By Loading Of Specimen (e.g., Strength Of Material Test) Patents (Class 73/788)
  • Patent number: 12091270
    Abstract: An automated system for transferring articles from a container. An item transfer system includes a rotatable tray rotary assembly, a translatable and rotatable intermediate rotary assembly, and a translatable and rotatable output rotary assembly. The system is configured to transfer articles from the tray to processing equipment by an automated process including rotationally transferring the articles from the tray to the intermediate rotary assembly and rotationally transferring the articles from the intermediate rotary assembly to the output rotary assembly. The output rotary assembly can move to align with a shelf or other input of the processing equipment and a paddle assembly can slide the items from the output rotary assembly onto the shelf or other input of the processing equipment.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: September 17, 2024
    Assignee: United States Postal Service
    Inventor: Wayne R. Perry-Eaton
  • Patent number: 11980547
    Abstract: A method for testing a prosthetic heart valve leaflet is provided. The method includes using a vertical post having a longitudinal axis and a horizontal bar having a bar-axis that lies on a vertical bar-plane. The bar supports the leaflet along the bar-axis such that the leaflet drapes over the bar. A linear actuator movably couples the bar to the post, and actuation of the actuator moves the bar vertically in the bar-plane. A light source emits a beam of light and is oriented to direct the beam through the bar-plane. A gauge measures an elevation of the bar above the beam. A detector is positioned to detect the beam and generates a detection-signal indicative of detection of the beam. Other applications are also described.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: May 14, 2024
    Assignee: CARDIOVALVE LTD.
    Inventors: Boaz Harari, Ilia Hariton
  • Patent number: 11954844
    Abstract: An approach for fatigue crack detection is described. In one example, a first image of a structure is captured at a first time, and a second image of the structure is captured at a second time. A feature-based image registration is performed to align features of the second image with the first image, and an intensity-based image registration is performed to further align features of the second image with the first image. A registration error map is determined by performing a pixel-by-pixel intensity comparison of the first image and the second image. Additionally, an edge-aware noise reduction process can be performed on the registration error map. The registration error map can be referenced to identify certain fatigue cracks in the structure.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: April 9, 2024
    Assignee: UNIVERSITY OF KANSAS
    Inventors: Xiangxiong Kong, Jian Li
  • Patent number: 11933768
    Abstract: Methods and systems are provided for a torsional material testing system, which includes a rotatable actuator, such as a motor, configured to perform a torsional material testing operation. During a torsional material testing operation, a virtual interlock is configured to engage or disengage with the actuator to prevent or allow rotational movement of the actuator (e.g., during a setup state or during a torsional material testing operation, respectively). A control circuitry is employed to control the virtual interlock as well as the torsional testing system based on one or more operational states before, during, or after a material testing process.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: March 19, 2024
    Assignee: Illinois Tool Works Inc.
    Inventors: Keith J. Tremblay, Nicholas H. Bradshaw
  • Patent number: 11714276
    Abstract: A microelectromechanical systems (MEMS) scanning device comprising a torsional beam flexure that has a variable width in relation to a rotational axis for a scanning mirror. The geometric properties of the torsional beam vary along the rotational axis to increase a desired mode of mechanical strain at a location where a strain sensor is operating within the MEMS scanning device to generate a feedback signal. The torsional beam flexure mechanically suspends the scanning mirror from a frame structure. During operation of the MEMS scanning device, actuators induce torsional deformation into the torsional beam flexure to cause rotation of the scanning mirror about the rotational axis. The degree or amount of this torsional deformation is directly related to the angular position of the scanning mirror and, therefore, the desired mode of mechanical strain may be this torsional deformation strain component.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 1, 2023
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Utku Baran, Xiao Chuan Ong, Wyatt Owen Davis
  • Patent number: 11474011
    Abstract: The present invention discloses a bending test apparatus and method for a flexible sheet material. The apparatus comprises a mounting table and further comprises a clamping unit and a bending shaft unit. The clamping unit comprises a clamping part. The bending shaft unit comprises a bending shaft extending in a Z-axis direction. The bending shaft has an arc-shaped sidewall for abutting against a flexible sheet material at an end thereof away from the clamping part. The clamping part moves relative to the bending shaft in a Y-axis direction. The present invention has the following advantage: During a test, a flexible sheet material is bent with a lower external strain, has a wide adjustment curvature range, and the structure is optimized.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: October 18, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Mingxiang Wang, Wei Jiang, Dongli Zhang, Huaisheng Wang, Ming Wu, Nannan Lv
