With -xh Reactant Wherein X Is A Chalcogen Atom Patents (Class 521/170)
  • Patent number: 8629195
    Abstract: The invention relates to a process for producing polyurethane foams, by frothing and drying mixtures of specific polyurethane dispersions and crosslinkers.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 14, 2014
    Assignee: Bayer MaterialScience AG
    Inventors: Jan Schönberger, Michael Mager, Thorsten Rische, Sebastian Dörr, Thomas Feller, Michael Heckes, Melita Dietze, Burkhard Fugmann
  • Publication number: 20140011903
    Abstract: In various embodiments a urethane/molecular rebar formulation comprising a specific composition is disclosed. The composition comprises a urethane polymer or prepolymer/discrete carbon nanotube formulation. Utility of the urethane/molecular rebar composition includes improved foams and adhesives.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 9, 2014
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 8623931
    Abstract: The invention relates generally to protein-containing polyurethane foams, methods and compositions for making the polyurethane foams, and articles comprising the polyurethane foams.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: January 7, 2014
    Assignee: Biopolymer Technologies, Ltd.
    Inventors: Anthony A. Parker, Joseph J. Marcinko
  • Patent number: 8623984
    Abstract: The present invention relates to compositions containing polyether-siloxane copolymers which are based on branched SiH-functional siloxanes, where at least one of the polyether-siloxane copolymers has a radical —OR8 where R8=hydrogen or an alkyl radical having from 1 to 10 carbon atoms which is bound to a silicon atom, a process for producing polyurethane foam in which these compositions are used as foam stabilizers, polyurethane foams containing these compositions and the use of these polyurethane foams.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: January 7, 2014
    Assignee: Evonik Goldschmidt GmbH
    Inventors: Frauke Henning, Carsten Schiller, Horst Dudzik, Eva Emmrich, Annegret Terheiden, Martin Glos, Wilfried Knott, Christian Eilbracht
  • Publication number: 20140005288
    Abstract: A stable polyol pre-mix composition comprises a blowing agent, a polyol, a surfactant, and a catalyst composition comprising an oxygen-containing amine catalyst. The oxygen-containing amine catalyst may be, an alkanol amine, an ether amine, or a morpholine group. containing compound such as, 2.(2.dimethylaminoethoxy)ethanol or N.N.N?.trimethylaminoethylethanolamine. A stabilized thermosetting foam blend comprises: (a) a polyisocyanate and, optionally, isocyanate compatible raw materials; and (b) a polyol pre. mix composition. A method for stabilizing thermosetting foam blends comprises combining: (a) a polyisocyanate and, optionally, isocyanate compatible raw materials; and (b) a polyol pre. mix composition. A polyurethane or polyisocyanurate foam having uniform cell structure with little or no foam collapse comprises a mixture of: (a) a polyisocyanate and, optionally, one or more isocyanate compatible raw materials; and (b) a polyol pre-mix composition.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 2, 2014
    Applicant: Arkema Inc.
    Inventors: Benjamin Bin Chen, Joseph S. Costa, Laurent Abbas, Haiming Liu, Sri R. Seshadri
  • Patent number: 8618337
    Abstract: The invention relates to a process for preparing polyether alcohols by reacting a) aromatic amines with b) alkylene oxides in the presence of c) a catalyst, wherein the alkylene oxide b) comprises at least 90% by weight, based on the weight of the component b), of propylene oxide and an amine is used as catalyst c).
