From Hydrocarbon Patents (Class 526/348)
  • Patent number: 8530593
    Abstract: This invention relates to Group 4 dialkyl compounds supported by a pyridyl-amido-aryl (“PAA”), an anisole-amido-aryl (“AAA”), a phenoxy-amido-pyridyl (“PAPY”), an anisole-amido-phenoxy (“AAP”) or a anisole-amido-phenoxy (“AAP”) tridentate ligand. Such compounds can polymerize olefins, such as ethylene.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Garth R. Giesbrecht, Timothy M. Boller, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Mikhail V. Nikulin, Alexey A. Tsarev
  • Patent number: 8530582
    Abstract: The present invention relates to modified polyolefins with atactic structural elements, to processes for preparation thereof and to the use thereof, especially as an adhesive or as a constituent of adhesives.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 10, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Hinnerk Gordon Becker, Lutz Mindach, Holger Kautz, Miriam Ammer
  • Patent number: 8524859
    Abstract: In the production of isobutylene-based elastomers the product obtained from the polymerization process is often in the form of a stream. Described herein are an apparatus and a process for removal of hydrocarbon liquids from the elastomer. The process comprises the steps of obtaining a stream comprising hydrocarbon liquids, either solvents or diluents, and an isobutylene-based elastomer; passing the stream through a kneader to volatize the hydrocarbon liquids from the elastomer.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yu Feng Wang, Richard C-M Yeh
  • Patent number: 8519071
    Abstract: Provided are low-viscosity aqueous compositions comprising compounds of Formula (III) and (IV). These compositions are prepared by jointly ethoxylating a mixture of the compounds of the Formula (I) and (II) to give an intermediate which represents a mixture of compounds of Formulas (I*) and (II*). The intermediate is then converted by sulfation or phosphation and subsequent neutralization, into an aqueous composition comprising the compounds of Formula (III) and (IV). The aqueous compositions are notable for having, at 20° C., a Brookfield viscosity of 3000 mPas or less (measured at 20° C. with spindle 2 and 20 rpm), and are suitable as emulsifiers for emulsion polymerization.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: August 27, 2013
    Assignee: Cognis IP Management GmbH
    Inventors: Thomas Schliwka, Ronald Klagge, Uwe Held, Thomas Mausberg
  • Patent number: 8519070
    Abstract: The present invention relates to the field of group 4 post-metallocene complexes based on sterically encumbered bis(naphthoxy)pyridine and bis(naphthoxy)thiophene ligands. It also relates to the use of such post-metallocene complexes in the polymerization of ethylene and alpha-olefins.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: August 27, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-François Carpentier, Evgueni Kirillov, Abbas Razavi
  • Publication number: 20130217845
    Abstract: A process for the preparation of a random propylene copolymer comprising polymerising propylene and at least one C2-10 alpha olefin (especially ethylene) in the presence of a catalyst; wherein said catalyst comprises: (i) a complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 is a C4-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring, optionally containing one or more heteroatoms belonging to groups 14-16, or is a C3-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring where the ?-atom is an Si-atom; n is 0-3; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1-6-h
    Type: Application
    Filed: June 29, 2011
    Publication date: August 22, 2013
    Applicant: BOREALIS AG
    Inventors: Pascal Castro, Luigi Resconi, Lauri Huhtanen
  • Patent number: 8513366
    Abstract: Methods for modulated degenerative transfer living polymerization and isotactic-atactic stereoblock and stereogradient poly(olefins) thereby Abstract A method of producing a multiblock, stereoblock polyolefin having substantially uniform microstructure is disclosed. The method includes contacting a Ziegler-Natta pre-catalyst with a co-catalyst and an olefin to polymerize the olefin and form a first stereoblock, adding a methyl donator that changes the stereoregularity of the polymerization, and polymerizing the olefin to form a second stereoblock. The methods of the present invention allow for the production of poly(olefin)s having predictable degrees of incorporation of stereoerrors of a known type. The methods allows for the production of a variety of poly(olefin) microstructures, ranging from stereoblock to stereogradient poly(olefin)s and poly(olefin)s having fully isotactic to fully atactic microstructures.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: August 20, 2013
    Assignee: University of Maryland, College Park
    Inventors: Lawrence R. Sita, Matthew B. Harney, Yonghui Zhang
  • Patent number: 8513369
    Abstract: The present invention relates to an ethylene-alpha olefin copolymer comprising long chain branches (LCB), while having a narrow molecular weight distribution. The ethylene-alpha olefin copolymer can be prepared by a continuous solution polymerization process using an activated catalyst composition containing a Group 4 transition metal compound having a monocyclopentadienyl ligand, to which a quinoline amino group is introduced.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 20, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Choong-Hoon Lee, Byung-Kwon Lim, Eun-Jung Lee, Jong-Joo Ha, Seung-Whan Jung, Jung-A Lee, Ki-Su Ro, Don-Ho Kum, Dong-Kyu Park
