methylaluminoxane (MAO), which usually has to be used in high excess, as cocatalyst.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: October 11, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Roland Kratzer, Cornelia Fritze, Jörg Schottek
  • Patent number: 6949614
    Abstract: A catalyst system comprising a metallocene, a cocatalyst, a support material and optionally a further organometallic compound is described. The catalyst system can advantageously be used for the polymerization of olefins. Here, the use of aluminoxanes such as methylaluminoxane (MAO) as cocatalyst is dispensed with and a high catalyst activity and good polymer morphology are nevertheless achieved.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: September 27, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Jörg Schottek, Patricia Becker
  • Patent number: 6933355
    Abstract: Metal-ligand complexes that are useful as precursors to catalysts for the polymerization of olefins are provided. Certain of the catalysts are particularly effective at polymerizing ethylene and styrene into copolymers having novel properties, including a low molecular weight and close comparison between vinyl and methyl end groups.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: August 23, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Oliver Brümmer, Gary M. Diamond, Christopher Goh, Anne M. LaPointe, Margarete K. Leclerc, James Longmire, James A. W. Shoemaker
  • Patent number: 6916759
    Abstract: A method of making an olefin polymerization catalyst is disclosed. The method involves contacting a magnesium halide compound with an alcohol, adding a mineral oil to the product, reacting this product with a hydroxylated ester and an alkoxy silane, then adding a titanium compound and a second silicon compound. The titanium compound is preferably an alkoxy halide, and the second silicon compound is preferably a silicon halide.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 12, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Weon Lee
  • Patent number: 6903041
    Abstract: There are provided; (i) a solid catalyst component obtained by contacting a trivalent titanium atom-containing solid catalyst component precursor (C) with a halogeno compound (A) of the 13 or 14 group of elements in the periodic table of the elements and an electron donor (B), or a solid catalyst component obtained by contacting an intermediate product with a titanium-halogen bond-carrying compound (D), the intermediate product being obtained by contacting the solid catalyst component precursor (C) with a halogeno compound (A?) of the 14 group of elements in the periodic table of the elements and the electron donor (B), or a solid catalyst component comprising a magnesium atom, a titanium atom, a halogen atom and an electron donor and having a relative surface area of not more than 30 m2/g, the catalyst component being superior in a particle form, and (ii) a catalyst comprising the solid catalyst component and an organoaluminum compound, the catalyst being high in polymerization activity.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: June 7, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shin-ichi Kumamoto, Makoto Satoh, Hideki Ohshima
  • Patent number: 6901334
    Abstract: Methods of analyzing processes for making catalysts and/or certain properties of catalysts using a plurality of reaction zones are provided. The methods of the present invention have the capability to define and execute, in rapid succession, a plurality of experiments under disparate reaction conditions. An operator may define and execute a plurality of experiments on user-defined quantities of disparate catalysts, using user-defined input feeds, residence times, and temperature profiles.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: May 31, 2005
    Assignee: Rohm and Haas Company
    Inventors: Michael William Linsen, Edward Albert Schmitt, Mark Richard Schure
  • Patent number: 6897273
    Abstract: This invention relates to a process to polymerize olefin(s) comprising combining a solution, slurry or solid comprising one or more bulky ligand metallocene catalyst compounds, an optional support, and or one or more activator(s) with a solution comprising one or more phenoxide catalyst compounds, and thereafter, introducing one or more olefin(s) and the combination into a polymerization reactor. This invention also relates to a polymer of ethylene wherein the polymer has a density of 0.910 to 0.930 g/cc, a melt index of 0.3 to 2.0 dg/min, and a 15 to 35 ?m thick film of the polymer has a 45° gloss of 60 or more, a haze of 7% or less, and a dart impact of 600 g or more.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: May 24, 2005
    Assignee: Univation Technologies, LLC
    Inventors: John F. Szul, Tae Hoon Kwalk, David James Schreck, Simon Mawson, Matthew G. McKee, Kersten Anne Terry, Mark G. Goode, Gregory T. Whiteker, Eric A. Lucas
  • Patent number: 6887956
