Volume Or Rate Of Flow Patents (Class 73/861)
  • Patent number: 7297280
    Abstract: The measurement of blood flow in a dialysis shunt is obtained by injection of an indicator material into a venous line leading from dialysis equipment to the shunt. The blood flow in an arterial line leading from the shunt at a location downstream of the venous line to the dialysis equipment is monitored by an arterial line sensor for the presence of the indicator material. A detector connected to the sensor provides a dilution curve in response to the presence of the indicator material and the blood flow in the shunt is calculated from the area under the dilution curve. The locations of the arterial and venous lines in the shunt can be reversed to obtain a measurement of blood recirculation from the venous line into the arterial line.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: November 20, 2007
    Assignee: Transonic Systems, Inc.
    Inventors: Nikolai M. Krivitski, David R. MacGibbon
  • Patent number: 7296482
    Abstract: A flowmeter suitable for replacement of differential pressure flowmeters comprising: a primary flow sensor, sensor electronics for proving a measurement signal; a signal processing unit for determining the flow, which can be set to produce a signal proportional to the flowrate or the square of the flowrate; and an output signal generator for generating an output signal proportional to the signal of the signal processing unit.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: November 20, 2007
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Joseph W. Schaffer, Dean Sylvia
  • Patent number: 7295933
    Abstract: A configurable multi-function flow measurement apparatus is provided that can selectably function to measure the speed of sound propagating through a fluid flowing within a pipe and/or to measure pressures disturbances (e.g. vortical disturbances or eddies) moving with a fluid to determine respective parameters of the flow propagating through a pipe and detects the health of an industrial process. The configurable flow measurement device can also be selectable to function as a system diagnostic meter that provides a diagnostic signal indicative of the health of the industrial process, namely health of pumps, valves, motors and other devices in an industrial flow loop. The apparatus includes a sensing device that includes an array of strained-based or pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine desired parameters. In response to a remote or local configuration signal, a control logic selects the desired function of the flow measurement apparatus.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: November 13, 2007
    Assignee: CiDRA Corporation
    Inventors: Daniel L. Gysling, Alan D. Kersey
  • Publication number: 20070255514
    Abstract: In an ultrasonic flow meter for measuring a flow rate of a fluid flowing through a conduit by detecting a propagating time difference between a forward propagating time of an ultrasonic wave propagating within the conduit in a forward direction and a backward propagating time of an ultrasonic wave propagating within the conduit in a backward direction, forward and backward ultrasonic wave signals generated by ultrasonic vibrating elements are sampled to derive forward and backward digital data series x and y, which are stored in a memory, the forward and backward digital data series x and y are read out of the first and second memory units and total sums of absolute difference values between the forward and backward digital data series x and y are calculated, while data positions of these backward and forward digital data series x and y are relatively shifted, a shift amount of data positions at which a total sum of absolute difference values becomes minimum is detected, an ultrasonic propagating time differe
    Type: Application
    Filed: November 2, 2006
    Publication date: November 1, 2007
    Applicant: TOKYO KEISO CO., LTD
    Inventors: Tokio Sugi, Tadao Sasaki
  • Publication number: 20070250276
    Abstract: A temperature compensating fluid flow sensing system is provided that comprises a resistance-based sensor element that is included in a constant voltage anemometer circuit configured to establish and maintain a command voltage across the first sensor element and to provide a CVA output voltage corresponding to the resistance change in the first sensor element due to heat transfer between the first sensor element and the fluid. A controller is configured to establish the command voltage based on a desired overheat across the sensor and an actual overheat across the first sensor element. A PDR module is configured to determine at least one fluid flow parameter and an actual overheat value based at least in part on the CVA output voltage and to transmit to the controller the actual overheat for use by the controller in updating the command voltage.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 25, 2007
    Inventors: Arun S. Mangalam, Siva M. Mangalam
  • Patent number: 7280927
    Abstract: A method and system for providing a linear signal from a flow transducer. A non-linear raw signal can be obtained from a mass flow transducer. An approximated error comprising a discrete sinusoidal function incremented by a variable and selectable omega value can then be subtracted from the non-linear raw signal, in order to provide a subtracted result and reduce an error range thereof. The linear signal can then be obtained from the subtracted result in order to linearize a raw output from the flow transducer. A user is thus permitted to tune a frequency increment associated with the variable and selectable omega value in order to reduce the error range thereof. Linearized airflow and liquid flow sensor outputs can thus be generated by allowing a user the freedom to tune the frequency increment depending upon the user's flow range for reducing errors.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: October 9, 2007
    Assignee: Honeywell International Inc.