  • Patent number: 11385091
    Abstract: A rail vehicle includes a truck having wheels for engaging a railroad track, a bolster supported by the truck, and a tank supported by the bolster for storing a lading. A measurement system measures the level of the lading within the tank and includes gauges and a controller. The gauges are disposed at selected points on the bolster for sensing at least one of lateral and longitudinal localized displacement experienced by the bolster during motion of the rail vehicle. The controller calculates the level of the lading within the tank and compensates for changes in the level of the lading during motion of the rail vehicle in response to signals generated by the gauges.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: July 12, 2022
    Assignee: BNSF Railway Company
    Inventors: Darrell Robert Krueger, Corey D. Wills
  • Patent number: 11385256
    Abstract: The present disclosure relates to an in-situ testing device including a measuring head, a drive mechanism, and a testing chamber. The testing chamber is provided with a first optical observation hole. The measuring head is provided with a second optical observation hole. The testing chamber is provided with an opening allowing the measuring head to pass. The testing chamber is further provided with a shielding door, and the drive mechanism is connected to the shielding door to drive the shielding door to move relative to the testing chamber, to open or cover the opening, thereby opening or closing the testing chamber.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: July 12, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Qi-Kun Xue, Xiao-Peng Hu, Cheng Zheng, Xi Chen
  • Patent number: 11175214
    Abstract: In one aspect, an apparatus includes a chamber configured to control one or more of humidity, pressure, or temperature and a jaw configured to flex a material system. The chamber includes an enclosure disposed within the chamber, the enclosure having an insulating material, and a motor or an actuator disposed within the enclosure. The chamber includes an inlet tube coupled with the enclosure at a first end and a first wall of the chamber at a second end. In one aspect, a method for determining material performance includes exposing a material system to a relative humidity of from 0% to 98% and flexing the material system at a first temperature in a chamber, the chamber comprising an enclosure disposed within the chamber and a motor disposed within the enclosure. The method includes operating the motor at a second temperature different from the first temperature during the flexing.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: November 16, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Kristen Smith Williams, Bruno Zamorano Senderos, David Adam Jackson
  • Patent number: 11162881
    Abstract: A test apparatus for measuring strength of a specimen includes: a lower container having an opening that opens upward; an upper container having an opening that opens downward and being sized to be insertable into the opening of the lower container; a support unit that is provided in the opening of the lower container and supports the specimen; a pressing unit including an indenter that presses the specimen, and a load measurement unit that measures a load applied to the indenter; and a movement mechanism that moves the indenter closer and away relative to the support unit, in which when the specimen supported by the support unit is pressed by the indenter moved by the movement mechanism, the upper container is positioned so as to cover the specimen.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 2, 2021
    Assignee: DISCO CORPORATION
    Inventor: Yoshinobu Saito
  • Patent number: 11143629
    Abstract: Apparatuses, systems, and methods are presented for calibrating an inspection system, particularly a Laser Bond Inspection (LBI) system that identifies a strength of a test structure. The disclosed calibration system comprises a calibration panel, a surface motion sensor, and a processing circuit. The surface motion sensor senses a compression wave generated in the calibration panel responsive to a laser pulse applied by a LBI head to the calibration panel. The processing circuit outputs a calibration result for the laser inspection system responsive to one or more characteristics of the sensed compression wave. The calibration system provides significantly faster calibration results, and thus may be implemented more frequently to improve the accuracy and repeatability of the inspection system.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 12, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Alan F. Stewart, Marc Joel Piehl
  • Patent number: 11047780
    Abstract: A system includes a load actuator, a strain measurement device, and a computing device. The computing device is configured to receive an unconditioned displacement signal from the strain measurement device. The unconditioned displacement signal represents displacement of a specimen under load from the load actuator. The computing device is further configured to split the unconditioned displacement signal into a measurement signal and a control signal. The computing device is further configured to filter the control signal to generate a filtered control signal and control the load actuator based on the filtered control signal. The computing device is further configured to determine a strain on the specimen based on the measurement signal.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: June 29, 2021
    Assignee: Rolls-Royce High Temperature Composites, Inc.
