Germanium, Tin, Or Lead Containing (ge, Sn, Or Pb) Patents (Class 556/81)
  • Patent number: 11505865
    Abstract: The present invention is in the field of processes for the generation of thin inorganic films on substrates, in particular atomic layer deposition processes. It relates to a process for preparing metal- or semimetal-containing films comprising (a) depositing a metal- or semimetal-containing compound from the gaseous state onto a solid substrate and (b) bringing the solid substrate with the deposited metal- or semimetal-containing compound in contact with compound of general formula (II), (III), or (IV), wherein E is Ge or Sn, R is an alkyl group, an alkenyl group, an aryl group, or a silyl group, R? are an alkyl group, an alkenyl group, an aryl group, or a silyl group, X is nothing, hydrogen, a halide, an alkyl group, an alkylene group, an aryl group, an alkoxy group, an aryl oxy group, an amino group, or a amidinate group, or an guanidinate group, L is an alkyl group, an alkenyl group, an aryl group, or a silyl group.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: November 22, 2022
    Assignee: BASF SE
    Inventors: David Dominique Schweinfurth, Lukas Mayr, Sinja Verena Klenk, David Scheschkewitz, Kinga Izabela Leszczynska
  • Patent number: 10490872
    Abstract: An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgBx particles, where x?1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgBx particles, the conductive additive, and the binder additive. The MgBx particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 26, 2019
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Yufeng Zhao, Chunmei Ban, Daniel Ruddy, Philip A. Parilla, Seoung-Bum Son
  • Patent number: 10155779
    Abstract: Isocyanate-functional silanes are prepared in high yield by pyrolysis of an O-carbamate prepared by reaction of a dialkylcarbonate with an aminoalkyl-functional silane in the presence of a basic catalyst, where the catalyst is neutralized by an acid which has a pKa of all protolysis stages of not more than 4. The neutralized or partially neutralized catalyst need not be removed prior to pyrolysis. The isocyanato-functional silanes exhibit higher storage stability as compared to those prepared from O-carbamates where catalyst neutralization is effected by weak acids.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: December 18, 2018
    Assignee: WACKER CHEMIE AG
    Inventors: Volker Stanjek, Lars Zander
  • Patent number: 10077507
    Abstract: A method for growing single-crystal perovskite structures comprises immersing a film of a metal precursor compound on a surface of a substrate, the metal precursor compound comprising a metal ion B, in a solution comprising a cation precursor compound, the cation precursor compound comprising a cation ion A and an anion X, at a concentration of the cation precursor compound, a growth time, and a growth temperature sufficient to dissolve the film to release the metal ion B to form a complex with the anion X and sufficient to induce recrystallization of the complex with the cation ion A to form a plurality of single-crystal perovskite structures composed of A, B and X. The single-crystal perovskite structures, devices incorporating the same, and methods of using the devices are also provided.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: September 18, 2018
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Song Jin, Yongping Fu, Fei Meng
  • Patent number: 9894902
    Abstract: Herbicidal compositions and methods using a combination of (a) a compound of formula (I): or an agriculturally acceptable salt or ester thereof and (b) picloram or an agriculturally acceptable salt or ester thereof provide control of undesirable vegetation in, e.g., rice, wheat, barley, triticale, oats, rye, sorghum, corn or maize, oilseed rape, vegetables, pastures, grasslands, rangelands, fallowland, turf, tree and vine orchards, aquatics, industrial vegetation management or rights-of-way.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: February 20, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Norbert M. Satchivi, Monte R. Weimer
  • Patent number: 9878059
    Abstract: An aqueous approach to synthesize capped SnS quantum dots (QDs) followed by optional capping molecule extension by attaching one or more extending molecules to the capping molecule via peptide bond formation at elevated temperature. The capped SnS QDs may have a capping molecule:Sn:S molar ratio of 16:3:1 to 16:12:1. A suspension of SnS QDs was heat-treated at 200° C. for 0.5-4 hrs. The obtained SnS QDs showed an NIR emission peak at 820-835 nm with an excitation wavelength at 690 nm. The as synthesized SnS QDs were found to have high positive zeta potential of ˜30 mV and thus were toxic to cells. By neutralizing the SnS QDs the cytotoxicity was reduced to an accepted level. The heat-treatment step can be obviated by adding a glycerol solution containing S2? anions and capping molecule to a glycerol solution of Sn2+ ions.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: January 30, 2018