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Sirus Zarbakhsh, Markus Schuette, Marc Fricke
  • Patent number: 8618014
    Abstract: Catalyst compositions for use in forming polyurethane products include a gelling catalyst, a trimerization catalyst, and a cure accelerator. The gelling catalyst is a tertiary amine, mono(tertiary amino) urea, bis(tertiary amino) urea, or a combination of any of these. Any known trimerization catalyst may be used. The cure accelerator may be a diol having at least one primary hydroxyl group, and having from five to 17 chain backbone atoms chosen from carbon, oxygen, or both between the hydroxyl groups, provided that at least five of the backbone atoms are carbon. Alternatively or in addition, the cure accelerator may be a polyol having three or more hydroxyl groups, at least two of which are primary, and having molecular weights between 90 g/mole and 400 g/mole. Delayed initiation of the polyurethane-forming reaction and/or reduced demold time for producing the polyurethane part can be obtained by using these catalyst compositions.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 31, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gary Dale Andrew, Mark Leo Listemann, Patrick Gordon Stehley, James Douglas Tobias, John William Miller
  • Publication number: 20130330993
    Abstract: A process for the preparation of a composite material from a particulate binder material having an average particle size (D9 0) of from 15 to 850 pm and a fibrous material having a density of from 150 to 550 kg/m3, comprising the steps of: a) blending the particulate binder material and the fibrous material, preferably in a weight ratio of 60:40 to 10:90, and b) subjecting the blended material obtained in a) to a curing step under increased temperature and pressure to obtain a composite material. The invention further relates to the composite material thus obtained, and to its use as building materials or as panelling.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 12, 2013
    Applicant: HOLLAND COMPOSITES INNOVATION B.V.
    Inventors: Pieter Jan Dwarshuis, Ronald Edward Van Riemsdijk
  • Patent number: 8604093
    Abstract: A fire-resistant polyurethane foam is provided. A hydroxyl-containing inorganic fire retardant is premixed with a polyisocyanate and a polyol, respectively, to form two premixtures. Then, the two premixtures are mixed for reaction to form a fire-resistant polyurethane foam. Preferably, a combination of different particle sizes of the fire retardant is employed to maximize the amount of the fire retardant and increase the fire resistance of the foam.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: December 10, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Po-Ju Chen, Sung-Jeng Jong, Ren-Kuen Chang, Chin-Shang Hsu, Jer-Young Chen, Yih-Her Chang, Chei Kao
  • Patent number: 8598247
    Abstract: A process is disclosed for preparing a elastomer by contacting under reaction conditions: a) an isocyanate component comprising an isocyanate-terminated prepolymer having an isocyanate (NCO) content of 10 to 30 weight percent where the prepolymer is the reaction product of a stoichiometric excess of one or more di- or poly-isocyanate compounds, collectively referred to hereinafter as isocyanate component, with a first polyol component; b) a second polyol component; and c) an effective amount of a blowing agent to provide a polyurethane elastomer with a density of from 200 to 1200 kg/m3; wherein a) and b) are used at an isocyanate index of from 85 to 115, and at least one of the first polyol composition and the second polyol composition contains at least one hydroxymethyl-containing polyester polyol.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: December 3, 2013
    Assignee: Dow Global Technologies LLC
    Inventor: Giuseppe Vairo
  • Patent number: 8598248
    Abstract: The present invention provides flexible conventional polyurethane foams made from at least one polyisocyanate and at least one vegetable oil alkoxylated in the presence of a double metal cyanide (DMC) catalyst, optionally at least one non-vegetable oil-based polyol, generally in the presence of a blowing agent and optionally in the presence of a surfactant, pigment, flame retardant, catalyst or filler. The alkoxylated natural oil must have (a) an ethylene oxide content in the alkoxylated segment greater than 20% by weight, (b) a primary hydroxyl group content of at least 10%, with the sum of (a)+(b) being at least 30% but no greater than 60%, The alkoxylated natural oils are environmentally-friendly, bio-based polyols which can be used to increase the “green” content of polyurethane foams without having detrimental effects on foam properties.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 3, 2013
    Assignee: Bayer MaterialScience LLC
    Inventors: Stanley L. Hager, Edward P. Browne, Jack R. Reese, Don S. Wardius, Micah N. Moore