    Inventor: Austin Warmuth
  • Patent number: 10883906
    Abstract: A rut testing apparatus for testing the susceptibility of a pavement specimen to rutting has a specimen holder for supporting the specimen to be tested, a wheel, and a sensor. The specimen holder is arranged to support the specimen from below and to support two opposite ends of the specimen. The specimen holder is arranged to allow the specimen to deform in a lateral direction LD that is transverse to a direction that extends between the opposite ends. The wheel is arranged to move along at least part of the specimen in the direction that extends between the opposite ends. The sensor determines deformation of the specimen in the lateral direction LD.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: January 5, 2021
    Assignee: UNIVERSITY OF CANTERBURY
    Inventor: Mofreh Saleh
  • Patent number: 10859478
    Abstract: A biaxial load test specimen includes a main body and four arms. The main body has a plurality of through-holes aligned along axial directions of two load axes orthogonal to each other. The four arms extend from the main body in the respective axial directions of the load axes. Each of the arms has a plurality of slit grooves extending, on respective extensions of the through-holes aligned in the axial directions, along the respective axial directions.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: December 8, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoichi Iwamoto, Kaina Teshima, Kohei Yamamoto, Hiroyuki Fujiwara
  • Patent number: 10656075
    Abstract: A method of laser bond inspection is provided. The method includes applying a thermochromatic energy-absorbing material to an inspection site of a test article. The method includes delivering a first amount of energy to the inspection site using a laser. The first amount of energy generates stresses in the test article. The method includes absorbing the first amount of energy into the thermochromatic energy-absorbing material to produce an observable thermal response that correlates to the first amount of energy.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: May 19, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Morteza Safai, Gary E. Georgeson
  • Patent number: 10553623
    Abstract: A method for non-contact measurement of stress in a thin-film deposited on a substrate is disclosed. The method may include measuring first topography data of a substrate having a thin-film deposited thereupon. The method may also include comparing the first topography data with second topography data of the substrate that is measured prior to thin-film deposition. The method may further include obtaining a vertical displacement of the substrate based on the comparison between the first topography data and the second topography data. The method may also include detecting a stress value in the thin-film deposited on the substrate based on a fourth-order polynomial equation and the vertical displacement.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: February 4, 2020
    Assignee: APPLEJACK 199 L.P.
    Inventors: Wojciech Jan Walecki, Oanh Nguyen
  • Patent number: 9964471
    Abstract: A wheel-tracking test device includes a housing, one or more test chambers in the housing, one or more load arm assemblies, and a drive mechanism. Each test chamber is configured to receive and hold one or more asphalt test samples. Each load arm assembly includes a weighted loading arm and a wheel rotatably connected to the loading arm. The drive mechanism is configured to move the load arm assembly from a load position in which the wheel is on a test sample held in the test chamber and a rest position by retracting the loading arm such that the wheel is lifted off the test sample.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: May 8, 2018
    Assignees: INSTROTEK, INC., MATEST S.P.A. UNIPERSONALE
    Inventors: Ali Regimand, Danilo Guerini, Lawrence H. James, Paola Maestroni, Andrew Thomas LaCroix
  • Patent number: 9944503
    Abstract: A system for transporting and testing a crane includes a crane, a transporting frame and a foundation. A first connecting mechanism is provided for establishing a releasable connection between the crane and the transporting frame. A second connecting mechanism is provided for establishing a releasable connection between the transporting frame and the foundation. In a starting state, the crane, the transporting frame and the foundation are separate from one another. In a transporting state, the crane is connected to the transporting frame. In a testing state, the crane is connected to the transporting frame and the transporting frame is connected to the foundation. The invention also relates to a corresponding method. The invention makes it possible for the crane to be assembled, and tested, at a site remote from an offshore wind turbine.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: April 17, 2018
    Assignee: SENVION SE
    Inventors: Martin Winter, Patrick Friebe, Daniel Reinhardt, Jens Nielsen, Ronny Obermüller
  • Patent number: 9810612
    Abstract: A low-cycle fatigue test rig reproduces bearing of turbine engine parts. The test rig includes a support member that is fixed to a frame and defines at least one bearing surface. A test piece is connected to a traction element for loading the test piece so that the test piece bears against the at least one bearing surface of the support member. The at least one bearing surface is supported by a support element that is mounted to rotate about a first axis on the support member. The test piece is connected to the traction element for articulation around a second axis that is perpendicular to the first axis. The test rig is configured to enable adjusting and locking the support element and the test piece in positions around the above-mentioned axes.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: November 7, 2017