    Abstract: A catalyst system suitable for use in the production of high cis polybutadiene is disclosed. The catalyst system includes a cobalt salt of the formulaCoAx?, where A is a monovalent or divalent anion and x is 1 or 2; an alkyl aluminum chloride compound of the structure R2AlCl, where R is an alkyl group containing 2-8 carbon atoms; a trialkyl aluminum compound of the formula R3Al, where R is an alkyl group containing 2-8 carbon atoms; and a catalytic amount of water.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 3, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: Adriaan A. van der Huizen, Jean-Marc Potlet, Alain Sabatier, Patrick Le Roy
  • Patent number: 6878659
    Abstract: A solid catalyst component for olefin polymerization characterized by being formed from (a) a magnesium compound, (b) titanium tetrachloride, (c) a phthalic diester and a derivative thereof, and either (d1) a hydroxylated hydrocarbon compound (phenol, etc.) represented by a specific formula or (d2) a mercapto-containing hydrocarbon compound (thiophenol, etc.) represented by a specific formula. With a catalyst obtained from this solid catalyst component, an olefin polymer can be obtained in extremely high yield. In particular, a propylene polymer which retains high stereoregularity can be obtained in extremely high yield.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: April 12, 2005
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Kunihiko Tashino, Isa Nishiyama, Takuma Yoshida, Yukihiro Suzuki, Hayashi Ogawa, Maki Sato
  • Patent number: 6875719
    Abstract: A catalyst composition for preparing olefin polymers. The catalyst composition includes a metallocene compound and an activating cocatalyst. In the metallocene compound, two cyclopentadienyl groups are bridged by X (carbon) in a ring structure and the bridge X forms a three-, four-, or five-member ring structure. The bite angle ? formed by the two cyclopentadienyl rings and X is equal to or greater than 100 degrees. The obtained olefin polymer has high cycloolefin conversion and a high glass transition temperature. In addition, the catalyst composition can still maintain relatively high activity at high temperature reaction conditions. The metallocene compound is represented by formula (I) below.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: April 5, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Ming-Yuan Wu, Tung-Ying Hsieh, Yuh-Yuan Wei, Chao-Ying Yu
  • Patent number: 6855656
    Abstract: A propylene block copolymer with a high proportion of ethylene-propylene copolymer particles (rubber component) well dispersed in a propylene polymer exhibiting well-balanced rigidity and impact resistance can be obtained by using a solid catalyst for polymerization of olefins comprising (a) a solid catalyst component with controlled morphology, comprising magnesium, titanium, and a halogen atom, having an average particle diameter, specific surface area, and pore volume in a specific range, and having a pore size distribution in which an cumulative pore volume with a pore size of 100 ? or less is more than 50%, (b) an organoaluminum compound, and (c) an organosilicon compound. The block copolymer is very useful particularly for the application of vehicle parts such as a bumper and parts for household electric appliances.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 15, 2005
    Assignee: Toho Catalyst Co., Ltd.
    Inventors: Motoki Hosaka, Hideo Tsukamoto, Hidetoshi Umebayashi, Makoto Nakano
  • Patent number: 6855655
    Abstract: A supported catalyst composition comprising the reaction product of i) a magnesium halide, ii) a solvent, iii) an electron donor compound, iv) and a transition metal compound; an inert support; and a cocatalyst composition wherein the supported catalyst is substantially free of other alcohols and wherein the molar ratio of the first alcohol to magnesium is less than or equal to 1.9. Methods of making supported catalyst compositions and methods of making polymers with supported catalysts.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: February 15, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Burkhard Eric Wagner, Michael D. Awe
  • Publication number: 20040266609
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Application
    Filed: April 22, 2004
    Publication date: December 30, 2004
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Publication number: 20040266962
    Abstract: It has been discovered that using di-sec-butyldialkoxysilanes, such as di-sec-butyldimethoxysilane (DSBDMS), as external electron donors for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties and processing. The catalyst systems of the invention provide high activity, high bulk density, moderate hydrogen response, moderate donor response and high polydispersity (MWD). Suitable di-sec-butyldialkoxysilanes have the formula (SBu)2Si(OR″)2, where R″ is independently a straight or branched alkyl group of 1-5 carbon atoms.