  • Patent number: 8580864
    Abstract: The present invention provides trimerization catalyst compositions having an ?,?-unsaturated carboxylate salt and methods to produce a polyisocyanurate/polyurethane foam using such trimerization catalyst compositions.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 12, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst
  • Publication number: 20130295371
    Abstract: Combinations of gelatinous elastomer containing one or more phase change materials, known as “phase change gel”, and polyurethane foam may be made by introducing at least partially cured phase change gel particles comprising plasticized triblock copolymer resin and/or diblock copolymer resin and one or more phase change materials, into a mixture of polyurethane foam-forming components including a polyol and an isocyanate. The phase change gel can be crosslinked to form a cured gelatinous gel, which is then reduced in size before introduction. After the foam-forming components polymerize to make polyurethane foam, the phase change gel particles are discrete visible particles dispersed throughout the foam. The polyurethane reaction is exothermic and can generate sufficient temperature to at least partially melt the styrene-portion of the triblock copolymer resin thereby extending the crosslinking.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 7, 2013
    Inventors: Bruce W. Peterson, Mark L. Crawford
  • Publication number: 20130295081
    Abstract: The presently-disclosed subject matter includes polyurethane composites that include tissue component(s), as well as methods of making such composites and uses thereof. The polyurethane component can comprise a polyisocyanate prepolymer and a polyol. The tissue component can be a polysaccharide. Exemplary composites can be moldable and/or injectable, and can cure into a porous composite that provides mechanical strength and/or supports the in-growth of cells. Inventive composites have the advantage of being able to fill irregularly shaped areas, voids, or the like. Exemplary composites can be used for treating wounds.
    Type: Application
    Filed: April 16, 2013
    Publication date: November 7, 2013
    Inventors: Scott A. Guelcher, Andrea Hafeman, Jeffrey Davidson, Lillian M. Nanney, Elizabeth Adolph
  • Patent number: 8575225
    Abstract: The present invention relates to the use of low triphenyl phosphate, high phosphorous content aryl phosphates with high ortho alkylation as flame retardants in polyurethane or polyisocyanurate foams or polyurethane or polyisocyanurate foam formulations.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: November 5, 2013
    Assignee: Hickory Springs Manufacturing Company
    Inventors: William J. Layman, Jr., Arthur G. Mack, Techen Tsao, Jeffrey T. Aplin, Hoover Chew
  • Patent number: 8575226
    Abstract: A building material composite that includes a building substrate at least partially lined with a urethane material. The urethane material of the present invention is typically the reaction product of an A-side that includes an isocyanate and a B-side that typically includes: a blown vegetable oil, a cross-linking agent, and a catalyst; a blown vegetable oil and a multifunctional alcohol; or an esterified polyol and a catalyst where the esterified polyol is typically the reaction product of a first polyol and a blown vegetable oil.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: November 5, 2013
    Assignee: Rhino Linings Corporation
    Inventors: Thomas M. Kurth, Richard A. Kurth, Robert B. Turner, Les P. Kreifels
  • Publication number: 20130289152
    Abstract: A method for producing foamed mouldings comprises the steps of providing a mould (1) and introducing a foam-forming reaction mixture (6) into the mould (1), wherein the foam-forming reaction mixture (1) is introduced into the mould (1) under constant injection pressure and in a quantity which is variable over time. The introduced quantity of the foam-forming reaction mixture is changed over time by varying the output of a pump motor acting on the reaction mixture.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 31, 2013
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Hans-Guido Wirtz, Frank Grimberg, Reinhard Albers, Andreas Pielasch
  • Patent number: 8568061
    Abstract: The invention is directed to methods for supporting trench pipes with polyurethane foams which are flotation resistant with sufficient strength and density to provide stability and inhibit erosion at pipeline trench sites, and other uses, wherein at least 50% of the foam is open cell and has a density of approximately 1.3 lbs/ft3 to 3.5 lbs/ft3. The invention also provides methods for making compositions used to make polyurethane foams that exhibit such characteristics.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 29, 2013
    Assignee: Foam Supplies, Inc.