    Assignees: SNECMA, TURBOMECA
    Inventors: Jean Vincent Manuel Meriaux, Guillaume Puech, Juan-Antonio Ruiz-Sabariego, Nathalie Serres, Laurent Houze
  • Patent number: 9664648
    Abstract: The present invention relates to a method for determining mechanical parameters of a cementitious system, on the basis of time, and on the basis of the fineness of the cementitious system, pressure and/or temperature, representative of the in situ conditions found in wellbores. The initial composition of the cementitious system, the fineness ? thereof and the speed of the compression waves on the basis of time Vp(t) are the only input data of the method.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: May 30, 2017
    Assignee: Total SA
    Inventors: Axel-Pierre Bois, Andre Garnier, Jean-Benoit Laudet, Manh-Huyen Vu, Siavash Ghabezloo, Jean Sulem
  • Patent number: 9588041
    Abstract: A system for determining a material property at an interface between a first layer and a second layer includes a transmitter outputting electromagnetic radiation to the sample, a receiver receiving electromagnetic radiation that was reflected by or transmitted though the sample, and a data acquisition device. The data acquisition device digitizes the electromagnetic radiation to yield waveform data. The waveform data represents the radiation reflected by or transmitted though the sample. The material property to be determined is generally the adhesive strength between the first and second layers.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: March 7, 2017
    Assignee: PICOMETRIX, LLC
    Inventors: Jeffrey S. White, Gregory D. Fichter, Irl Duling, David Zimdars
  • Patent number: 9261444
    Abstract: The present disclosure relates to a system for testing the strength of a bonded joint between at least two components, wherein the system includes at least one element force energizer that creates an actual mechanical stress in the bonded joint when actuated, wherein the element force energizer is coupled with the at least two components. The system further includes an energy interface that is connectable to a power source, the energy interface being in electrical communication with the at least one element force energizer, and a sensor that detects the actual mechanical stress or strain in the bonded joint. The system may also include a recording device that records and/or transmits the detected mechanical stress or strain in the bonded joint. In one example, the element force energizers include piezoelectric materials.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: February 16, 2016
    Assignee: The Boeing Company
    Inventors: Richard M. Sutherland, Eugene A. Dan-Jumbo
  • Patent number: 9151154
    Abstract: An apparatus for preparing and testing a sample of a subterranean formation, the apparatus comprising a pressure cell defining an interior volume, the pressure cell comprising a first end member comprising a channel formed therein, a second end member, a wall member positioned between the first end member and the second end member, and a sample cell positioned within the interior volume of the pressure cell, wherein the channel of the first end member fluidly connects with a first point external of the pressure cell, with a second point external of the pressure cell, and with the sample cell.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: October 6, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David Leon Meadows
  • Patent number: 9146183
    Abstract: The present invention relates to test weights for testing the load capacity of a crane. More specifically, the present invention provides a novel system and approach simple and efficient crane load testing using solid weights. Previous methods of testing crane load capacity often require significant time to configure and reconfigure the apparatus. The system of the present invention increases efficiency by significantly reducing this configuration time. The system comprises a plurality of stackable test weights, and a lifting fixture specifically designed for the system. A cantilever structure located on two opposing sides of the test weight enables the lifting fixture to first be quickly secured underneath of said structure, and then lift that particular unit as well as any units surmounting that unit. A novel block lock system integrated into each weight unit enables self-alignment and securing of each weight as it is placed onto the weight stack.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: September 29, 2015
    Inventor: Jeffrey O'Rourke
  • Patent number: 9128011
    Abstract: A method and device for objectively determining extraction loads for, or verifying capability to withstand loads for fasteners, sealants, or overlying materials attached to an underlying material. The method provides for a repeatable and objective test for comparing extraction load and load bearing capability of fasteners, sealants, or overlying materials attached to an underlying material to standards for the same. The portable device provides for testing various types of fasteners, sealants, or overlying materials attached to an underlying material in a repeatable and easily usable manner. The device comprises a means of generating, applying, and measuring load forces, and providing the data therefrom.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: September 8, 2015