    Assignee: DREXEL UNIVERSITY
    Inventors: Wei-Heng Shih, Wan Y. Shih, Song Han, Xiaomin Niu, Shi Fang
  • Patent number: 9637507
    Abstract: A synthetic process of producing liquid tin(II) alkoxides for use as either catalysts in the synthesis of lactide or as initiators in the polymerization of cyclic ester monomers to yield biodegradable polyesters is described. The synthetic process employs anhydrous tin(II) chloride dissolved in n-heptane mixed with dry diethylamine. Alcohols, ROH, in which the R groups are n-C4H9, n-C6H13, and n-C8H17 are added to the reaction mixture and stirred for 12 hours. The reaction mixture is then filtered under nitrogen or argon before being evaporated to dryness to yield the three tin(II) alkoxides, namely: tin(II) n-butoxide, tin(II) n-hexoxide, and tin(II) n-octoxide. All three tin(II) alkoxides are viscous, dark yellow liquids which are highly soluble in most common organic solvents. Furthermore, they can all be stored under an inert atmosphere for long periods without any significant change in their reactivity and, therefore, in their effectiveness as catalysts/initiators.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: May 2, 2017
    Assignee: CHIANG MAI UNIVERSITY
    Inventors: Puttinan Meepowpan, Winita Punyodom, Robert Molloy
  • Patent number: 9187499
    Abstract: A compound represented by the formula (I) (R1 represents hydrogen atom or a monovalent substituent; R2 and R3 represent hydrogen atom, an alkyl group, or a halogen atom; R4 and R5 represent an alkyl group or an aryl group; R6 and R7 represent hydrogen atom, an alkyl group, or a halogen atom; R8 represent hydroxy group or a dialkoxyboranetriyl group; and X represents silicon atom, germanium atom, or tin atom), which is a novel fluorophore usable as a mother nucleus of an off/on type fluorescent probe not utilizing the intramolecular photoinduced electron transfer.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: November 17, 2015
    Assignee: THE UNIVERSITY OF TOKYO
    Inventors: Tetsuo Nagano, Kenjiro Hanaoka, Yuichiro Koide, Takahiro Egawa, Kazuhisa Hirabayashi
  • Patent number: 9170266
    Abstract: A compound represented by the formula (I) (one of substituents represented by R1 is a trapping group for an object substance for measurement; R2 and R3 represent hydrogen, alkyl, or halogen; R4 and R5 represent alkyl or aryl; R6 and R7 represent hydrogen, alkyl, or halogen; R8 represents hydrogen, alkylcarbonyl, or alkylcarbonyloxymethyl, and X represents silicon, germanium, or tin, which can be used as a fluorescent probe that enables red color bioimaging using intramolecular photoinduced electron transfer.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 27, 2015
    Assignee: THE UNIVERSITY OF TOKYO
    Inventors: Tetsuo Nagano, Kenjiro Hanaoka, Yuichiro Koide, Takahiro Egawa
  • Publication number: 20150005470
    Abstract: The present invention relates to an organotin compound represented by R1O—Sn—OR2 (where R1 and R2 are independently a primary, secondary, or tertiary alkyl group having 5 to 30 carbon atoms), a preparation method thereof, and a preparation method for polylactide using the organotin compound. The organotin compound of the present invention is easy to prepare and is used to prepare a polylactide resin having a high molecular weight at a high yield without using a separate initiator.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 1, 2015
    Inventors: In-Su LEE, Sung-Cheol YOON, Seung-Young PARK, Seong-Woo KIM, Young-Kyu DO, Kang-Mun LEE
  • Patent number: 8901335
    Abstract: A method of purifying crude organometallic compounds using a stripping column and a gas stream is provided. This method removes relatively more volatile impurities as compared to the organometallic compound.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 2, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Curtis D. Modtland, Chet D. Davidson
  • Patent number: 8900330
    Abstract: An agent that is capable of improving dye fastness is provided. The agent includes a compound that includes at least one functional group capable of forming at least one interaction or at least one bond with a fiber or a dye molecule. Also, a method for using the agents to improve dye fastness and a dyed article including the agent are provided.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 2, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Dong Hoon Choi