    Inventors: Timothy T. Kalinowski, David G. Keske, Victor B. Matimba, David L. Modray, Mark Schulte, Donald C. Keim
  • Publication number: 20130274365
    Abstract: The present invention relates to a polyurethane with improved abrasion resistance. The reaction components comprise a certain content of polyisoprene. The polyurethane presented in this invention possesses improved abrasion resistance and good surface quality.
    Type: Application
    Filed: July 26, 2011
    Publication date: October 17, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Sam Torres, Zhong Cao, Xiang Liu
  • Patent number: 8557886
    Abstract: Disclosed is a polyol composition comprising an aliphatic polyester polyol having a hydroxyl value of less than about 100 and prepared by the reaction of at least a polycarboxylic acid with a polyhydroxy compound; an aromatic polyester polyol; a Novolac-type polyether polyol; and a hydrofluorocarbon blowing agent; that may be storage-stable for at least 60 days. This composition may be reacted with a polyisocyanate at an isocyanate index of from about 2.5 to about 4 to form a rigid poly-isocyanurate foam. The foam shows improved cohesion in general and also improved adhesion and a reduced incidence of voids when applied to a metal substrate.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 15, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Paolo Golini, Francesca Pignagnoli
  • Patent number: 8557887
    Abstract: The invention relates to a process for producing rigid polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of c) blowing agents, wherein the compounds b) having at least two hydrogen atoms which are reactive toward isocyanate groups comprise at least one aromatic polyester alcohol bi), at least one polyether alcohol bii) having a functionality of from 4 to 8 and a hydroxyl number in the range from 300 to 600 mg KOH/g.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: October 15, 2013
    Assignee: BASF SE
    Inventors: Michael Koesters, Gunnar Kampf, Roland Fabisiak, Olaf Jacobmeier
  • Patent number: 8557005
    Abstract: The present invention provides a polyurethane foam, which, despite having a low specific gravity, has a hardness and an elasticity favorable for a polishing pad, and a polishing pad made using the polyurethane foam. The polyurethane foam is obtained by reacting a blend composition containing (A) a polyisocyanate, (B) a polyol, (C) a chain extender with a molecular weight of equal to or smaller than 400, and (D) water, and in the blend composition, MDI is blended as a main component of the component (A) and a blending amount of the MDI is 45 to 70 parts by weight when a total weight of the respective components (A), (B), and (C) is taken as 100 parts by weight.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: October 15, 2013
    Assignees: Toyo Polymer Co., Ltd., Nitta Haas Incorporated
    Inventors: Michiro Goto, Kazuo Takemoto, Nobuyuki Ooshima, Shin-ichi Haba, Kouichi Yoshida, Norio Kawai
  • Patent number: 8551201
    Abstract: Polyurethane composition based on a certain polyether and polyester prepolymer reaction mixture, wherein the composition is utilized in manufacturing chemical mechanical polishing/planarizing (CMP) pads. The CMP pads have low rebound and can dissipate irregular energy as well as stabilize polishing to yield improved uniformity and less dishing of the substrate.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: October 8, 2013
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Yong Zhang, David Huang, Lu Sun
  • Patent number: 8552080
    Abstract: Polyurethane foams are prepared from polyester polyols obtained by reaction of diols with a mixture of diacids derived from a mixture of dinitrile compounds obtained as by-products in the manufacture of adiponitrile by hydrocyanation of butadiene.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 8, 2013
    Assignee: Rhodia Operations
    Inventors: Jean-Claude Masteau, Edson Leme Rodrigues
  • Patent number: 8552079
    Abstract: The present invention provides a flame-retardant polyurethane foam made with non chlorofluorocarbon/hydrogenated chlorofluorocarbon-containing blowing agents and without trimethylolpropane-based polyols that achieves a Class I rating as determined by a modification of the ASTM E-84 tunnel test and may find application in electronic cabinetry, architectural decorative moldings, and interior transportation vehicle walls.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 8, 2013
    Assignee: Bayer MaterialScience LLC