    Inventor: Anthony M. Dmytriw
  • Patent number: 7275447
    Abstract: A method and apparatus for determining an initial flow rate in a conduit is disclosed. A known change is made to the flow to be measured, resulting changes (or values corresponding to these changes), or relative changes in the flow to be measured are monitored and the initial flow in the conduit is calculated from the value of the known change and monitored changes. Devices to practice the method include catheters having one or two sensors and one or two sites for introducing the volume change.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: October 2, 2007
    Assignee: Transonic Systems, Inc.
    Inventors: Nikolai M. Krivitski, Cornelis J. Drost
  • Patent number: 7277802
    Abstract: A method and system for providing a linear signal from mass flow transducer approximates the error from the original raw signal using discrete sine functions and subtracts the approximated error from the original raw signal. The method and system can be implemented using an ASIC (Application Specific Integrated Circuit) mated with a raw mass flow transducer. The method and system for linearizing the signal can be contained in the ASIC, and allows for improved accuracy in the linear signal with few coefficients and mathematical steps.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: October 2, 2007
    Assignee: Honeywell International Inc.
    Inventor: Anthony M. Dmytriw
  • Patent number: 7272973
    Abstract: Methods and systems are provided for evaluating subsurface earth oil and gas formations. More particularly, methods and systems are provided for determining reservoir properties such as reservoir transmissibilities and average reservoir pressures of a formation layer or multiple layers using fracture-injection/falloff test methods. The methods herein may use pressure falloff data generated by the introduction of an injection fluid at a pressure above the formation fracture pressure in conjunction with a fracture-injection/falloff test model to analyze reservoir properties. The fracture-injection/falloff test model recognizes that a new induced fracture creates additional storage volume in the formation and that a fracture-injection/falloff test in a layer may exhibit variable storage during the pressure falloff, and a change in storage may be observed at hydraulic fracture closure.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: September 25, 2007
    Assignee: Halliburton Energy Services, Inc.
    Inventor: David P. Craig
  • Patent number: 7273063
    Abstract: Performance of mass flow controller may be vulnerable to pressure transients in a flow path to which the controller is coupled for the purpose of controlling the fluid flow. A system and method are provided for reducing or eliminate performance degradations, instabilities, and/or inaccuracies of a mass flow controller caused by changes in the pressure environment. In particular, a method and system are provided for compensating for pressure transients in the pressure environment of a flow path and mass flow controller.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: September 25, 2007
    Assignee: Celerity, Inc.
    Inventors: John Michael Lull, Chiun Wang, Joseph A. Saggio, Jr.
  • Patent number: 7275013
    Abstract: Methods and systems are described for a system for obtaining information regarding a flow. These methods and systems comprise a signal generator configured to generate an alternating current signal at a carrier frequency and a transformer arranged to receive the generated signal, wherein the transformer and carrier frequency are selected so that the generated signal resonates at the carrier frequency. The alternating signal is then used to cause plasma to form across a gap between two electrodes, wherein the voltage drop across the gap is directly proportional to the flow's velocity. This voltage may then be measured to determine the flow velocity.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: September 25, 2007
    Assignee: University of Notre Dame DuLoc
    Inventors: Eric Matlis, Thomas Corke, Sivaram Gogineni
  • Patent number: 7270013
    Abstract: The present invention includes methods of determining the volume of liquid dispensed by a dispenser. Initially, a refractive index analysis is preformed on a first liquid that has been dispensed from the dispenser in question. From the refractive index analysis, information is obtained about the volume of first liquid dispensed. The invention also includes methods for verifying the volumetric accuracy of a dispenser. The methods include dispensing a first liquid having a known refractive index into a vessel having a second liquid with a known volume and a known refractive index to form a test mixture. The refractive index of the test mixture is measured and then correlated with the refractive index of the first liquid to obtain information about the volume of first liquid dispensed. The dispensed volume is then compared to the theoretical volume of liquid dispensed by the dispenser.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 18, 2007
    Assignee: Streck, Inc.