    Assignee: ASSOCIATE PROFESSIONAL ENGINEERING & CONSTRUCTION LLC
    Inventor: Matthew Bernard Phelps
  • Patent number: 8984955
    Abstract: In a method of arresting fatigue crack growth in a metal member, a hole is formed beside a tip portion of a fatigue crack with respect to a crack extension direction, in a metal member body, in which the fatigue crack occurs due to an action of applied cyclic tensile stress. Then, a press-fit object being higher in stiffness than the metal member body and larger in external size than the hole is press-fitted into the hole. Compressive stress is made to act on the tip portion of the fatigue crack from directions lateral to the crack extension direction.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: March 24, 2015
    Assignee: IHI Corporation
    Inventor: Masashi Mouri
  • Patent number: 8978479
    Abstract: Provided is a viscoelasticity measuring apparatus in which an undesirable sample shape change such as a buckle caused as a result of thermal expansion of a sample is eliminated so as to prevent a deformation in a displacement detector direction due to the thermal expansion and a bending of the sample between a sample grasping member and a chuck, to thereby improve accuracy of measurement. In the viscoelasticity measuring apparatus, a thin part is provided in a part of an elastic arm for holding the sample so as to be easily deformed by a thermal expansion force of the sample. Thus, an undesirable shape change such as the buckle generated when the sample is expanded thermally is effectively eliminated, and necessary stiffness is maintained with respect to a load of the sample and hence accuracy of measurement is improved.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: March 17, 2015
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Nobuaki Okubo, Kengo Kobayashi, Toshihiko Nakamura, Hirohito Fujiwara
  • Patent number: 8966993
    Abstract: Method and apparatus for a piezoelectric apparatus are provided. In some embodiments, a method for fabricating a piezoelectric device may include etching a series of vertical trenches in a top substrate portion, depositing a first continuous conductive layer over the trenches and substrate, depositing a continuous piezoelectric layer over the first continuous conductive layer such that the piezoelectric material has trenches and sidewalls, depositing a second continuous conductive layer over the continuous piezoelectric layer, etching through the vertical trenches of the first continuous conductive layer, continuous piezoelectric layer, second continuous conductive layer, and top substrate portion into a bottom substrate portion, etching a series of horizontal trenches in the bottom substrate portion such that the horizontal trenches and vertical trenches occupy a continuous free space and allow movement of a piezoelectric MEMS device created by the above method in three dimensions.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: March 3, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Jeffrey S. Pulskamp, Ronald G. Polcawich
  • Publication number: 20150053017
    Abstract: Methods are disclosed relating to the assessment of fatigue damage in objects that include for example, subjecting a fatigued object to a cyclic mechanical stress, measuring a rate of temperature rise in the fatigued object, and assessing a degree of fatigue of the fatigued object based on the rate of temperature rise in the fatigued object. Methods of measuring internal structural characteristics and methods of correlating fatigue damage to results from excitation tests are also taught.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Inventors: Michael M. Khonsari, Mehdi Amiri
  • Publication number: 20150059026
    Abstract: A method of measuring surface curvature comprises forming an intensity distribution defined by Fresnel diffraction, wherein said intensity distribution is formed by electromagnetic radiation reflected from a surface, obtaining data for the intensity distribution and determining information relating to the curvature of the surface using the obtained data.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 26, 2015
    Applicant: UCL Business PLC
    Inventors: Rodolfo Hermans, Gabriel Aeppli
  • Publication number: 20150050893
    Abstract: Damage to conductive material that serves as bridging connections between conductive structures within an electronic device may result in deficiencies in radio-frequency (RF) and other wireless communications. A test system for testing device structures under test is provided. Device structures under test may include substrates and a conductive material between the substrates. The test system may include a test fixture for increasing tensile or compressive stress on the device structures under test to evaluate the resilience of the conductive material. The test system may also include a test unit for transmitting RF test signals and receiving test data from the device structures under test. The received test data may include scattered parameter measurements from the device structures under test that may be used to determine if the device structures under test meet desired RF performance criteria.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: Apple Inc.