    Type: Application
    Filed: December 1, 2003
    Publication date: December 30, 2004
    Inventor: Joseph Thorman
  • Publication number: 20040266610
    Abstract: A MgCl2.mEtOH.nH2O adducts, where 3.4<m≦4.4, 0≦n≦0.7, characterized by an X-ray diffraction spectrum, taken under the condition set forth above, in which, in the range of 2&thgr; diffraction angles between 5° and 10°, at least two diffraction lines are present at diffraction angles 2&thgr; of 9.3±0.2°, and 9.9±0.2°, the most intense diffraction lines being the one at 2&thgr; of 9.3±0.2°, the intensity of the other diffraction line being less than 0.4 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and/or porosity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Application
    Filed: May 17, 2004
    Publication date: December 30, 2004
    Inventors: Daniel Evangelisti, Gianni Collina, Ofelia Fusco, Mario Sacchetti
  • Publication number: 20040259721
    Abstract: Disclosed is a catalyst for olefin polymerization comprising [I] a solid titanium catalyst component [S] comprising titanium, magnesium, halogen and an electron donor (b), which is obtained by bringing a solid adduct consisting of a magnesium compound and an electron donor (a) into contact with an electron donor (b) and a liquid titanium compound by at least one method selected from (A) a method of contacting the materials in a suspended state in the coexistence of an inert hydrocarbon solvent and (B) a method of contacting the material plural times individed portions and [II] an organometallic compound catalyst component [M] containing a metal selected from the groups I to III in the periodic table. By olefin polymerization with this polymerization catalyst, an olefinic (co)polymer having high stereospecificity can be obtained with high activity.
    Type: Application
    Filed: July 20, 2004
    Publication date: December 23, 2004
    Inventors: Kazuhisa Matsunaga, Masao Nakano, Masaaki Ohgizawa, Toshiyuki Tsutsui
  • Patent number: 6833338
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises contacting an organometal compound, an organoaluminum compound, and a treated solid oxide compound.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: December 21, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Gil R. Hawley, Michael D. Jensen, Christopher E. Wittner, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, David C. Rohlfing, Youlu Yu
  • Publication number: 20040254063
    Abstract: The present invention relates to an adduct comprising MgCl2, an alcohol (ROH) in which R is a C1-C10 hydrocarbon group, and a compound containing a transition metal M selected from the Groups 3 to 11 or the lanthanide or actinide groups of the Periodic Table of the Elements (new IUPAC version) in an amount such as to give a weight of M atoms lower than 10% based on the total weight of the adduct. The catalyst components that are obtained by reacting the adducts with halogenating agents show very high specific activity.
    Type: Application
    Filed: April 22, 2004
    Publication date: December 16, 2004
    Inventors: Mario Sacchetti, Daniele Evangelisti, Diego Brita, Gianni Collina
  • Patent number: 6831033
    Abstract: A solid titanium complex catalyst for polymerization and copolymerization of ethylene is prepared by the process that includes: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with an ester compound having at least one hydroxyl group and a silicon compound having an alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: December 14, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Publication number: 20040242409
    Abstract: The present invention relates to a catalyst for homo-polymerization or co-polymerization of ethylene, or more particularly to a solid complex titanium catalyst for homo-polymerization or co-polymerization of ethylene. The catalyst may be produced by preparing a magnesium solution by contact-reacting a magnesium halide compound with an alcohol. Reacting the solution with an ester compound and a boron compound. Then reacting the solution with a mixture of a titanium compound and a silicon compound.
    Type: Application
    Filed: July 7, 2004
    Publication date: December 2, 2004
    Applicant: Samsung General Chemicals Co., Ltd.