    Inventors: Balwant S. Bhullar, Daniel T. Bourne
  • Publication number: 20070186678
    Abstract: A pulse running time filling level sensor includes a sampling device for sampling an IF signal at discrete instants and for converting the sampling values into digital sampling values, and a digital signal processing device for subsequent processing of the digital sampling values by calculating at least one new value characterizing the IF curve from respectively exactly two digital sampling values.
    Type: Application
    Filed: January 23, 2007
    Publication date: August 16, 2007
    Inventors: Karl Griessbaum, Josef Fehrenbach, Roland Welle, Juergen Haas
  • Patent number: 7252014
    Abstract: An instrument and method for measuring the volume of a hermetically sealed, variable volume, pressure conforming container. The instrument includes a needle, a vacuum pump, a mass flow rate sensor and an integrator. The needle has a lumen operable for sealingly perforating a container and thereby placing the lumen of the needle in fluid communication with a retention chamber defined by the container. The vacuum pump evacuates the gaseous content from the retention chamber through the lumen defined by the needle and past a mass flow rate sensor for sensing mass flow rates pulled through the lumen and transmitting corresponding mass flow rate signals over time to the integrator. The integrator is programmed to integrate the received mass flow rate signals over time through achievement of an evacuated retention chamber to generate a total mass value, and calculate a volume from the total mass value employing the Ideal Gas Law.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: August 7, 2007
    Assignee: Mocon, Inc.
    Inventors: Daniel W. Mayer, Timothy A. Ascheman
  • Patent number: 7254523
    Abstract: A selectively reduced bi-cubic interpolation on quadrilateral grids for level set re-distancing improves finite-difference-based ink-jet simulation. The “bi-cubic” nature of the interpolation helps the scheme conserve droplet mass. The “selectively reduced” logic prevents the higher-order simulation algorithm from introducing new instability factors.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: August 7, 2007
    Assignee: Seiko Epson Corporation
    Inventor: Jiun-Der Yu
  • Patent number: 7251591
    Abstract: A consistent back pressure formulation is introduced into ink-jet simulation models and algorithms to solve an instability problem that occurs as the head of an ink droplet reaches the end of the solution domain during simulation. The consistent back pressure formulation is obtained in a way that is consistent with the idea of interface smearing. Formulas for calculating the pressure boundary condition on quadrilateral grids are disclosed. An ink-jet simulation example is given to demonstrate the improved models and algorithms.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: July 31, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Jiun-Der Yu, Shinri Sakai
  • Patent number: 7249524
    Abstract: A flow rate and volume sensor for determining the rate and volume of fluid flowing through an apparatus, such as an apparatus for filtering and/or conditioning and/or purifying fluid, such as water, and for indicating when a predetermined volume of fluid has flowed through the apparatus to, for example, signal when a cartridge filter housed in an apparatus for filtering and/or conditioning and/or purifying fluid should be replaced.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: July 31, 2007
    Inventors: Richard T. Williams, Carl Beiswenger, Brian D'Archangelo, Gene Toner
  • Patent number: 7246529
    Abstract: An oscillating vane actuator for active control of fluid flow over a surface includes a pivoted vane surrounded by a wedge-shaped chamber, and first and second conduits with openings adjacent the surface. The actuator also includes a rotating shaft with a connecting rod to actuate the vane in a oscillatory manner. As the vane travels in one direction, fluid is forced out from the chamber through the first conduit and opening into the fluid stream adjacent the surface, while fluid is simultaneously drawn in through the second opening and conduit into the opposite side of the chamber. Similarly, when the vane travels in the opposite direction, fluid is forced out through the second conduit and opening into the fluid stream adjacent the surface, while fluid is simultaneously drawn in through the first opening and conduit.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: July 24, 2007
    Assignee: The Boeing Company
    Inventor: Arthur Gregory Powell
  • Patent number: 7237440
    Abstract: A flow measurement apparatus is provided that combines the functionality of an apparatus that uses strain-based sensors and ultrasonic sensors to measure the speed of sound propagating through a fluid flowing within a pipe, and measure pressures disturbances (e.g. vortical disturbances or eddies) moving with a fluid to determine respective parameters of the flow propagating through a pipe. The apparatus includes a sensing device that includes an array of pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine desired parameters and an ultrasonic meter portion to measure the velocity and volumetric flow of the fluid. In response to an input signal or internal logic, the processor can manually or dynamically switch between the pressure sensors and ultrasonic sensors to measure the parameters of the flow.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: July 3, 2007
    Assignee: CiDRA Corporation
    Inventors: Daniel L. Gysling, Robert Maron, Christian O'Keefe
  • Publication number: 20070144233
    Abstract: A diaphragm is uniformly and finely deformed by compressed air supplied from an electro-pneumatic regulator, so that test fluid is supplied in conformity with the deformation of the diaphragm. In this way, a flow quantity of the test fluid supplied from a fluid supply device to a measurement passage is accurately adjusted. Therefore, an accuracy of a flow accuracy check device is improved, and a leakage measurement accuracy at the time of measuring a leakage from a fuel injection valve with a flow measurement apparatus is improved. At the time of measuring the leakage from the fuel injection valve, the diaphragm is stopped at a balanced position where a force of the air supplied from the regulator and a resilient force of the diaphragm is balanced. Therefore, a change in a volume of the measurement passage, which would be otherwise caused by movement of the diaphragm, does not occur.