  • Patent number: 8828101
    Abstract: An agent that is capable of improving dye fastness is provided. The agent includes a compound that includes at least one functional group capable of forming at least one interaction or at least one bond with a fiber or a dye molecule. Also, a method for using the agents to improve dye fastness and a dyed article including the agent are provided.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 9, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Dong Hoon Choi
  • Patent number: 8816115
    Abstract: Provided herein are metal nanoparticles, metal nanopowders, methods of synthesizing the same, and radiation shields using the same.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: August 26, 2014
    Assignee: Meridian Research and Development
    Inventors: Ronald F. DeMeo, James Adam Bradshaw, Federico Polo
  • Patent number: 8803141
    Abstract: A method of depositing a film of a metal chalcogenide including the steps of: contacting an isolated hydrazinium-based precursor of a metal chalcogenide and a solvent having therein a solubilizing additive to form a solution of a complex thereof; applying the solution of the complex onto a substrate to produce a coating of the solution on the substrate; removing the solvent from the coating to produce a film of the complex on the substrate; and thereafter annealing the film of the complex to produce a metal chalcogenide film on the substrate. Also provided is a process for preparing an isolated hydrazinium-based precursor of a metal chalcogenide as well as a thin-film field-effect transistor device using the metal chalcogenides as the channel layer.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: David B. Mitzi, Matthew W. Copel
  • Patent number: 8796483
    Abstract: Novel cyclic amides containing tin or lead are disclosed. These cyclic amides can be used for atomic layer deposition or chemical vapor deposition of tin or lead as well as their oxides, sulfides, selenides, nitrides, phosphides, carbides, silicides or borides or other compounds. Tin(IV) oxide, SnO2, films were deposited by reaction of a cyclic tin amide vapor and H2O2 or NO2 as oxygen sources. The films have high purity, smoothness, transparency, electrical conductivity, density, and uniform thickness even inside very narrow holes or trenches. Deposition temperatures are low enough for thermally sensitive substrates such as plastics. Suitable applications of these films include displays, light-emitting diodes, solar cells and gas sensors. Doping SnO2 with aluminum was used to reduce its conductivity, making material suitable as the active semiconductor layer in electron multipliers or transparent transistors.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: August 5, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Adam S. Hock, Jaeyeong Heo, Prasert Sinsermsuksakul
  • Publication number: 20140142332
    Abstract: A novel process of preparing a Grignard reagent is disclosed. The process is effected by electrochemically reacting a Grignard precursor with an electrode which comprises a metal for forming the Grignard reagent, in the presence an electrolyte solution that comprises a room temperature ionic liquid (RTIL). Electrochemical cells and systems for performing the process, and uses thereof in various applications are also disclosed.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: Technion Research & Development Foundation Limited
    Inventors: Yair Ein-Eli, Daniel Luder, Alexander Kraytsberg
  • Patent number: 8709863
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: April 29, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S. H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Patent number: 8663736
    Abstract: Provided is a germanium complex represented by Chemical Formula 1 wherein Y1 and Y2 are independently selected from R3, NR4R5 or OR6, and R1 through R6 independently represent (Ci-C7) alkyl. The provided germanium complex with an amidine derivative ligand is thermally stable, is highly volatile, and does not include halogen components. Therefore, it may be usefully used as a precursor to produce high-quality germanium thin film or germanium-containing compound thin film by metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 4, 2014
    Assignee: Soulbrain Sigma-Aldrich Ltd.
    Inventors: Jae Sun Jung, Su Hyong Yun, Minchan Kim, Sung Won Han, Yong Joo Park, Su Jung Shin, Ki Whan Sung, Sang Kyung Lee
  • Publication number: 20140005428
    Abstract: A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.