  • Patent number: 8513365
    Abstract: The present invention relates to a process for the polymerization of an olefin monomer. In particular, the present invention relates to a process for the polymerization of an olefin monomer and one or more optional comonomers in presence of a polymerization catalyst and hydrogen, said process being characterized by an improved control of the hydrogen concentration in the polymerization reactor. In addition, the present invention provides for an improved hydrogen feeding system to a polymerization reactor. Furthermore, the present invention provides for a polymerization reactor comprising such an improved hydrogen feeding system.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: August 20, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Daan Dewachter
  • Patent number: 8507628
    Abstract: Injection stretch blow molded (ISBM) articles and methods of forming the same are provided herein. In one embodiment, the ISBM articles generally include a propylene based random copolymer having a molecular weight distribution of from about 9 to about 20. In another embodiment, the ISBM articles generally include a propylene based random copolymer formed from a Ziegler-Natta catalyst including a succinate internal donor.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 13, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Michael Musgrave, Dang Le, Luyi Sun, David Smith
  • Patent number: 8507621
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 13, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kumundini C. Jayaratne, Michael D. Jensen, Qing Yang
  • Patent number: 8507103
    Abstract: This invention relates to blown films produced from copolymer made by a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8507706
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and the substituent in the 2-position of the other indenyl ligand can be any C4-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers. The activity/productivity levels of catalysts including the metallocenes of the present invention are exceptionally high.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 13, 2013
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Anita Dimeska, Ralph-Dieter Maier, Nicola Stephanie Paczkowski, Matthew Grant Thorn, Andreas Winter, Joerg Schulte, Thorsten Sell
  • Patent number: 8501892
    Abstract: Ethylene propylene copolymers, substantially free of diene, are described. The copolymers will have a uniform distribution of both tacticity and comonomer between copolymer chains. Further, the copolymers will exhibit a statistically insignificant intramolecular difference of tacticity. The copolymers are made in the presence of a metallocene catalyst.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: August 6, 2013
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Bruce A. Harrington, Weiguo Hu, Periagaram S. Ravishankar, George Rodriguez
  • Patent number: 8501654
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 6, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Rex E. Murray, William B. Beaulieu, Qing Yang, Errun Ding, Gary L. Glass, Alan L. Solenberger, Steven J. Secora
  • Patent number: 8501882
    Abstract: Methods of controlling polymerization reactions using a synergistic amount of hydrogen and an organozinc compound are disclosed. The resulting polymers have lower molecular weights and higher melt flow indices.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: August 6, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Qing Yang, Albert P. Masino, Youlu Yu, Lloyd W. Guatney, Jim B. Askew
  • Patent number: 8501891
    Abstract: An ethylene-?-olefin copolymer wherein the copolymer has a monomer unit based on ethylene and a monomer unit based on an ?-olefin having 3 to 20 carbon atoms, the density (d) is 860 to 950 kg/m3, the melt flow rate (MFR) is 1 to 100 g/10 min, the flow activation energy (Ea) is 60 kJ/mol or more, the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 5.5 to 30, the ratio (Mz/Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2 to 5, and the swell ratio (SR) is 1.55 or more and less than 1.8.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: August 6, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshinobu Nozue, Yasutoyo Kawashima, Naoko Ochi
  • Patent number: 8501889
    Abstract: A polymer comprising a conducting or semiconducting segment coupled to a polymer segment having an insulating polymer backbone, the polymer further comprising a RAFT functional group coupled to the polymer segment, wherein there is no RAFT functional group in between the conducting or semiconducting segment and the polymer segment.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: August 6, 2013
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Ming Chen, Graeme Moad, Ezio Rizzardo, Richard Alexander Evans, Matthias Haeussler
  • Publication number: 20130197180
    Abstract: This invention relates to a transition metal catalyst compound represented by the structure: wherein M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R1 and R3 are, independently, a C1 to C8 alkyl group; and each R2, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three of the R10-R14 groups are not hydrogen, compositions thereof and methods of use thereof to prepare polymers.