    Type: Application
    Filed: June 15, 2006
    Publication date: June 28, 2007
    Applicant: DENSO CORPORATION
    Inventors: Tetsuji Kudo, Makoto Yamaguchi, Hiroki Tani
  • Patent number: 7231329
    Abstract: Method and system for generating an elliptic grid in generalized coordinates in two or three dimensions, where one or more decay parameters near a boundary segment of a grid are determined as part of the grid solution, rather than being prescribed initially by a user. The decay parameters may vary with one or more generalized coordinates and determine the rate(s) at which separation distances between adjacent grid lines change as one moves toward or away from a grid boundary segment.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: June 12, 2007
    Assignee: United States of America as Represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventor: Upender K. Kaul
  • Patent number: 7208570
    Abstract: The present invention relates to a method of refining crude tall oil. According to the method, the crude tall oil is fed into a column distiller, where it is separated into desired fractions. The conditions of the column distiller are adjusted on the basis of the composition of the feed and the product flow. According to the present invention, the densities of the crude tall oil fed into the column distiller and of at least one product flow are measured accurately as a function of the temperature. The density values are compared with correlation coefficients derived from the chemical compositions of the flows, coefficients which are obtained on the basis of laboratory analyses made earlier from corresponding flows, by using temperature compensation to specify the correlations, and by taking account of the regular variation in the wood composition of fresh wood according to the annual cycle and, as a result, the compositions of the flows are achieved.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: April 24, 2007
    Assignee: Forchem Oy
    Inventor: Juhani Saviainen
  • Patent number: 7204155
    Abstract: A method and apparatus for gas control is provided. The apparatus may be used for controlling gases delivered to a chamber, controlling the chamber pressure, controlling the delivery of backside gas between a substrate and substrate support and the like. In one embodiment, an apparatus for controlling gas control includes at least a first flow sensor having a control valve, a first pressure sensor and at least a second pressure sensor. An inlet of the first flow sensor is adapted for coupling to a gas supply. A control valve is coupled to an outlet of the flow sensor. The first pressure sensor is adapted to sense a metric indicative of the pressure upstream of the first flow sensor. The second pressure sensor is adapted to sense a metric indicative of the pressure downstream of the control valve.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: John Lane, Ralph H. M. Straube, Chris Melcer
  • Patent number: 7197407
    Abstract: A method and system for monitoring a level of liquid fuel in a tank having a known capacity, wherein the tank fluidly communicates with a fuel supply line through which the fuel is delivered in gaseous form. The method comprises measuring a flow rate of gaseous fuel flowing through the supply line, calculating an expended fuel volume based on the measured flow rate, and determining a remaining liquid fuel level in the tank based on the expended fuel volume and tank capacity. A delivery of liquid fuel to the tank is prompted in response to the remaining liquid fuel level.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 27, 2007
    Assignee: Fisher Controls International LLC.