    Type: Application
    Filed: June 18, 2013
    Publication date: January 2, 2014
    Applicant: Northwestern University
    Inventors: Omar K. Farha, Joseph T. Hupp, Christopher E. Wilmer, Ibrahim Eryazici, Randall Q. Snurr, Diego A. Gomez-Gualdron, Bhaskarjyoti Borah
  • Publication number: 20130320836
    Abstract: Materials comprising an A/M/X compound are provided. An A/M/X compound is a compound comprising one or more A moieties, one or more M atoms and one or more X atoms, where the A moieties are selected from organic cations and elements from Group 1 of the periodic table, the M atoms are selected from elements from Group 14 of the periodic table, and the X atoms are selected from elements from Group 17 of the periodic table. The materials include two-phase materials in which the A/M/X compound provides a first phase and a dopant compound provides a second phase.
    Type: Application
    Filed: February 20, 2013
    Publication date: December 5, 2013
    Inventors: Mercouri G. Kanatzidis, In Chung, Konstantinos Stoumpos
  • Patent number: 8575249
    Abstract: There is provided a polygermane compound forming a film having a high refractive index and thermal stability, and containing a sulfur atom-containing organic group as a group bonded to a germanium atom. A polygermane compound comprising a sulfur atom-containing organic group as a group bonded to a germanium atom, in which the sulfur atom-containing organic group is a group of Formula [1]: -L-Z??[1] where L is a single bond, a C1-6 alkylene group, or a C4-20 arylene group optionally substituted with a C1-6 alkyl group; and Z is a C1-20 sulfide group, a C1-14 cyclic sulfide group optionally substituted with a C1-6 alkyl group, a C2-20 alkyl group containing a sulfide bond, or a C5-20 aralkyl group containing a sulfide bond, with a proviso that when L is a single bond, Z is not a C1-20 sulfide group.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: November 5, 2013
    Assignees: Nissan Chemical Industries, Ltd., Tohoku University
    Inventors: Takehiro Nagasawa, Akira Watanabe, Tokuji Miyashita
  • Patent number: 8512878
    Abstract: An organic EL device is provided that includes an emitting layer provided between an anode and a cathode. The emitting layer contains a diaminopyrene derivative represented by the following formula (1) as an emitting material for the organic EL device. The diaminopyrene derivative emits light with electrical energy.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 20, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Masakazu Funahashi
  • Patent number: 8501976
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Thomas H. Baum
  • Patent number: 8426623
    Abstract: A surface modified nanoparticle includes a nanoparticle and a phenol compound used for modifying the nanoparticle. The phenol compound has a formula of (a) or (b), wherein n=1˜9, X is selected from the group consisted of NH2, OH, PH4, COOH and SH, R1 is selected from the group consisted of C1-C5 alkyl group, aryl group, alkenyl group, alkynyl group, alkylamino group and alkoxy group. Each carbon atom of the phenol group may be independently substituted or non-substituted. The substituent of the carbon atom of the phenol may be selected from the group consisted of halogen, C1-C5 alkyl group, cyano (CN), trifluoromethyl (CF3), alkylamino group, amino and alkoxy group. The present invention may be used for anti-oxidant and/or decreasing the toxicity of the nanoparticle. A preparation method of surface modified nanoparticle is also herein provided.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 23, 2013
    Assignee: National Tsing Hua University
    Inventors: Yuh-Jeen Huang, Kuan-Yi Chen
  • Publication number: 20130069021
    Abstract: A tin oxide-containing polymer composite material, a process for production thereof, and use thereof for production of tin-carbon composite material containing: an inorganic tin-containing phase; and a carbon phase. Additionally, a compound of formula (I): R1—X—Sn—Y—R2 (I), wherein: R1 is an Ar—C(Ra,Rb)— radical where Ar is an aromatic or heteroaromatic ring optionally containing 1 or 2 substituents; Ra and Rb are each independently hydrogen or methyl, or together are an oxygen atom or a methylidene group (?CH2); R2 is C1-C10-alkyl, C3-C8-cycloalkyl, or R1; or R1 together with R2 is a radical of the formula A: wherein: A is an aromatic or heteroaromatic ring fused to the double bond; m is 0-2; each R radical is independently selected from halogen, CN, C1-C6-alkyl, C1-C6-alkoxy, and phenyl, Ra, Rb are as in formula (1); X is O, S or NH; and Y is O, S or NH.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: BASF SE
    Inventors: Arno LANGE, Gerhard Cox, Klaus Leitner, Hannes Wolf, Michael Mehring, Christian Leonhardt
  • Patent number: 8399695
    Abstract: This invention relates to organometallic precursor compounds represented by the formula (H)mM(R)n wherein M is a metal or metalloid, R is the same or different and is a substituted or unsubstituted, saturated or unsaturated, heterocyclic radical containing at least one nitrogen atom, m is from 0 to a value less than the oxidation state of M, n is from 1 to a value equal to the oxidation state of M, and m+n is a value equal to the oxidation state of M, a process for producing the organometallic precursor compounds, and a method for producing a film or coating from the organometallic precursor compounds.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: March 19, 2013
    Assignee: Praxair Technology, Inc.