    Type: Application
    Filed: October 19, 2012
    Publication date: August 1, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventor: ExxonMobil Chemical Patents Inc.
  • Publication number: 20130197178
    Abstract: The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.
    Type: Application
    Filed: April 26, 2011
    Publication date: August 1, 2013
    Applicant: The Regents of the University of California
    Inventors: Guy Bertrand, Gregorio Gulsado-Barrios, Jean Bouffard, Bruno Donnadieu
  • Publication number: 20130197168
    Abstract: A high pressure polymerization process to form an ethylene-based polymer comprises the steps of: A. Injecting a first feed comprising a chain transfer agent system (CTA system) and ethylene into a first autoclave reactor zone operating at polymerization conditions to produce a first zone reaction product, the CTA system of the first reactor zone having a transfer activity Z1; and B. (1) Transferring at least part of the first zone reaction product to a second reactor zone selected from a second autoclave reactor zone or a tubular reactor zone and operating at polymerization conditions, and, optionally, (2) freshly injecting, a second feed into the second reactor zone to produce a second zone reaction product, with the proviso that at least one of the first reactor zone product and the freshly injected feed comprises a CTA system with a transfer activity of Z2; and with the proviso that the ratio of Z1:Z2 is greater than 1.
    Type: Application
    Filed: September 21, 2011
    Publication date: August 1, 2013
    Inventors: Otto J. Berbee, Cornelis F.J. den Doelder, Cornelis J. Hosman
  • Patent number: 8497328
    Abstract: A solid catalyst component comprising Ti, Mg, halogen and a couple of monofunctional electron donor compounds MD1 and MD2 selected from esters and ethers, said donors being present in amounts such that the molar ratio MD1/MD2 ranges from 20 to 800. The so obtained catalyst component when converted into a catalyst is able to produce ethylene polymers with good morphological properties even under drastic polymerization conditions.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: July 30, 2013
    Assignee: Basell Poliolefine Italia, s.r.l.
    Inventors: Diego Brita, Gianni Collina
  • Patent number: 8497331
    Abstract: The present invention relates to the field of single site catalyst systems based on pyrrol-iminophenol, pyrrol-iminoalcohol or pyrrol-iminoamine complexes and suitable for oligomerising or homo- or co-polymerising ethylene and alpha-olefins.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: July 30, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Caroline Hillairet, Guillaume Michaud, Sabine Sirol
  • Patent number: 8497327
    Abstract: The present invention provides hydrogenated ?-pinene-based polymers with excellent heat resistance and light resistance, low absorptivity and high transparency, as well as molded articles thereof. The polymers of the present invention contain 50% by mass or more of ?-pinene units and are hydrogenated ?-pinene-based polymers where the ratio of the proton integral value at 6 to 8 ppm to the total proton integral value in a 1H-NMR spectrum is 2.3×10?5 or less or the p-phenylene group content is 0.0055% by mass or less, and the ratio of the proton integral value at 4.5 to 6 ppm to the total proton integral value is 2.8×10?4 or less or the cyclohexene-1,4-diyl group content is 0.29% by mass or less. The molded articles of the present invention contain the above hydrogenated ?-pinene-based polymers.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: July 30, 2013
    Assignee: Kuraray Co., Ltd.
    Inventors: Atsuhiro Nakahara, Jin Tokuyasu, Takashi Hori, Hiroyuki Ohgi
  • Patent number: 8497329
    Abstract: The invention generally provides for methods for controlling polymer properties. In particular, invention provides for methods for controlling the comonomer composition distribution of polyolefins such as ethylene alpha-olefin copolymers by altering at least one or more of the following parameters: the molar ratio of hydrogen to ethylene, the molar ratio of comonomer to ethylene, the partial pressure of ethylene, and the reactor temperature without substantially changing the density and/or the melt index of the copolymer.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 30, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, James M. Farley, John F. Szul, Mark P. Ossowski
  • Patent number: 8492494
    Abstract: Provided are ethylene copolymers with excellent impact resistance. More specifically, provided are ethylene copolymers satisfying certain correlation between the falling dart impact strength (F) or high rate impact resistant breakage energy (E) and Vicat softening point. The ethylene copolymers with improved impact properties are applicable to film, injection, compound, sheet, roto, pipe or blow molding.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: July 23, 2013
    Assignee: SK Innovation Co., Ltd.