    Inventors: Chun Byung Yang, Sang Yull Kim, Ho Yeoun Kim, Eun Ha Kim
  • Publication number: 20040242408
    Abstract: The invention relates to the use of nitrogenous aluminium organyl complexes of general formula (I) as co-catalysts in heterogeneous polymerisation reactions of propene. In said formula: R, R′, R1 and R1′ independently of one another represent branched or unbranched C1-C7 alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl or alkynyl; R2 represents unsubstituted, monoalkylated or polyalkylated and/or monofluorinated or polyfluorinated aromatic hydrocarbons from group (II); R3 and R4 independently of one another represent CH2, CF2 oder C(R1)2; m stands for 0, 1 or 2; n stands for 0, 1 or 2; o stands for 0 or 1, all independently of one another. Said systems exhibit improved characteristics in terms of activity and stereoselectivity in comparison to conventional co-catalysts such as AlEt3 and can act simultaneously as co-catalysts and stereoselectivity promoters.
    Type: Application
    Filed: April 8, 2004
    Publication date: December 2, 2004
    Inventors: Katrin Kohler, Herbert Schumann, Birgit Corinna Wassermann, Wilfried Wassermann, Katharina Lange, Sebastian Dechert, Markus Hummert, Stefan Schutte, Walter Kaminsky, Andrea Eisenhardt, Bjorn Heuer, Andre Laban
  • Publication number: 20040242407
    Abstract: The present invention relates to an olefin polymerisation catalyst comprising a catalyst component in the form of particles having a predetermined size range and a low surface area, but high activity, said catalyst being suitable for use in olefin polymerisation, to the process for preparing the catalysts as such and to their use in polymerisation olefins.
    Type: Application
    Filed: July 13, 2004
    Publication date: December 2, 2004
    Inventors: Peter Denifl, Timo Leinonen, Erik Van Praet, Thomas Garoff, Kari Pesonen
  • Publication number: 20040242406
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 metal complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Mg being solidified by heating to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed. The process may be employed in the production of Ziegler-Natta catalysts.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 2, 2004
    Inventors: Peter Denifl, Timo Leinonen
  • Publication number: 20040235645
    Abstract: Cyclopolyenic 1,3-diethers wherein the carbon atom in position 2 belongs to a particular cyclic or polycyclic structure containing two or three unsaturations, solid catalyst components and catalysts therefrom, the catalysts comprising the reaction product of:
    Type: Application
    Filed: June 28, 2004
    Publication date: November 25, 2004
    Inventors: Giampiero Morini, Enrico Albizzati, Giulio Balbontin, Giovanni Baruzzi, Antonio Christofori
  • Publication number: 20040235644
    Abstract: Process for preparing an olefin polymerisation catalyst component in the form of particles having a predetermined size range, said process comprising the steps of a) preparing a solution of a complex of a Group 2 metal and an electron donor by reacting a compound of said metal with said electron donor or a precursor thereof in an organic liquid reaction medium; b) adding said solution of said complex to at least one compound of a transition material to produce an emulsion, the dispersed phase of which contains more than 50 mol % of the Group 2 metal in said complex; c) agitating the emulsion, optionally in the presence of an emulsion stabilizer, in order to maintain the droplets of said dispersed phase within the average size range 5 to 200 m; d) solidifying said droplets of the dispersed phase; and e) recovering the solidified particles of the olefin polymerisation catalyst component, wherein a turbulence minimizing agent (TMA) is added to the reaction mixture before solidifying said droplets of the disperse
    Type: Application
    Filed: July 6, 2004
    Publication date: November 25, 2004
    Inventors: Peter Denifl, Timo Leinonen
  • Publication number: 20040229748
    Abstract: The present invention is to provide a composite carrier, which is spheric particles obtainable by contacting magnesium halide with one or more electron donor compounds to form a solution, then mixing the solution with silica material having an average particle size of less than 10 microns to form a mixture, and drying the mixture through spray drying process. The present invention is also to provide a catalyst component comprising said composite carrier. When the catalyst component is used together with a cocatalyst component in propylene polymerization, it exhibits higher polymerization activity and stereospecificity, and can be used to prepare high impact resistant ethylene-propylene copolymer having high ethylene content.