    Inventor: Scott Houston Meiere
  • Patent number: 8394891
    Abstract: The additive for a polymerizable composition according to the present invention contains a compound represented by the general formula (a). In the general formula (a), R represents a saturated hydrocarbon group having 1 to 3 carbon atoms. M represents Sn, Sb, Bi, or Ge. m represents 0 or 1. R and M are not directly bonded when m is 0. n represents an integer of 1 to 3. X represents a monovalent linking group, and a plurality of X may be the same as or different from each other. When two or more linking groups X are bonded with the metal atom M, the linking groups X may combine together to form a ring.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: March 12, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Tomoyuki Ando, Seiichi Kobayashi
  • Publication number: 20130059951
    Abstract: There is provided a polygermane compound forming a film having a high refractive index and thermal stability, and containing a sulfur atom-containing organic group as a group bonded to a germanium atom. A polygermane compound comprising a sulfur atom-containing organic group as a group bonded to a germanium atom, in which the sulfur atom-containing organic group is a group of Formula [1]: -L-Z ??[1] where L is a single bond, a C1-6 alkylene group, or a C4-20 arylene group optionally substituted with a C1-6 alkyl group; and Z is a C1-20 sulfide group, a C1-14 cyclic sulfide group optionally substituted with a C1-6 alkyl group, a C2-20 alkyl group containing a sulfide bond, or a C5-20 aralkyl group containing a sulfide bond, with a proviso that when L is a single bond, Z is not a C1-20 sulfide group.
    Type: Application
    Filed: February 16, 2011
    Publication date: March 7, 2013
    Applicants: TOHOKU UNIVERSITY, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Takehiro Nagasawa, Akira Watanabe, Tokuji Miyashita
  • Patent number: 8362289
    Abstract: It is an object of the present invention to provide a mixture for recovery utilization or transfer of carbon dioxide gas. According to the present invention, disclosed is a mixture containing carbon dioxide and an alkyltin alkoxide composition containing carbon dioxide complex of an alkyltin alkoxide, the mixture having a composition with a specified ratio.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: January 29, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Nobuhisa Miyake, Kazuhiro Onishi, Kazuo Tomoyasu, Budianto Bijanto
  • Publication number: 20130023685
    Abstract: The invention relates to processes for preparing metal(IV) compounds which are suitable especially as catalysts for preparation of polyesters, polyurethanes and polysiloxanes, and to the use of the metal compounds for preparation of polyesters, polyurethanes or polysiloxanes.