    Inventors: Kenneth R. Schimnowski, David E. Woollums, Jeffrey L. Cole, Richard J. Vanderah
  • Patent number: 7174791
    Abstract: A fan powered by a controlled external energy source and a flow measurement device measure the airflow exiting or entering grilles/registers of an HVAC system without impeding the airflow being measured. A flow straightening element is preferably employed to overcome any effects of a non-uniform or swirled airflow profile on the fan. Preferably, the RPM of the fan is measured to determine the airflow. The RPM/flow calibration of the fan is insensitive to pressure differentials or the fan is a pressure-sensitive fan submitted to appropriate pressure differentials. Alternatively, the voltage or current supplied to the external energy source is used to determine the airflow. Finally, the pressure differential across the flow straightening element can be measured to determine airflow, eliminating the impact of pressure differential across the flow measurement device and fan.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: February 13, 2007
    Assignee: Carrier Corporation
    Inventors: Mark Peter Modera, Robert Hageman, Brian Farmer
  • Patent number: 7171852
    Abstract: A tracking assembly and method for tracking the operation of a rotary gas meter that has a driven member includes a connecting member, a gear assembly and a mechanical counter. The connecting member is adapted to be coupled to the driven member. The gear assembly is adapted to be coupled between the connecting member and the mechanical counter. The mechanical counter is used to count a value that is directly proportional to the number of rotations of the driven member when the connecting member is coupled to the driven member. The value provided by the mechanical counter is multiplied by a conversion factor such that the associated volume of gas displaced by the gas meter can be determined.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: February 6, 2007
    Assignee: Romet Limited
    Inventors: Andrew Smich, John Z. Michalak
  • Patent number: 7174263
    Abstract: A flow verifier for in-situ verification of a device under test (DUT), including an inlet connectable to a DUT, an outlet connectable to a vacuum pump for drawing gas through the DUT and the flow verifier, a vessel having a predetermined volume, diffusive media connecting the inlet to the vessel, an outlet valve connecting the vessel to the outlet for controlling flow from the vessel to the outlet, at least one temperature sensor operatively connected to the vessel for providing temperature measurements from within the vessel, and a pressure transducer operatively connected to the vessel for providing pressure measurements from within the vessel.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: February 6, 2007
    Assignee: MKS Instruments, Inc.
    Inventors: Ali Shajii, Daniel Alexander Smith
  • Patent number: 7168334
    Abstract: Apparatus for measuring a property of a fluid is provided including a tube for retaining the fluid, the tube including a lateral access opening and a domed portion including a sealing surface on the outside wall of the tube surrounding the lateral access opening and a sensor sealingly disposed on the sealing surface surrounding the lateral access opening in the tube for direct contact with the fluid in the tube for sensing the property of the fluid in the tube.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: January 30, 2007
    Assignee: Gambro Lundia AB
    Inventor: Johan Drott
  • Patent number: 7165463
    Abstract: A method is provided for determining Young's modulus and, if desired, Poisson's ratio of a coating on a substrate wherein load-displacement indentation data in the elastic region (either elastic loading or unloading) generated using an indenter is analyzed to interpret the elastic repsonse of a coated material. The data analysis pursuant to the invention is based on an extended Hertzian analysis developed for thin-film coatings.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 23, 2007
    Assignee: Northwestern University
    Inventors: Shuangbiao Liu, Qian Wang
  • Patent number: 7152455
    Abstract: Methods and apparatus for rapid gas recovery in a controlled gas atmosphere enclosure, which are particularly suited for maintaining incubator gas concentration levels, include the formulation of algorithms utilized for this purpose. The algorithms are included in the firmware for an embedded controller and operate gas solenoids that have inputs defined as specific gases at a defined pressure. An application of the rapid gas recovery method and apparatus to incubators is also disclosed.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: December 26, 2006
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Richard H. Bair, III, Byran M. Elwood
  • Patent number: 7150201
    Abstract: One embodiment of the present invention can comprise a primary flow measurement system, a secondary flow measurement system in fluid communication with the primary flow measurement system and a control coupled to the primary flow measurement system and the secondary flow measurement system. The controller can comprise a processor and a memory accessible by the processor. The processor can execute computer instructions stored on the memory to calculate a flow rate using the primary flow measurement system, in a first mode of operation, and calculate the flow rate using the secondary flow measurement system, in a second mode of operation. The computer instructions can be further executable to switch between the first mode of operation and the second mode of operation based on a predefined parameter.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: December 19, 2006
    Assignee: Celerity, Inc.