    Type: Application
    Filed: February 19, 2004
    Publication date: November 18, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Wei Chen, Tianyi Zhang, Hongbin Du, Xianzhi Xia, Tongxuan Zhang, Lixin Yan, Yisen Wang, Xinsheng Wang, Jiyu Li, Ping Gao, Maoping Yin, Luqiang Yu, Qingshan Ma, Xiaodong Wang
  • Patent number: 6800703
    Abstract: A method for producing propylene polymers having a broad molecular weight distribution (MWD) is disclosed. The method uses a Ziegler catalyst and one silane donor. The silane donor is selected from vinyltrimethoxysilane or dicyclohexyldimethoxysilane. The polymers made by the method have an MWD greater than or equal to 7.0.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 5, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Mark K. Reinking, Douglas D. Klendworth
  • Patent number: 6800580
    Abstract: The present invention relates to a solid complex titanium catalyst for homo-polymerization and co-polymerization of &agr;-olefin, obtained by (i) producing a solution of a magnesium compound by dissolving a magnesium compound and a compound of IIIA Group of the Periodic Table in a solvent mixed with cyclic ether, one or more types of alcohol, a phosphorous compound, and an organosilane, (ii) precipitating the solid particles by reacting said magnesium solution with a compound of a transition metal, a silicon compound, or the mixture thereof, and (iii) reacting said precipitated solid particles with a titanium compound and an electron donor. The catalyst of the present invention is of large particle size, narrow particle distribution, and high catalytic activity, while the polymers obtained with the use of this catalyst are of excellent stereoregularity.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: October 5, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun Byung Yang, Mie Ock Kim
  • Patent number: 6790805
    Abstract: The invention relates to a process for the in-situ preparation of alkylated single-site transition metal catalysts by contacting a precatalyst with an alkylating agent in the presence of one or more olefin monomers in the polymerization system. The precatalyst, which is produced prior to introducing into the polymerization system, is obtained by contacting a transition metal complex and boron-containing ionizing agent, optionally, with a support.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: September 14, 2004
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6777365
    Abstract: The invention relates to a magnesium compound effective in producing olefin polymers having an increased bulk density and a narrowed particle size distribution, not lowering the stereospecificity of the polymers produced and not lowering the polymerization activity in producing the polymers, to an olefin polymerization catalyst comprising the compound, and to a method for producing such olefin polymers. The olefin polymerization catalyst comprises (A) a solid catalyst component prepared by contacting a magnesium compound having a specific particle size distribution index (P), a titanium compound and an electron donor compound with each other, (B) an organometallic compound, and (C) an electron donor. The olefin polymerization method comprises polymerizing an olefin in the presence of the catalyst to give olefin polymers.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: August 17, 2004
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Shohjiroh Tanase, Takehiro Tsuda, Tsuyoshi Ota, Hideo Funabashi
  • Patent number: 6770772
    Abstract: The present invention relates to a transition metal compound represented by the general formula (I), and a olefin polymerization catalyst comprising above transition metal compound and activating co-catalyst as the main components. (wherein, M represents a metal element in the groups 3 to 10 of the periodic table or in the lanthanoide series, X represents a &sgr; bonding ligand bonded to M, Y represents a Lewis base, A represents a cross-linking group, p is an integer of 1 to 20, q is an integer of 1 to 5 and represents [(valence of M)−2], r is an integer of 0 to 3. R1 represents a group in above R2 to R9 except hydrogen atom). The present invention provides a transition metal compound useful for olefin polymerization catalyst, and olefin polymerization catalyst using above compound.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: August 3, 2004
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Takashi Kashiwamura, Takuji Okamoto, Yutaka Minami
  • Publication number: 20040138054
    Abstract: A supported catalyst composition comprising the reaction product of i) a magnesium halide, ii) a solvent, iii) an electron donor compound, iv) and a transition metal compound; an inert support; and a cocatalyst composition wherein the supported catalyst is substantially free of other alcohols and wherein the molar ratio of the first alcohol to magnesium is less than or equal to 1.9. Methods of making supported catalyst compositions and methods of making polymers with supported catalysts.