    Inventors: Jan L. Clatty, Donald L. McCalmon
  • Patent number: 8552078
    Abstract: A composition for making a polyurethane foam includes a non-fugitive tertiary amine urethane catalyst and an alkylated polyamine crosslinking additives. Foams prepared from the reaction of a polyol and an organic isocyanate in the presence of these ingredients show improved resistance to deterioration of physical properties upon humid ageing.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gamini Ananda Vedage, Juan Jesus Burdeniuc, Allen Robert Arnold, Jr., James Douglas Tobias
  • Patent number: 8552077
    Abstract: The present invention provides trimerization catalyst compositions and methods to produce a polyisocyanurate/polyurethane foam using such trimerization catalyst compositions. The catalyst composition is the contact product of at least one ?,?-unsaturated carboxylate salt and at least one second carboxylate salt.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: October 8, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst, Gamini Ananda Vedage
  • Patent number: 8546456
    Abstract: Systems for bone fracture repair are disclosed. One system includes a biocompatible putty that may be packed about a bone fracture to provide full loadbearing capabilities within days. The disclosed putties create an osteoconductive scaffold for bone regeneration and degrade over time to harmless 5 resorbable byproducts. Fixation devices for contacting an endosteal wall of an intramedullary (IM) canal of a fractured bone are also disclosed. One such fixation device includes a woven elongated structure fabricated from resorbable polymer filaments. The woven elongated structure has resilient properties that allow the woven 10 structure to be radially compressed and delivered to the IM canal using an insertion tube. When the insertion tube is removed, the woven structure expands towards its relaxed cross-sectional width to engage the endosteal wall. The woven elongated structure is impregnated with a resorbable polymer resin that cures in situ, or in the IM canal.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: October 1, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: John Rose, Charles C. Martin
  • Publication number: 20130253086
    Abstract: New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Thomas S. Wilson, Jane P. Bearinger
  • Patent number: 8541478
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: September 24, 2013
    Assignee: Huntsman International LLC
    Inventors: Sachchida Nand Singh, Jinhuang Wu, Alan J. Hamilton
  • Patent number: 8541479
    Abstract: To provide a flexible polyurethane foam which is excellent in low resiliency and durability without using a plasticizer and which shows little change in hardness against a change in temperature and at the same time, has high air permeability. A process for producing a flexible polyurethane foam, which comprises reacting a polyol mixture comprising polyol (A), polyol (B) and monool (D) with a polyisocyanate compound in the presence of a blowing agent etc. at an isocyanate index of at least 90. Polyol (A) is a polyether polyol having an average of 2-3 hydroxyl groups and a hydroxyl value of from 10 to 90 mgKOH/g, obtained by ring-opening addition polymerization of an alkylene oxide to an initiator using a double metal cyanide complex catalyst; Polyol (B) is a polyether polyol having an average of 2-3 hydroxyl groups and a hydroxyl value of from 15 to 250 mgKOH/g, other than the polyol (A); and Monool (D) is a polyether monool having a hydroxyl value of from 10 to 200 mgKOH/g.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: September 24, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Takayuki Sasaki, Takashi Ito
  • Publication number: 20130245143
    Abstract: The invention encompasses compositions and methods for the preparation thereof, wherein the composition comprises a polymeric foam that comprise a plurality of polymeric struts having an air-foam interface, wherein a composition comprising inorganic particulate matter is disposed upon the air-foam interface, the inorganic particulate material comprising inorganic particles coated with a hydrophobic amine modifier.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 19, 2013
    Applicant: Soane Labs, LLC
    Inventor: David S. Soane
  • Publication number: 20130237623
    Abstract: A monohydroxy cyclic phosphonate substantially free of polyhydroxy phosphonate is employed as a reactive flame retardant in flexible polyurethane.