    Inventors: Stuart A. Tison, Shiliang Lu
  • Patent number: 7127360
    Abstract: A dual function flow measurement apparatus is provided that combines the functionality of an apparatus that measures the speed of sound propagating through a fluid flowing within a pipe, and measures pressures disturbances (e.g. vortical disturbances or eddies) moving with a fluid to determine respective parameters of the flow propagating through a pipe. The apparatus includes a sensing device that includes an array of pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine desired parameters. The measurement apparatus includes a processing unit the processes serially or in parallel the pressure signals provided by the sensing array to provide output signals indicative of a parameter of the fluid flow relating to the velocity of the flow and the speed of sound propagating through the flow, respectively.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: October 24, 2006
    Assignee: CiDRA Corporation
    Inventors: Daniel L. Gysling, Alan D. Kersey, Michael A. Davis
  • Patent number: 7121150
    Abstract: A method and apparatus for determining an initial flow rate in a conduit is disclosed. A known change is made to the flow to be measured, resulting changes (or values corresponding to these changes), or relative changes in the flow to be measured are monitored and the initial flow in the conduit is calculated from the value of the known change and monitored changes. Devices to practice the method include catheters having one or two sensors and one or two sites for introducing the volume change.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 17, 2006
    Assignee: Transonic Systems, Inc.
    Inventors: Nikolai M. Krivitski, Cornelis J. Drost
  • Patent number: 7124037
    Abstract: Devices, systems, and methods for monitoring the operation of an injection molding machine, for example, a wax injection molding machine, are disclosed. The devices, systems, and methods may be used for injection molding machines having an injection die, a molding medium injection cylinder, and a control cylinder coupled to the injection cylinder, the control cylinder having a fluid supply conduit. Monitoring and/or control are practiced by monitoring the fluid pressure and the flow rate of the fluid in the conduit. This flow rate and pressure are used to calculate the fluid pressure and flow rate of the molding medium injected into the injection die. A data acquisition system may be used to calculate and output the calculated data. The system can be portable and adaptable for use with any type of injection molding machine and for any injection molding medium.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 17, 2006
    Assignee: MPI Incorporated
    Inventor: Keith B. Gardener
  • Patent number: 7115399
    Abstract: Method for measuring potency of a substance, the method including; administering the substance to a mammal; subjecting the mammal to a stimulus; and monitoring a pinna reflex response of the mammal.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: October 3, 2006
    Assignee: Allergan, Inc.
    Inventor: Jennifer A. Jenkins
  • Patent number: 7117138
    Abstract: Methods for finite-difference-based inkjet simulation enable more precise control of ink droplet size and shape. A discrete transformation (mapping) is constructed so that a quadrilateral grid in physical space is transferred to the uniform square grid in a computational space. Since the grid in the computational space is square, numerical finite difference differentiation can be easily done. Governing partial differential equations, including a viscosity term, a surface tension term, and a level set convection equation for two-phase flows, are derived on the quadrilateral grid and then transformed to the computational space for application on the uniform square grid. A stable and powerful numerical algorithm is developed to solve the derived and transformed equations to enable finite-difference-based ink-jet simulation.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: October 3, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Jiun-Der Yu, Shinri Sakai
  • Patent number: 7110899
    Abstract: Methods and apparatus for determining the phase of a signal in a measurement device having a digital signal processor are described. The signal is digitised and the digitised signal, or a signal derived therefrom, is numerically correlated with a numerically generated reference signal. In one embodiment, the reference signal has a predetermined phase. In a further embodiment, the numerically generated reference signal has a reference phase and the phase is determined from the result of the correlation. The techniques described herein may reduce the amount of information lost in determining the signal phase.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 19, 2006
    Assignee: ABB Limited
    Inventor: Troy Wray
  • Patent number: 7093501
    Abstract: A process device and system for measuring flow parameters in flowing gases is provided in which a device for flow-induced sound generation is in the area of the flow to be measured. A measurement of the frequency and/or the level of the sounds generated is made during the flow to be measured as acoustic parameters. A determination is made as to the flow parameters to be measured by processing the measured acoustic parameters. The process makes possible, in particular, the measurement of the volume flows during respiration near the patient.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: August 22, 2006
    Assignee: Drägerwerk
    Inventors: Artur Chung-Che Kuo, Stefan Zimmermann
  • Patent number: 7089804