    Inventors: Joshua G. Nickel, Chun-Lung Chen, Tseng-Mau Yang, Nicholas G. Merz, Robert W. Schlub, Boon W. Shiu, Erica J. Tong
  • Patent number: 8955386
    Abstract: A system measures the load on a bridge when being used by a vehicle. The system has at least one measuring module with a plurality of measuring channel units which have associated separate sensors, preferably DMS sensors, which are intended to be fitted to the bridge. The sensors transmit measurement signals, preferably by wire, to the measuring channel units which are associated with each of the sensors and derive digital measurement data from the measurement signals. The measuring module also has an associated transmission interface in order to transmit the digital measurement data to a remote evaluation unit.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: February 17, 2015
    Inventor: Markus Petschacher
  • Publication number: 20150040679
    Abstract: A wheel testing system and method are provided that simulates realistically conditions likely to be encountered during operation of vehicle wheels, especially powered drive wheels and wheel-connected structures. The system may include an integral support frame designed to adjustably mount wheels or wheel-connected structures to be tested, a load motor drivingly connected to an inertial load, and an adjustable mounting sled configured to adjustably mount a test wheel or a wheel-connected structure with an hydraulic system actuatable to adjust the location of the test wheel relative to the inertial load to vary or fix the load on the test wheel desired. Speed of the test wheel can be varied or fixed by controlling the speed of the load motor. System measurement and data collection electronics measure a range of selected wheel parameters and gather data for transmission to a processor or non-transitory storage medium for processing and evaluation.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 12, 2015
    Inventors: Jonathan Sidney Edelson, Scott Perkins, Robert M. Sweet, Isaiah W. Cox
  • Patent number: 8950267
    Abstract: Methods and apparatus for detecting cross-linking in a polymer, wherein, in some exemplary implementations, the polymer may constitute an encapsulation layer for a photovoltaic module. In one example, a polymer sample is physically deformed, and sample information relating to a relaxation or a recovery of the polymer sample in response to the deformation is obtained. The sample information is then compared to reference information relating to cross-linking of the polymeric material so as to determine a degree of cross-linking in the tested polymer sample. In one aspect, such a determination of polymer cross-linking is achieved without adversely affecting a relevant functionality of the polymer/encapsulation layer (e.g., without destruction to the polymer/encapsulation layer).
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: February 10, 2015
    Assignee: Fraunhofer USA, Inc.
    Inventors: Dan Doble, Rafal Mickiewicz, John Lloyd, Marco Jaeger, William F. Hartman
  • Patent number: 8950268
    Abstract: A material testing machine measuring strain of a tube-like test piece, comprising: a plurality of radial direction displacement detection units; an axis direction displacement detection unit; and a calculation unit that calculates the strain, wherein: each of first and second displacement meters of at least one of the radial direction displacement detection units comprises: a needle; a fixed frame; a movable frame; and a displacement sensor having a body part and a contact protruding from the body part, and wherein a tip of the contact contacts a stopper plate; the needle is oriented in the radial direction of the test piece; the needle protrudes from an end of the movable frame; displacement in the radial direction of the test piece is detected by detecting a moving amount of the needle; and the calculation unit calculates a curvature radius in the tube axis direction of the test piece.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: February 10, 2015
    Assignee: Kokusai Kiesokuki Kabushiki Kaisha
    Inventor: Tomotaka Ota
  • Patent number: 8931349
    Abstract: The invention relates to a test apparatus and a test method for the testing of samples by mechanical action upon the sample. The test apparatus comprises a sample region and a cylinder, which is movable in relation to the sample region, and at least two linear drives, each with a first drive part, which is fixed in place with respect to an end of the sample region, which faces it, and with a second drive part, which is movable in relation to the first drive part and is driven and which is fixed in place with respect to the cylinder. Advantageously, the movement axes of the linear drives run parallel to the longitudinal axis of the cylinder. In a preferred embodiment, a test set-up of the test apparatus has a rigid load frame.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: January 13, 2015
    Assignee: Thelkin AG
    Inventor: Thorsten Schwenke
  • Publication number: 20150007667