    Type: Application
    Filed: September 19, 2011
    Publication date: September 12, 2013
    Applicant: ICL-IP America Inc.
    Inventors: Andrew Piotrowski, Anantha N. Desikan, Sophia Dashevsky
  • Patent number: 8530535
    Abstract: A polishing pad generates very few scratches on a surface of a polishing object, and is excellent in planarization property. The polishing pad has a high polishing rate and is excellent in planarization property. The polishing pad grooves become very little clogged with abrasive grains or polishing swarf during polishing and, even when continuously used for a long period of time, the polishing rate is scarcely reduced.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: September 10, 2013
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Atsushi Kazuno, Kazuyuki Ogawa, Masahiko Nakamori, Takatoshi Yamada, Tetsuo Shimomura
  • Patent number: 8530534
    Abstract: The present invention provides trimerization catalyst compositions having a sterically hindered carboxylate salt and methods to produce a polyisocyanurate/-polyurethane foam using such trimerization catalyst compositions.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: September 10, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst
  • Publication number: 20130217798
    Abstract: Simple, economical preparative processes for the provision of pure hydroxyl functional materials derived by converting unsaturated molecules found in animal fats into hydroxyl groups are presented herein. The hydroxylated animal fats can be reacted with isocyanates to form polyurethane articles.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 22, 2013
    Applicant: BIOBASED TECHNOLOGIES LLC
    Inventor: BIOBASED TECHNOLOGIES LLC
  • Publication number: 20130217797
    Abstract: The invention provides microemulsions comprising a) at least one compound having two or more isocyanate-reactive hydrogen atoms, b) at least one apolar organic compound, c) at least one halogen-free compound effective in causing said compounds a) and b) to build a microemulsion, comprising at least one amphiphilic compound ci) selected from the group consisting of nonionic surfactants, polymers and mixtures thereof, and at least one compound cii), other than ci), selected from compounds having an apolar portion having a carbon chain length of 6 or more and one or more OH or NH groups as polar portion and mixtures thereof.
    Type: Application
    Filed: August 21, 2012
    Publication date: August 22, 2013
    Applicant: BASF SE
    Inventors: Marc FRICKE, Markus SCHUETTE, Thorsten Martin STAUDT, Christian HOLTZE, Sebastian KOCH, Frank BARTELS
  • Patent number: 8513318
    Abstract: A method for producing a rigid polyurethane foam, which comprises reacting a polyol with a polyisocyanate in the presence of an amine catalyst and a blowing agent, wherein as the amine catalyst, at least one amine compound having at least one type of substituent selected from the group consisting of a hydroxyl group, a primary amino group and a secondary amino group in its molecule, or N-(2-dimethylaminoethyl)-N?-methylpiperazine, is used, and as the blowing agent, 1,1,1,3,3-pentafluoropropane (HFC-245fa) and/or 1,1,1,3,3-pentafluorobutane (HFC-365mfc) is used.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: August 20, 2013
    Assignee: Tosoh Corporation
    Inventors: Hiroyuki Kiso, Katsumi Tokumoto, Yutaka Tamano
  • Publication number: 20130210950
    Abstract: The present invention relates to a reaction system for preparing polyurethane microcellular foam, a polyurethane microcellular foam and the use thereof. The reaction system for preparing polyurethane microcellular foam comprises isocyanate prepolymer, polyols, catalysts and chain extenders. The isocyanate prepolymer is a reaction product of polyisocyanates and polyester polyols, wherein the polyester polyols comprise 10-60 wt. % succinic acid units, based on 100 wt. % of the polyester polyols, the NCO content of the isocyanate prepolymer is 13-30 wt. %, based on 100 wt. % of isocyanate prepolymer. By using the reaction components provided in the present invention, the demould time for preparing the polyurethane microcellular foam can be reduced. The obtained polyurethane microcellular foam, which possesses good physical and mechanical properties, is particularly suitable to prepare shoes.