    Type: Application
    Filed: October 29, 2010
    Publication date: January 24, 2013
    Inventors: Frank Lehmann, Udo Kittelmann
  • Patent number: 8329929
    Abstract: A metal complex represented by the following formula (1): wherein R1 to R6 each independently represent a hydrogen atom or a substituent; Y1 and Y2 each independently represent any one of the following groups: wherein R? represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; P1 and P2 each represent a group of atoms necessary for forming a heterocyclic ring together with Y1 or Y2 and the two carbon atoms at a position adjacent to Y1 or Y2; P1 and P2 may be linked to each other to form a ring; M represents a transition metal element or typical metal element; m represents 1 or 2; X represents a counter ion or a neutral molecule; n represents the number of X's in the complex, and an integer of 0 or more; and Q1 and Q2 each independently represent an aromatic heterocyclic group.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: December 11, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tadafumi Matsunaga, Nobuyoshi Koshino, Hideyuki Higashimura
  • Patent number: 8318830
    Abstract: The present invention provides organometallic latent catalyst compounds, which are suitable as catalysts in polyaddition or polycondensation reactions which are catalysed by a Lewis acid type catalyst, in particular for the crosslinking of a blocked or unblocked isocyanate or isothiocyanate component with a polyol or polythiolto form a polyurethane (PU).
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 27, 2012
    Assignee: BASF SE
    Inventors: Rachel Kohli Steck, Caroline Lordelot, Thomas Vogel, Gisele Baudin, Paul Brown, Kurt Dietliker, Rinaldo Huesler, Tunja Jung, Peter Simmendinger, Katia Studer, Antoine Carroy
  • Patent number: 8318252
    Abstract: The present invention is a process of making a germanium-antimony-tellurium alloy film using a process selected from the group consisting of atomic layer deposition and chemical vapor deposition, wherein a silylantimony precursor is used as a source of antimony for the alloy film. Novel silylantimony compounds are also disclosed.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: November 27, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Manchao Xiao
  • Patent number: 8268665
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Grant
    Filed: June 26, 2011
    Date of Patent: September 18, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S. H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Publication number: 20120214959
    Abstract: The present invention relates to an organotin compound represented by R1O—Sn—OR2 (where R1 and R2 are independently a primary, secondary, or tertiary alkyl group having 5 to 30 carbon atoms), a preparation method thereof, and a preparation method for polylactide using the organotin compound. The organotin compound of the present invention is easy to prepare and is used to prepare a polylactide resin having a high molecular weight at a high yield without using a separate initiator.
    Type: Application
    Filed: August 31, 2010
    Publication date: August 23, 2012
    Applicant: LG Chem, LTD
    Inventors: In-Su Lee, Sung-Cheol Yoon, Seung-Young Park, Seong-Woo Kim, Young-kyu Do, Kang-Mun Lee
  • Patent number: 8236980
    Abstract: The principal object of the invention is to provide a lithium salt having excellent ion conductivity. The invention solves the problem by providing a lithium salt having a structure represented by the general formula (1): in which “M” represents B, Si, Ge, P, As or Sb; “X” represents the valence of “M”; “R1” represents —CmH2m— whereupon “m” is an integer of 1 to 4; “R2” represents —CkH2k+1 whereupon “k” is an integer of 1 to 8; and “n” represents 0 to 12.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: August 7, 2012
    Assignees: National University Corporation Shizuoka University, Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuo Fujinami, Ruoyuan Tao, Masaki Matsui
  • Patent number: 8198352
    Abstract: The present invention relates to high purity monoalkyltin compounds, more specifically to alkyltin compound compositions containing monoalkyltin as major compound, and minor quantities of di- and/or trialkyltin compounds. The present invention also relates to the preparation processes of such high purity monoalkyltin compounds, as well as to the uses of said monoalkyltin compounds as chlorine-containing polymer-stabilizers, glass coating chemicals and catalysts, as well as articles comprising at least one polymer matrix and a high purity monoalkyltin compound.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: June 12, 2012
    Assignee: Arkema France
    Inventors: Berth Jan Deelman, Jeroen J. M. de Pater, Evert J. Saman, Isabelle Tartarin
  • Publication number: 20120027937
    Abstract: Novel cyclic amides containing tin or lead are disclosed. These cyclic amides can be used for atomic layer deposition or chemical vapor deposition of tin or lead as well as their oxides, sulfides, selenides, nitrides, phosphides, carbides, silicides or borides or other compounds. Tin(IV) oxide, SnO2, films were deposited by reaction of a cyclic tin amide vapor and H2O2 or NO2 as oxygen sources. The films have high purity, smoothness, transparency, electrical conductivity, density, and uniform thickness even inside very narrow holes or trenches. Deposition temperatures are low enough for thermally sensitive substrates such as plastics. Suitable applications of these films include displays, light-emitting diodes, solar cells and gas sensors. Doping SnO2 with aluminum was used to reduce its conductivity, making material suitable as the active semiconductor layer in electron multipliers or transparent transistors.