    Abstract: The invention relates to a test piece for determining a specific material property of a fiber-reinforced plastic composite under applied mechanical loading. According to the invention, it is provided that an inner core is incorporated in a composite with the fiber-reinforced plastic, the inner core being widened in a transverse axis in relation to the mechanical load in such a way that the composite with the inner core has a greater buckling stability than a comparative body, such as the composite without the inner core, and that the inner core is formed in such a way that an influence on the specific material property to be determined of the fiber-reinforced plastic composite lies in a range of acceptance.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 8, 2015
    Inventor: Ingo Hesse
  • Patent number: 8925389
    Abstract: There are provided a method for measuring strength of a chemically strengthened glass, that reflects the state of actual drop fracture more appropriately, and can reproduce slow cracking in the chemically strengthened glass, a method for reproducing cracking of a chemically strengthened glass, and a method for producing a chemically strengthened glass. Load is applied to an indenter having a tip formed into a sharp shape having a minimum angle ?min of cross-section of less than 120°, the indenter is pushed into a chemically strengthened glass under a static load condition such that the tip is vertical to a surface of the chemically strengthened glass, and the load when the chemically strengthened glass cracks is measured.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 6, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Shusaku Akiba, Takahiro Sakagami, Kazutaka Ono
  • Publication number: 20150000419
    Abstract: A sensor device includes a sensor element which is formed by laminating a piezoelectric substance and an electrode, a first case and a second case which house the sensor element therein, and a pressing portion which presses the sensor element in the lamination direction of the piezoelectric substance and the electrode via the first and second cases.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: Kazuhiro TSUCHIYA, Toshiyuki KAMIYA
  • Publication number: 20140366638
    Abstract: The present invention generally relates to a method for determining the dynamic viscoelastic properties of cells, more particularly to a method for rapidly determining the dynamic viscoelastic properties of healthy and unhealthy cells by determining the phase shift be the application of a modulating force to the cells and the cells' response to the modulating force.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 18, 2014
    Inventors: Tobias Sawetzki, David W.M. Marr, Charles Eggleton, Sanjay Desai
  • Patent number: 8888363
    Abstract: A temperature measuring device, which is used in a continuous casting machine, measures the surface temperature of a part or all of a cast slab in a width direction of the cast slab, which is drawn from a mold and conveyed by rollers, in a secondary cooling zone of the continuous casting machine. The temperature measuring device includes a support member that is installed on the side of roller support parts by which the rollers are rotatably supported; an arm member of which a proximal portion is rotatably mounted on the support member; and a radiation thermometer which is provided at a distal end portion of the arm member and of which a light receiving opening is disposed at a position corresponding to a height in the range of 1.0 to 4.5 m from the surface of the cast slab.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 18, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kazunori Ueda, Takeshi Okawa, Shinichi Fukunaga
  • Patent number: 8875585
    Abstract: Apparatuses, systems, or methods for testing a mattress system are described herein. Apparatuses and systems can include a robotic arm assembly and a mannequin to simulate natural human motion or movements that occur during use of a mattress system. The apparatuses and systems described herein can test a mattress system for firmness and/or durability. Also described herein are methods for testing a mattress system with a robotic arm assembly and a mannequin.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: November 4, 2014
    Assignee: Sealy Technology, LLC
    Inventor: Brad McCollum
  • Publication number: 20140318265
    Abstract: A testing apparatus for a strut having a cylinder portion and a rod portion is provided. The testing apparatus includes a frame assembly, a loading mechanism, and a rotating assembly. The frame assembly includes a retainer portion configured to hold the cylinder portion of the strut about a first axis. The loading mechanism includes two actuators angularly disposed between the frame assembly and the rod portion of the strut. The actuators can cooperatively load the strut along the first axis. The rotating assembly is coupled between the frame assembly and the rod portion of the strut. The rotating assembly can rotate the rod portion relative to the cylinder portion.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Applicant: Caterpillar Inc.