    Inventors: Seungbum Kwon, Hyeongtaek Ham, Choonsik Shim, Sungseok Chae, Myungahn Ok, Daeho Shin
  • Patent number: 8492498
    Abstract: A polymer having a density of from about 0.94 g/cm3 to about 0.96 g/cm3 and a primary structure parameter 2 (PSP2 value) of greater than about 8.5, wherein an article formed from the polymer has an environmental stress crack resistance of equal to or greater than about 1000 hours when measured in accordance with ASTM D 1693 condition A. A polymer having at least one lower molecular weight component and at least one higher molecular weight component and having a PSP2 value of equal to or greater than about 8.5, wherein an article formed from the polymer has an environmental stress crack resistance of greater than about 1000 hours when measured in accordance with ASTM D 1693 condition A.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Richard M. Buck, Albert P. Masino, Qing Yang, Paul J. DesLauriers, Steven J. Secora, Elizabeth M. Lanier, Guylaine St. Jean, Jon D. Ratzlaff, Christopher E. Wittner
  • Patent number: 8492492
    Abstract: A method of treating a polymerization reactor effluent stream comprising recovering the reactor effluent stream from the polymerization reactor, flashing the reactor effluent stream to form a flash gas stream, separating the flash gas stream into a first top stream, a first bottom stream, and a side stream, wherein the side stream substantially comprises hexane, separating the first top stream into a second top stream and a second bottom stream, wherein the second bottom stream substantially comprises isobutane, and separating the second top stream into a third top stream and a third bottom stream; wherein the third top stream substantially comprises ethylene, and wherein the third bottom stream is substantially free of olefins.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Andrew J. Mills, Ralph W. Romig, Ji Xian X. Loh
  • Patent number: 8492493
    Abstract: The present invention discloses post-metallocene complexes based on sterically encumbered bi- and tri-dentate naphthoxy-imine ligands. It also relates to the use of such post-metallocene complexes in the oligomerization of ethylene to selectively prepare vinyl-end capped linear alpha-olefins.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: July 23, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-François Carpentier, Evgueni Kirillov, Abbas Razavi
  • Patent number: 8487053
    Abstract: Methods for removing polymer skins or build-up from reactor walls in polymerization reactor systems containing a loop slurry reactor are disclosed. Such methods can employ removing some or all of the comonomer from the reactor system in combination with increasing the polymerization temperature of the loop slurry reactor.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: July 16, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: George R. Rajaendran, Max P. McDaniel, Gregory G. Hendrickson, John D. Stewart, John D. Hottovy, Ted H. Cymbaluk, Susannah Lane, Richard A. Hernandez, Elliott W. Johnson, Qing Yang, William L. Valerioti, Eric Schwerdtfeger, Albert P. Masino
  • Patent number: 8486323
    Abstract: The instant invention provides rotational molded articles, and method of making the same. The rotational molded articles according to the present invention comprise a polyethylene composition comprising: (a) at least 85 percent by weight of the units derived from ethylene; and (b) less than 15 percent by weight of units derived from one or more ?-olefin comonomers; wherein the polyethylene composition has a density in the range of 0.930 to 0.945 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.50, a melt index (I2) in the range of 0.5 to 20 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, vinyl unsaturation of less than 0.06 vinyls per one thousand carbon atoms present in the backbone of the polyethylene composition.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: July 16, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Mark B. Davis, Mridula Kapur, William J. Michie, Jr., Peter Schindler, Nathan J. Wiker, Debra R. Wilson
  • Patent number: 8481665
    Abstract: Use of a metallocene compound of general formula Ind2R?MQ2 as a component of a catalyst system in producing polyethylene, wherein each Ind is the same or different and is indenyl or substituted indenyl; R? is a bridge which comprises a C1 to C4 alkylene radical, a dialkyl germanium or silicon or siloxane, alkyl phosphine or amine, which bridge is substituted or unsubstituted, M is a Group IV metal or vanadium and each Q is hydrocarbyl having 1 to 20 carbon atoms or halogen; and the ratio of meso to racemic forms of the metallocene in the catalyst system is at least 1:3. The metallocene may be supported. The ethylene may be polymerized in a reaction medium that is substantially free of any external comonomer, with comonomer being formed in situ. The produced polyethylene may have long chain branching. The produced polyethylene may be atactic.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 9, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Abbas Razavi, Liliana Peters
  • Patent number: 8481666
    Abstract: The instant invention is a polyethylene composition, method of producing the same, articles made therefrom, and method of making the same. The polyethylene composition according to the instant invention comprises (1) less than or equal to 100 percent by weight of the units derived from ethylene; and (2) less than 15 percent by weight of units derived from one or more ?-olefin comonomers. The polyethylene composition according the instant invention has a density of equal to D g/cm3, wherein D=[(0.0034(Ln(I2))+0.9553], wherein I2 is melt index expressed in g/10 min, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.62, a melt index (I2) in the range of 2 to 1000 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, and a vinyl unsaturation of less than 0.06 vinyls per one thousand carbon atoms present in the backbone of the composition.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: July 9, 2013
    Assignee: Dow Global Technologies LLC.