    Abstract: The invention relates to a process and a device for thermal measuring the flow rate (v) of a fluid (3). In conventional thermal sensors the heating power P is supplied in the form of rectangular pulses. According to the invention, the sensor means (1b) are supplied by a heating control (2b) with non-constant heating pulses having a sublinear build-up dynamics P(t). Thereby, a nonlinear behaviour of the threshold value time (tS), until a threshold value temperature (Tm) is reached, as a function of the flow rate (v) can at least partially be compensated. Embodiments concern inter alia a build-up dynamics P(t) proportional to tm and/or to a time-independent amplitude factor (1+RS/RI)?1, wherein m is a Reynolds-number-dependent exponent and RS, RI are thermal transfer resistances. The advantages are an improved precision, a shorter measuring time and an enlarged measuring range for the flow rate v.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: August 15, 2006
    Assignee: ABB Research LTD
    Inventors: Rolf Luchsinger, Daniel Matter, Philippe Prétre, Thomas Kleiner
  • Patent number: 7087177
    Abstract: A separation method comprises introducing a first fluid comprising first and second components having different density into a centrifugal field and allowing an interface to form between at least portions of such components at a first location. The method also comprises moving the interface from the first location to a second location and further comprises introducing the first fluid and removing one of the first and second components at known controlled flow rates so as to move the interface from the second location in a direction toward the first location and to return the interface to the second location. The flow rate of the first or second component may be determined based, at least in part, on the time interval between the interface moving from and returning to the second location. The flow rate may also be based on the weight of the one component removed during the time interval.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: August 8, 2006
    Assignee: Baxter International Inc.
    Inventors: Kyungyoon Min, Richard I. Brown
  • Patent number: 7080563
    Abstract: A gas flow measurement apparatus measures flow of gas emitted from an EUV light source in a light source chamber that accommodates the EUV light source, and includes an absorber that receives light emitted from the EUV light source and introduced into the gas flow measurement apparatus.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: July 25, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuki Fujimoto
  • Patent number: 7073392
    Abstract: Performance of mass flow controller may be vulnerable to pressure transients in a flow path to which the controller is coupled for the purpose of controlling the fluid flow. A system and method are provided for reducing or eliminate performance degradations, instabilities, and/or inaccuracies of a mass flow controller caused by changes in the pressure environment. In particular, a method and system are provided for compensating for pressure transients in the pressure environment of a flow path and mass flow controller.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 11, 2006
    Assignee: Celerity, Inc.
    Inventors: John Michael Lull, Chiun Wang, Joseph A. Saggio, Jr.
  • Patent number: 7055395
    Abstract: A method for detecting and controlling the elemental sulfur deposition on pressure reducing gas fuel control valves in cases where the sulfur deposition results from a temperature drop during expansion across the control valve, such as that encountered in gas turbine engines. The control method and algorithm according to the invention uses measured parameters of gas flow rate, pressure and temperature, combined with known pressure reducing valve characteristics to first determine whether sulfur deposition has occurred, and thereafter to calculate a valve position control parameter used to control the gas temperature upstream of the control valve, thereby maintaining the sulfur in a vapor phase through the pressure reducing process and preventing subsequent sulfur deposition on the valve and downstream piping.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: June 6, 2006
    Assignee: General Electric Company
    Inventor: Colin Wilkes
  • Patent number: 7058549
    Abstract: An apparatus 10 is provided that includes a spatial array of at least two unsteady pressure sensors 18–21 placed at predetermined axial locations x1–xN disposed axially along a pipe 14 for measuring at least one parameter of a fluid 12 flowing in the pipe 14. The pressure sensors 18–21 comprise a plurality of pressure sensing elements such as piezoelectric film sensors 23 for measuring unsteady pressures associated with acoustical pressures and/or vortical disturbances. The sensing elements are disposed circumferentially around the pipe and spaced a predetermined distance. The pressure signals P1(t)–PN(t) provided by the pressure sensors 18–21 are processed by a processing unit to provide an output signal indicative of a parameter of the fluid.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: June 6, 2006
    Assignee: C1DRA Corporation
    Inventors: Daniel L. Gysling, Douglas H. Loose, Robert Maron, Thomas Engel, Paul Croteau
  • Patent number: 7021121
    Abstract: A gas gauge proximity sensor modulates a gas stream that is used to feed reference and measurement air gauges, respectively, in a reference portion proximate a reference surface and a measurement portion proximate a measurement surface. The gas stream can be modulated at a frequency at which there is minimal acoustical interference energy (e.g., minimal noise) in demodulated output signal. The sensor output can be filtered so that a measurement signal includes only the modulated frequency and side bands of that frequency to include the desired response band of the device as a whole. The filtered signal can be demodulated using a demodulator operating at a same frequency as the modulator to produce the demodulated output signal. In this embodiment, substantially only ambient acoustical energy in the band pass region may interfere with the device operation. Alternatively, the modulation can be introduced through the reference portion. A reference nozzle sets up a pressure field with the reference surface.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 4, 2006
    Assignee: ASML Holding N.V.