    Type: Application
    Filed: July 15, 2002
    Publication date: July 15, 2004
    Inventors: Burkhard Eric Wagner, Michael D. Awe
  • Patent number: 6762258
    Abstract: Novel nitrogen containing transition metal complexes have general formula (I): wherein M is Fe[II], Fe[III], Ni[II], Co[I], Co[II], Co[III], V[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; Pd[II], V[III], V[IV] or V[V]. X represents an atom or group covalently or ionically bonded to the transition metal M; R is independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; Z is a bridging group comprising a donor atom of N, P or S or alternatively is a neutral group comprising a C1-C4 alkylene group, a silyl or germyl group, and n= an integer to satisfy the valency of M.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: July 13, 2004
    Assignee: BP Chemicals Limited
    Inventors: Manfred Bochmann, Mark John Sarsfield
  • Patent number: 6762255
    Abstract: Prealkylation of a supported catalyst system comprising a transition metal or inner transition metal complex precatalyst and a bulky, non-coordinating anion on an inorganic support by treatment with a solution of metal alkyl in a ratio of metal of metal alkyl to transition metal or inner transition metal of precatalyst less than 20:1, and in an amount of solution insufficient to form a paste or dispersion provides supported catalysts of high olefin polymerization activity which promote production of polyolefins of low polydispersity and improved morphology.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 13, 2004
    Assignee: Equistar Chemicals L.P.
    Inventors: Craig C. Meverden, Michael W. Lynch
  • Publication number: 20040132611
    Abstract: Supported catalyst composition for polymerization of olefins comprising: (i) a titanium compound, a magnesium compound and at least one electron donor compound; (ii) an oxygen containing polymer support; and (iii) a cocatalyst comprising at least one aluminum compound.
    Type: Application
    Filed: February 17, 2004
    Publication date: July 8, 2004
    Inventors: Mansour I. Taftaf, Serajudin F. Ahmed
  • Publication number: 20040127348
    Abstract: A catalyst system is provided. In one aspect, the catalyst system includes one or more polymerization catalysts and at least one activator.
    Type: Application
    Filed: June 24, 2003
    Publication date: July 1, 2004
    Inventors: Matthew W. Holtcamp, David A. Cano
  • Publication number: 20040127656
    Abstract: A process for polymerizing olefins using a catalyst system comprising a conventional Ziegler-Natta catalyst and an external election donor selected from the group consisting of diethers and combinations thereof. The catalyst system comprises a Ziegler-Natta catalyst having a transition metal compound generally represented by the formula: MR′x where M is a transition metal, R′ is a halogen or a hydrocarboxyl, and x is the valence of the transition metal. The transition metal compound can be TiCl4. The Ziegler-Natta catalyst may comprise an internal electron donor, such as phthalate. The catalyst system further includes an external electron donor selected from the group consisting of diethers and a co-catalyst selected from the group of organoaluminum compounds. In one embodiment, the external electron donor is 2,2-diisobutyl-1,3-dimethoxypropane, and the co-catalyst is triethylaluminum.
    Type: Application
    Filed: January 1, 2003
    Publication date: July 1, 2004
    Inventor: Christopher G. Bauch
  • Publication number: 20040127349
    Abstract: The invention provides a catalyst component for ethylene polymerization, comprising an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difuntional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound. The invention also relates to a process for preparing the catalyst component and use thereof. The catalyst comprising the catalyst component exhibits good hydrogen response and activity balance, and that the amount of static charges carried by the catalyst solid component powders is remarkably reduced will facilitate the industrial-scale operation of polymerization.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 1, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Publication number: 20040127657
    Abstract: Catalytic composition for the (co)polymerization of ethylene and other &agr;-olefins, including a metallocene complex of a metal M of group 4 of the periodic table or the product obtainable from the same combined with a suitable activator, wherein said metallocene complex includes at least one cyclopentadienyl group and at least one unsaturated hydrocarbyl organic group bonded to the metal M, having the following formula (I):
    Type: Application
    Filed: September 26, 2003
    Publication date: July 1, 2004
    Applicant: POLIMERI EUROPA S.p.A.
    Inventors: Francesco Masi, Anna Sommazzi, Roberto Santi
  • Patent number: 6750302
    Abstract: A polymerization catalyst is disclosed, wherein the catalyst comprises: (a) a metallocene of Ti, Zr or Hf, (b) an organoaluminum compound, and (c) a treated solid oxide support which comprises fluorine and chromium.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: June 15, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley, Eric T. Hsieh