    Inventors: William Michie, Mark Davis, Nathan Wiker, Debra Wilson, Peter Schindler, John Garnett
  • Patent number: 8481658
    Abstract: A method for transitioning from a Ziegler-Natta to a Phillips catalyst system for the olefin polymerization reaction in one reactor, preferably a gas phase reactor, is described. The method comprises the steps of a) discontinuing a first olefin polymerization reaction performed in the presence of the Ziegler-Natta catalyst system; b) performing a second olefin polymerization reaction in the presence of a further catalyst system comprising catalyst components (A) and (B) producing, respectively, a first and a second polyolefin fraction, wherein the Mw of the first polyolefin fraction is less than the Mw of the second polyolefin fraction and the initial activity of catalyst component (A) exceeds the initial activity of catalyst component (B); and c) performing a third olefin polymerization reaction the presence of the Phillips catalyst system.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: July 9, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Gerhardus Meier, Shahram Mihan
  • Publication number: 20130167911
    Abstract: Disclosed is an encapsulating material for solar cell containing an ethylene/?-olefin copolymer satisfying the following requirements (a1) to (a4): (a1) the content ratio of structural units derived from ethylene is from 80 to 90 mol % and the content ratio of structural units derived from ?-olefin having 3 to 20 carbon atoms is from 10 to 20 mol %; (a2) MFR is from 10 to 50 g/10 minutes as measured under the conditions of a temperature of 190 degrees centigrade and a load of 2.16 kg in accordance with ASTM D1238; (a3) the density is from 0.865 to 0.884 g/cm3 as measured in accordance with ASTM D1505; and (a4) the shore A hardness is from 60 to 85 as measured in accordance with ASTM D2240.
    Type: Application
    Filed: October 7, 2011
    Publication date: July 4, 2013
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Shigenobu Ikenaga, Fumito Takeuchi, Keiji Watanabe, Jun Tokuhiro, Takanobu Murofushi, Kazuhiro Yarimizu, Tomoaki Ito, Nobuhiro Maruko
  • Patent number: 8476394
    Abstract: A polymeric resin having a lower molecular weight (LMW) component and a higher molecular weight (HMW) component and the resin having a density of from about 0.955 g/cc to about 0.967 g/cc, a melt index of from about 0.5 dg/min to about 4.0 dg/min, and a zero shear viscosity of from about 3.0×103 Pa-s to about 4.0×104 Pa-s. A method comprising providing a catalyst system comprising at least one transition metal complex, an activator support, and a cocatalyst; contacting the catalyst system with an olefin under conditions suitable to form a polyolefin, wherein the polyolefin has a HMW component and a LMW component; and recovering the polyolefin, wherein the polyolefin has a melt index of from about 0.5 dg/min to about 4.0 dg/min, and a zero shear viscosity of from about 3.0×103 Pa-s to about 4.0×104 Pa-s.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 2, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Guylaine St. Jean, Qing Yang, Chung Tso, Max P. McDaniel
  • Patent number: 8476393
    Abstract: The invention is related to an ethylene/?-olefin interpolymer having at least a hard segment and at least a soft segment. The soft segment contains a higher amount of comonomers than the hard segment. The hard segment has low crystallinity. The copolymer has a number of unique characteristics disclosed herein. ethylene/?-olefin interpolymers containing low crystallinity hard blocks.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 2, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Colin Li Pi Shan, Roger L. Kuhlman, Gary L. Rath, Pamela J. Kenny, Morgan M. Hughes, Rongjuan Cong
  • Patent number: 8476358
    Abstract: The invention relates to the use of protective-colloid-stabilized vinyl ester/ethylene copolymers in the form of polymer powder as low-profile-additives (LPAs).