    Inventors: Earl W. Ebert, Daniel N. Galburt, Joseph H. Lyons
  • Patent number: 7013739
    Abstract: A device for confining an object to a region proximate to a fluid flow stagnation point includes one or more inlets for carrying the fluid into the region, one or more outlets for carrying the fluid out of the region, and a controller, in fluidic communication with the inlets and outlets, for adjusting the motion of the fluid to produce a stagnation point in the region, thereby confining the object to the region. Applications include, for example, prolonged observation of the object, manipulation of the object, etc. The device optionally may employ a feedback control mechanism, a sensing apparatus (e.g., for imaging), and a storage medium for storing, and a computer for analyzing and manipulating, data acquired from observing the object. The invention further provides methods of using such a device and system in a number of fields, including biology, chemistry, physics, material science, and medical science.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: March 21, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Charles M. Schroeder, Eric S. G. Shaqfeh, Hazen P. Babcock, Steven Chu
  • Patent number: 7013738
    Abstract: A flow sensor is provided with an obstruction (8) projecting into a flow and at least one measuring probe (10) for measuring a vortex produced by the obstruction (8). The measuring probe (10) includes at least one membrane (12) and a measuring element arranged directly on the membrane (12), for detecting the membrane deflection.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 21, 2006
    Assignee: Grundfos a/s
    Inventors: Jens Peter Krog, Nicholas Pedersen, Per Ellemose Andersen
  • Patent number: 7004022
    Abstract: The flow detecting elements are provided at the sub-passage for making the part of fluid to be measured (gas) flow. The wall of the sub-passage contains a leak hole (through hole) to drain a liquid having entered and accumulated inside the sub-passage. A protrusion for generating a dynamic pressure on the opening is arranged close to the opening of the leak hole on the external surface of the sub-passage. Alternatively, a protrusion located upstream from the leak hole is formed on the inner wall surface of the sub-passage. The former protrusion generates a dynamic pressure in response to the flow velocity of the gas flowing along the external surface of the sub-passage. The latter protrusion produces a separation flow area for separating the flow from the internal surface of the sub-passage (close to the leak hole), whereby the pressure of the separation floe area is reduced.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: February 28, 2006
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Sinya Igarashi, Hiroshi Kikawa, Yasuhiro Asano, Naoki Saito
  • Patent number: 6993437
    Abstract: A method and apparatus for tidal seepage meters. The meter includes a power supply, controller, motor, selector valve, seepage chamber and at least two sample containers. The controller is operatively coupled to the power supply and is capable of controlling the power supply in accordance with a sampling schedule. The motor is operatively coupled to the power supply and is capable of receiving power from the power supply in accordance with the sampling schedule. The selector valve includes an input port and at least two outlet ports and is operatively coupled to the motor. The selector valve is capable of selecting an output valve in accordance with the sampling schedule. The seepage chamber is operatively coupled to the selector valve, capable of receiving seepage and inputting seepage to the selector valve via the input port. The sample containers are operatively coupled to the selector valve and receive seepage.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: January 31, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David B. Chadwick, Gregory Jon Groves, Andrew E. Patterson
  • Patent number: RE39724
    Abstract: A flow probe for use in a humidification system is disclosed. The flow probe is adapted to be positioned in a humidified gases flow (for example oxygen or anesthetic gases) such as that which is provided to a patient in a hospital environment. The flow probe is designed to provide both temperature and flow rate sensing of the gases flow by incorporating two sensors (preferably thermistors) and the shape and alignment of the probe enables accurate readings by reducing the occurrence of condensation on the sensors.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: July 17, 2007
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: Lewis George Gradon, Stephen William McPhee, Paul John Seakins, Peter John Leonard