    Type: Application
    Filed: August 1, 2011
    Publication date: August 15, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Hartmut Nefzger, Zhiping Zhou, John Zhang, Jingui Shi
  • Patent number: 8501828
    Abstract: The present invention provides processes for producing re-bonded polyurethane foam constructs that are useful in applications such as carpet underlayments. According to the invention, a tertiary amine is employed as a catalyst either alone, or preferably in combination with other catalysts in a binder which comprises an organic isocyanate and a polyol. Inclusion of a tertiary amine as a catalyst dramatically increases production throughput.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: August 6, 2013
    Assignee: Huntsman Petrochemical LLC
    Inventors: Roger Hennington, Donald H. Ridgway, Robert A. Grigsby, Jr., Robert G. Sawitski, Jr., Jennifer K. Pratt
  • Patent number: 8501826
    Abstract: The present invention relates to a process for obtaining polyols from used frying oils as the starting ingredient and converting the polyols to polyurethane products. The process comprises few steps such as epoxidation process by reacting used frying oil with an acid, reacting the epoxidized used frying oil with a monohydric or polyhydric alcohol in the presence of a catalyst to form a polyols, mixing the polyols with an additive or additives and a blowing agent or blowing agents and mixing the blended polyol with an isocyanate to form a polyurethane product.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: August 6, 2013
    Assignee: Malaysian Palm Oil Board
    Inventors: Norin Zamiah Bt. Kassim Shaari, Tuan Noor Maznee Bt. Tuan Ismail, Hazimah Abu Hassan, Ooi Tian Lye, Salmiah Ahmad
  • Publication number: 20130193368
    Abstract: The invention provides a heat transfer composition comprising trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), fluoroethane (R-161) and a third component selected from difluoromethane (R-32) and/or 1,1-difluoroethane (R-152a).
    Type: Application
    Filed: February 15, 2011
    Publication date: August 1, 2013
    Applicant: MEXICHEM AMANCO HOLDING S.A. DE C.V.
    Inventor: Robert E. Low
  • Publication number: 20130193369
    Abstract: The invention provides a heat transfer composition comprising: (i) trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)); (ii) a second component selected from difluoromethane (R-32), propene (R-1270)propane (R290) and mixtures thereof; (iii) a third component selected from pentafluoroethane (R-125), 1,1,1,2-tetrafluoroethane (R-134a), and mixtures thereof; and optionally (iv) a fourth component selected from fluoroethane (R-161), 1,1-difluoroethane (R-152a) and mixtures thereof.
    Type: Application
    Filed: June 24, 2011
    Publication date: August 1, 2013
    Applicant: Mexichem Amanco Holding C.V. de S.A.
    Inventor: Robert Elliott Low
  • Patent number: 8497316
    Abstract: It concerns a crosslinkable and foaming polyester-polyurethane resin moulding composition, comprising: an A component, comprising: A1) at least one poly-functional isocyanate compound, and A2) at least one free radical polymerization initiator a B component, comprising by weight: B1) 100 parts of at least one polyol resin comprising: —B11) 50 to 80 parts of at least one ethylenically unsaturated polyester polyol—B 12) 20 to 50 parts of at least one ethylenically unsaturated monomer, with, B11), being the reaction product of: a) an acid component comprising: a1) at least one ethylenically unsaturated diacid, and a2) at least one saturated diacid with a1/a2 molar ratio so varying to have an unsaturation content in B11) from 0.25/1 to 5/1, and, b) a diol component in excess with respect to component a) B2) from 0.01 to 1.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 30, 2013
    Assignee: CCP Composites UK Ltd
    Inventors: Paul Darby, Phil Dean
  • Publication number: 20130190414
    Abstract: The present invention relates to an additive composition useful as additive for controlling the foam properties of polyurethane foams which is characterized in that it contains at least one ionic surfactant A selected from those of formula A?M+ where A?=anion selected from the group comprising alkyl and aryl sulphates, polyether sulphates and sulphonates, sulphonates, alkyl and aryl sulphonates, alkyl and aryl carboxylates, saccharinates and polyether phosphates, and M+=cation, and/or at least one anionic surfactant B selected from a quaternized ammonium compound, and at least one tertiary amine compound C, which has a molar mass of at least 150 g/mol, and/or at least one oxazasilinane D, a process for production of polyurethane foam by using this additive composition and also correspondingly produced polyurethane foams and use thereof.