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: July 2, 2013
    Assignee: Wacker Chemie AG
    Inventors: Abdulmajid Hashemzadeh, Michael Tobias Zarka
  • Patent number: 8476383
    Abstract: The present invention deals with a process of producing a polymer of at least one olefin in two consecutive reactors in gas phase in the presence of an olefin polymerization catalyst where an olefin is polymerized in a first polymerization reactor in the presence of an olefin polymerization catalyst and a first reaction gas mixture to form a fluidized bed comprising an olefin polymer and said first reaction gas mixture.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: July 2, 2013
    Assignee: Borealis AG
    Inventors: Tapio Kokko, Erno Elovainio, Jouni Kivela, Klaus Nyfors, Kai Hagane
  • Patent number: 8476370
    Abstract: The present invention deals with polymer compositions suitable for making pipes. The compositions comprise a multimodal copolymer of ethylene and one or more alpha-olefins having from 4 to 10 carbon atoms wherein the multimodal ethylene copolymer has a density of from 937 to 950 kg/m3, a melt index MFR5 of from 0.3 to 3.0 g/10 min, a melt index MFR2 of from 0.1 to 2.0 g/10 min and a shear thinning index SHI2.7/210 of from 2 to 30.
    Type: Grant
    Filed: May 25, 2009
    Date of Patent: July 2, 2013
    Assignee: Borealis AG
    Inventors: Mats Backman, Carl-Gustaf Ek, Anneli Pakkanen, Magnus Palmlof, Tarja-Tuulikki Turpeinen, John Severn
  • Patent number: 8476392
    Abstract: A process for the production of an ethylene alpha-olefin copolymer is disclosed, the process including polymerizing ethylene and at least one alpha-olefin by contacting the ethylene and the at least one alpha-olefin with a metallocene catalyst in at least one gas phase reactor at a reactor pressure of from 0.7 to 70 bar and a reactor temperature of from 20° C. to 150° C. to form an ethylene alpha-olefin copolymer. The resulting ethylene alpha-olefin copolymer may have a density D of 0.927 g/cc or less, a melt index (I2) of from 0.1 to 100 dg/min, a MWD of from 1.5 to 5.0. The resulting ethylene alpha-olefin copolymer may also have a peak melting temperature Tmax second melt satisfying the following relation: Tmax second melt>D*398?245.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: July 2, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, Agapios K. Agapiou, James M. Farley, Eric J. Markel, Bruce J. Savatsky, Christopher R. Davey, Richard B. Pannell
  • Patent number: 8475933
    Abstract: The present invention relates to compositions and processes of making and using interpolymers having a controlled molecular weight distribution. Multilayer films and film layers derived from novel ethylene/?-olefin interpolymers are also disclosed.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: July 2, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Rajen M. Patel, David W. Fuchs, Pradeep Jain, Seema Karande, Mehmet Demirors, Mark Grant Spencer, Kim L. Walton, Angela N. Taha, Phillip D. Hustad, Roger L. Kuhlman, Anthony J. Castelluccio
  • Patent number: 8476395
    Abstract: The present invention relates to a polypropylene composition comprising a propylene homopolymer or a propylene random copolymer having at least one comonomer selected from alpha-olefins with 2 or 4-8 carbon atoms and a comonomer content of not more than 8.0 wt %, wherein the propylene homo- or copolymer is polymerized in the presence of a Ziegler-Natta catalyst, and the polypropylene composition has a MWD of 2.0 to 6.0 and an MFR (2.16 kg/230° C.) of 4.0 g/10 min to 20.0 g/10 min, characterized in that the polypropylene composition has not been subjected to a vis-breaking step, the use of the inventive polypropylene composition for the production of a film and/or injection molded articles, a process for preparing a film wherein the inventive polypropylene composition is formed into a film, and wherein the polypropylene composition has not been subjected to a vis-breaking step and a film comprising the inventive polypropylene composition.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: July 2, 2013
    Assignee: Borealis AG
    Inventors: Christelle Grein, Tonja Schedenig
  • Patent number: 8475899