    Type: Application
    Filed: March 31, 2011
    Publication date: February 2, 2012
    Inventors: Roy G. Gordon, Adam S. Hock, Jaeyeong Heo, Prasert Sinsermsuksakul
  • Patent number: 8093140
    Abstract: Germanium, tellurium, and/or antimony precursors are usefully employed to form germanium-, tellurium- and/or antimony-containing films, such as films of GeTe, GST, and thermoelectric germanium-containing films. Processes for using these precursors to form amorphous films are also described. Further described is the use of [{nBuC(iPrN)2}2Ge] or Ge butyl amidinate to form GeTe smooth amorphous films for phase change memory applications.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: January 10, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Philip S. H. Chen, William Hunks, Tianniu Chen, Matthias Stender, Chongying Xu, Jeffrey F. Roeder, Weimin Li
  • Publication number: 20110295030
    Abstract: A surface modified nanoparticle includes a nanoparticle and a phenol compound used for modifying the nanoparticle. The phenol compound has a formula of (a) or (b), wherein n=1˜9, X is selected from the group consisted of NH2, OH, PH4, COOH and SH, R1 is selected from the group consisted of C1-C5 alkyl group, aryl group, alkenyl group, alkynyl group, alkylamino group and alkoxy group. Each carbon atom of the phenol group may be independently substituted or non-substituted. The substituent of the carbon atom of the phenol may be selected from the group consisted of halogen, C1-C5 alkyl group, cyano (CN), trifluoromethyl (CF3), alkylamino group, amino and alkoxy group. The present invention may be used for anti-oxidant and/or decreasing the toxicity of the nanoparticle. A preparation method of surface modified nanoparticle is also herein provided.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 1, 2011
    Applicant: National Tsing Hua University
    Inventors: Yuh-Jeen Huang, Kuan-Yi Chen
  • Patent number: 8053772
    Abstract: A method of depositing a film of a metal chalcogenide including the steps of: contacting an isolated hydrazinium-based precursor of a metal chalcogenide and a solvent having therein a solubilizing additive to form a solution of a complex thereof; applying the solution of the complex onto a substrate to produce a coating of the solution on the substrate; removing the solvent from the coating to produce a film of the complex on the substrate; and thereafter annealing the film of the complex to produce a metal chalcogenide film on the substrate. Also provided is a process for preparing an isolated hydrazinium-based precursor of a metal chalcogenide as well as a thin-film field-effect transistor device using the metal chalcogenides as the channel layer.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: David B. Mitzi, Matthew W. Copel
  • Publication number: 20110268881
    Abstract: Provided is a germanium complex represented by Chemical Formula 1 wherein Y1 and Y2 are independently selected from R3, NR4R5 or OR6, and R1 through R6 independently represent (Ci-C7) alkyl. The provided germanium complex with an amidine derivative ligand is thermally stable, is highly volatile, and does not include halogen components. Therefore, it may be usefully used as a precursor to produce high-quality germanium thin film or germanium-containing compound thin film by metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
    Type: Application
    Filed: January 7, 2010
    Publication date: November 3, 2011
    Applicant: TECHNO SEMICHEM CO., LTD.