    Type: Application
    Filed: July 26, 2012
    Publication date: July 25, 2013
    Applicant: EVONIK GOLDSCHMIDT GMBH
    Inventors: Annegret Terheiden, Roland Hubel, Michael Ferenz
  • Publication number: 20130187078
    Abstract: The invention provides a heat transfer composition consisting essentially of from about 60 to about 85% by weight of trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and from about 15 to about 40% by weight of fluoroethane (R-161). The invention also provides a heat transfer composition comprising R-1234ze(E), R-161 and 1,1,1,2-tetrafluoroethane (R-134a).
    Type: Application
    Filed: February 14, 2011
    Publication date: July 25, 2013
    Applicant: MEXICHEM AMANCO HOLDING S.A. DE C.V.
    Inventor: Robert E. Low
  • Patent number: 8481605
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: July 9, 2013
    Assignee: Huntsman International LLC
    Inventors: Sachchida Nand Singh, Jinhuang Wu, Alan J. Hamilton
  • Publication number: 20130172437
    Abstract: The present invention is directed to a process for the preparation of a flexible polyurethane foam and to the polyurethane foam prepared by that process. The foam is in particular a flexible polyurethane foam which has a density of between 25 and 120 kg/m3, a resilience, measured at 20° C. in accordance with ASTM D 3574 H, higher than 35%, and an ILD 40% hardness, measured in accordance with ISO 2439 B, of between 60 and 500 N. It is prepared by allowing a reaction mixture, which comprises a blowing agent, to foam. In order to influence the physical and/or thermophysiological properties of the foam, in particular the pressure distribution properties, at least one organogel material is dispersed in the reaction mixture before allowing it to foam.
    Type: Application
    Filed: February 27, 2013
    Publication date: July 4, 2013
    Applicant: RECTICEL
    Inventor: Recticel
  • Patent number: 8476328
    Abstract: A method for manufacturing a polishing pad that has high level of optical detection accuracy and is prevented from causing slurry leak from between the polishing region and the light-transmitting region includes preparing a cell-dispersed urethane composition by a mechanical foaming method; placing a light-transmitting region at a predetermined position on a face material or a belt conveyor, continuously discharging the cell-dispersed urethane composition onto part of the face material or the belt conveyor where the light-transmitting region is not placed; placing another face material or belt conveyor on the discharged cell-dispersed urethane composition; curing the cell-dispersed urethane composition to form a polishing region including a polyurethane foam, so that a polishing sheet is prepared; applying a coating composition containing an aliphatic and/or alicyclic polyisocyanate to one side of the polishing sheet and curing the coating composition to form water-impermeable film; and cutting the polishing
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 2, 2013
    Assignee: Toyo Tire & Rubber Co., Ltd
    Inventors: Junji Hirose, Takeshi Fukuda
  • Patent number: 8476329
    Abstract: A bioresin composition is used to form a rigid polyurethane article that includes a first and a second biopolyol and is substantially free of aprotic solvents that chemically decompose in the presence of water. The first biopolyol includes a natural oil component. The second biopolyol includes the reaction product of a natural carbohydrate and an alkylene oxide. The rigid polyurethane foam article includes the reaction product of the bioresin composition and an isocyanate which are reacted in the presence of a chemical blowing agent.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 2, 2013
    Assignee: BASF SE
    Inventors: Christopher M. Tanguay, Patrick J. Watters, John P. Erickson, Eric W. Banks