    Abstract: The present invention provides a polymerization process which is conducted by contacting an olefin monomer and at least one olefin comonomer in the presence of hydrogen and a metallocene-based catalyst composition. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, low levels of long chain branches, and a ratio of Mw/Mn from about 3 to about 6.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 2, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Tony R. Crain, Randy S. Muninger, Jerry T. Lanier, Jeff S. Fodor, Paul J. Deslauriers, Chung C. Tso, David C. Rohlfing
  • Patent number: 8470940
    Abstract: Novel group 4 organometallic compounds, supported on anions by means of at least one covalent metal-oxygen bond, are obtained by reaction of at least one borate or aluminum comprising at least one hydroxy group with at least one group 4 transition metal compound. These compounds are used in a catalytic composition implemented in an olefin oligomerization or polymerization method.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: June 25, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Christine Bibal, Catherine Santini, Yves Chauvin, Helene Olivier-Bourbigou, Christophe Vallee
  • Patent number: 8470947
    Abstract: Disclosed is an ethylenic polymer having a long characteristic relaxation time. The ethylenic polymer satisfies the following requirements: (a) the ethylenic polymer is a non-crosslinked ethylenic polymer; (b) the number of long-chain branches (LCB) per 1000 carbon atoms is 0.1-1.5 inclusive; (c) the intrinsic viscosity [?] is 1.0-3.0 dl/g inclusive; and (d) the ratio (G?/G?) of the storage modulus (G?) to the loss modulus (G?), determined by dynamic viscoelasticity measurement at 190° C. and at an angular frequency of 0.1 rad/sec is 0.8 or more and 4.0 or less.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasutoyo Kawashima, Takahiro Hino, Taichi Senda
  • Patent number: 8471050
    Abstract: The present invention relates to non-symmetrical organometallic transition metal compounds of the compound of the formula (I) where R8 and R9 are identical or different and each an substituted or unsubstituted organic radical having from 1 to 40 carbon atoms, catalyst systems comprising at least one of the organometallic transition metal compounds of the present invention and a process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of one of the catalyst systems of the present invention.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Ilya Nifant'ev, Shahram Mihan
  • Patent number: 8466240
    Abstract: Processes for producing high pressure polyethylene and processes for increasing the crosslinkability of high pressure polyethylene are disclosed. The processes comprise controlling particular reaction parameters that have been found to promote crosslinkability in the resulting high pressure polyethylene. High pressure polyethylenes having improved crosslinkability are also disclosed.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: June 18, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Scott C. Solis, Danny Van Hoyweghen, Daniel J. Dobson, Arthur G. Voepel, Cindy Dewitte, Paul J. Clymans, Ashley R. Kropf, Joel E. Schmieg
  • Patent number: 8461280
    Abstract: A multimodal linear low density polyethylene polymer having a final density of 900 to 940 kg/m3, and containing at least one ?-olefin comonomer in addition to ethylene comprising: (A) 30 to 60 wt % of a lower molecular weight component being an ethylene homopolymer or a copolymer of ethylene and at least one ?-olefin; and (B) 70 to 40 wt % of a higher molecular weight component being a copolymer of ethylene and at least one ?-olefin, said ?-olefin being the same or different from any ?-olefin used in component (A) but with the proviso that both components (A) and (B) are not polymers of ethylene and butane alone; wherein the multimodal LLDPE has a dart drop of at least 700 g; and wherein components (A) and (B) are obtainable using a Ziegler-Natta catalyst.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: June 11, 2013
    Assignee: Borealis Technology Oy
    Inventors: Virginie Eriksson, Marjo Vaananen, Markku Vahteri, Thomas Garoff, Petri Rekonen, Jari Hatonen, Siw Bodil Fredriksen, Katrin Nord-Varhaug, Marit Seim, Jorunn Nilsen, Irene Helland
  • Patent number: 8461276
    Abstract: Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: June 11, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Kenneth Blackmon, Joseph Thorman, David Rauscher, Jun Tian, William Gauthier, Nathan Williams