    Inventors: Jae Sun Jung, Su Hyong Yun, Minchan Kim, Sung Won Han, Yong Joo Park, Su Jung Shin, Ki Whan Sung, Sang Kyung Lee
  • Patent number: 8030507
    Abstract: The present invention relates to novel tin amino-alkoxide complexes and a method for preparing the same, precisely novel tin amino-alkoxide complexes represented by formula 1 and useful as a precursor for tin and tin oxide thin films and a precursor for the production of nano-sized tin and tin oxide particles and a method for preparing the same. In formula 1, A is linear or branched (C2-C10) alkylene substituted or not substituted with halogen; R1 and R2 are independently linear or branched (C1-C7) alkyl substituted or not substituted with halogen.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: October 4, 2011
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Chang Gyoun Kim, Taek-Mo Chung, Young Kuk Lee, Ki-Seok An, Sun Sook Lee, Beyong Hwan Ryu, Se Jin Jang
  • Publication number: 20110193064
    Abstract: An organic EL device includes an emitting layer provided between an anode and a cathode. The emitting layer contains a diaminopyrene derivative represented by the following formula (1) as an emitting material for the organic EL device. The diaminopyrene derivative emits light with electrical energy. In the formula, X and X? each independently represent a substituent containing at least one of Ge, P, B and Si. d and e each represent an integer of 0 to 5 while d+e?1 is satisfied. When d is 2 or more, the plurality of X may be mutually the same or different and may be bonded together to form a saturated or unsaturated ring. When e is 2 or more, the plurality of X? may be mutually the same or different and may be bonded together to form a saturated or unsaturated ring.
    Type: Application
    Filed: May 7, 2008
    Publication date: August 11, 2011
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventor: Masakazu Funahashi
  • Publication number: 20110180968
    Abstract: A method for making a carbon nanotube metal composite includes the following steps. A number of carbon nanotubes is dispersed in a solvent to obtain a suspension. Metal powder is added into the suspension, and then the suspension agitated. The suspension containing the metal powder is allowed to stand for a while. The solvent is reduced to obtain a mixture of the number of carbon nanotubes and the metal powder.
    Type: Application
    Filed: October 15, 2010
    Publication date: July 28, 2011
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: CHUN-HUA HU, CHANG-HONG LIU, SHOU-SHAN FAN
  • Publication number: 20110171789
    Abstract: A method for the production of a robust, chemically stable, crystalline, passivated nanoparticle and composition containing the same, that emit light with high efficiencies and size-tunable and excitation energy tunable color. The methods include the thermal degradation of a precursor molecule in the presence of a capping agent at high temperature and elevated pressure. A particular composition prepared by the methods is a passivated silicon nanoparticle composition displaying discrete optical transitions.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 14, 2011
    Inventors: Brian A. Korgel, Keith P. Johnston
  • Patent number: 7951968
    Abstract: A compound having two or more thiol groups and an atom selected from metal atoms in a molecule, a polythiol composition containing such a compound, a polymerizable composition containing such a polythiol composition, a resin obtained by polymerization of such a polymerizable composition, and an optical component obtained from such a resin are provided. The polymerizable composition can be a raw material for a resin having high transparency, good heat resistance and mechanical strength required for optical components such as plastic lenses and the like, while attaining a high refractive index (nd) exceeding 1.7.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: May 31, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hiroshi Naruse, Atsuo Otsuji, Mitsuo Nakamura
  • Publication number: 20110054140
    Abstract: The present invention relates to new catalysts and production thereof as well as the preferred use thereof in the production of polyisocyanate polyaddition products.
    Type: Application
    Filed: April 18, 2009
    Publication date: March 3, 2011
    Inventors: Jens Krause, Stephan Reiter, Stefan Lindner, Axel Schmidt, Klaus Jurkschat, Markus Schürmann, Gerrit Bradtmöller
  • Publication number: 20100286334
    Abstract: The additive for a polymerizable composition according to the present invention contains a compound represented by the general formula (a). In the general formula (a), R represents a saturated hydrocarbon group having 1 to 3 carbon atoms. M represents Sn, Sb, Bi, or Ge. m represents 0 or 1. R and M are not directly bonded when m is 0. n represents an integer of 1 to 3. X represents a monovalent linking group, and a plurality of X may be the same as or different from each other. When two or more linking groups X are bonded with the metal atom M, the linking groups X may combine together to form a ring.
    Type: Application
    Filed: December 11, 2008
    Publication date: November 11, 2010
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Tomoyuki Ando, Seiichi Kobayashi