    Inventors: Eric P. Gengler, Christopher Paul Buckley, Thomas Kos
  • Publication number: 20140318264
    Abstract: A vehicle test apparatus includes: a test article installation vehicle body to which four axles corresponding to four wheels that are a left front wheel, a right front wheel, a left rear wheel and a right rear wheel are attached, and on which a test article is installed; a first motion base that supports the test article installation vehicle body, and that allows the test article installation vehicle body to make motions of six degrees of freedom; and four second motion bases each of which supports a corresponding one of the axles, and each of which allows a corresponding one of the axles to make motions of six degrees of freedom.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 30, 2014
    Applicant: JTEKT CORPORATION
    Inventors: Masaharu TAGAMI, Tomoyasu KADA, Ryouhei HAYAMA, Takeshi WATANABE, Aris MAROONIAN
  • Patent number: 8863584
    Abstract: Provided is a material testing system that can prevent the influence of noise to obtain an adequate test result by reducing a variation in test force in a plastic region. The material testing system is provided with: a displacement meter 15 that measures a displacement in distance between gage marks on a test piece 10; measuring means adapted to measure a displacement in rotational angle of a servo motor 31 that moves a crosshead 13; a computing part 48 that successively computes a change ratio R that is a ratio between the displacement in distance and the displacement in rotational angle; and a feedback control part 49 that, on the basis of the change ration R, performs feedback control of the servo motor 31, wherein when the change ratio R exceeds a setting value, a value of a parameter K used for the feedback control is changed to a value that makes the influence of the feedback control small.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: October 21, 2014
    Assignee: Shimadzu Corporation
    Inventor: Toshiyuki Kawano
  • Patent number: 8857265
    Abstract: An apparatus for orienting a test article relative to a loading axis includes a first member and a second member. The first member may have a concave surface. The second member may have a convex surface configured to engage the concave surface in a manner such that the second member is movable relative to the first member. The test article may be coupled to one of the first and second members such that relative movement thereof facilitates general alignment of the test article with the axial loading axis. The leveling apparatus may further include a plurality of positioning devices configured to facilitate adjustment of an orientation of the second number relative to the first member such that the alignment of the test article may be adjusted.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: October 14, 2014
    Assignee: The Boeing Company
    Inventor: Jose Rafael Silva
  • Publication number: 20140298918
    Abstract: An apparatus, method, and material wherein the material's viscoelastic and/or fatigue life may be altered by application of a secondary tuning electromagnetic field or a selected temperature, and the material's viscoelastic and/or fatigue properties are measured by a mechanical response of the material caused by applying a primary driving electromagnetic field.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 9, 2014
    Inventors: Dennis M. Kochmann, Charles S. Wojnar, Jean-Briac le Graverend
  • Patent number: 8839678
    Abstract: A test apparatus configured to test connectors is provided. The test apparatus may include a fixture that holds a first connector and an actuator that holds a mating second connector. The actuator may axially displace the second connector in and out of engagement with the first connector. A compliance mechanism, which may be coupled to the fixture or the actuator, may provide one of the connectors with compliance in order to facilitate alignment of the connectors during engagement and disengagement thereof. The compliance mechanism may allow movement of one of the connectors perpendicularly to the actuation axis and/or angular movement about the actuation axis while preventing axial movement within the compliance mechanism. Accordingly, forces associated with engagement and disengagement of the connectors measured by a load cell may more closely resemble actual forces experienced by a user during use of the connectors.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: September 23, 2014
    Inventors: Patrick Kessler, Michael A. Damianakis
  • Publication number: 20140260655
    Abstract: A ski-binding testing apparatus that includes an axial-force indicator that indicates when a force applied to the testing apparatus has an axial component that is outside of an acceptable range. In one example, the apparatus includes a simulated foot, a force-transmitting structure coupled to the simulated foot, a handgrip coupled to the force-transmitting structure, and an axial-force indicator that indicates when a forced applied by a user to the handgrip exceeds a predetermined threshold. In one embodiment, the force-transmitting structure can include a torque wrench that includes a torque beam, the handgrip, and axial-force indicator. The torque wrench can be provided with a conventional work-engagement end, such as a socket-type receiver to allow the axial-force-indicating functionality to be used outside the context of a ski-binding testing apparatus.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Vermont Ski Safety Equipment, Inc.
    Inventor: Carl F. Ettlinger
  • Publication number: 20140260654
    Abstract: A method is provided for carrying out finite element analysis. The method includes the step of meshing a domain under a field with a plurality of finite elements. Each overlapping finite element is detected and a stiffness contribution due to the plurality of finite elements is calculated. A stiffness contribution due to the overlapping finite elements is also calculated and combined with the stiffness contribution due to the plurality of finite element.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Krishnan Suresh, Joshua Danczyk