With Nonmetal Constituent - Silicon(si) Considered A Metal (e.g., Cermet, Etc.) Patents (Class 75/230)
  • Patent number: 5336292
    Abstract: A sintered body of titanium-based carbonitride alloy according to the invention comprises carbonitride hard constituents in 5-25% binder phase where the hard constituents contain, in addition to Ti, one or more of the metals Zr, Hf, V, Nb, Ta, Cr, Mo and/or W and the binder phase is based on cobalt and/or nickel. The sintered body has at least one outer surface with a <50 .mu.m thick surface layer of a titanium-rich cubic carbonitride. Below this layer there is a <100 .mu.m thick binder phase enrichment zone. The binder phase content can be >1.2 of that in the inner part of the body D. Under the binder phase enrichment zone, there is a <250 .mu.m thick binder phase depleted zone C. The binder phase content in this zone has a lowest level <0.9 of the binder phase content in the inner part of the body D.Such sintered bodies are manufactured by heat treatment in an atmosphere of N.sub.2 and/or NH.sub.3 possibly in combination with at least one of CH.sub.4, CO and CO.sub.2 at 1100.degree.-1350.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: August 9, 1994
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Marian Mikus
  • Patent number: 5330590
    Abstract: Cr.sub.3 Si is alloyed with molybdenum which produces a two-phase microstructure of (Cr,Mo).sub.3 Si and (Cr,Mo).sub.5 Si.sub.3. About 50 weight percent of molybdenum is present in the alloy. The alloy forms two protective oxides over a wide range of temperatures. Chromium and molybdenum oxide volatize under flowing air at high temperatures above 1200.degree. C. which facilitates the formation of SiO.sub.2 on the surface. Below 1200.degree. C. Cr.sub.2 O.sub.3 is formed. The new alloy has excellent high temperature strength and creep properties.
    Type: Grant
    Filed: May 26, 1993
    Date of Patent: July 19, 1994
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics & Space Administration
    Inventor: Sai V. Raj
  • Patent number: 5326526
    Abstract: Sintered iron alloy composition and method of manufacturing the same, the sintered alloy composition comprising: about 1.5 to about 2.5% carbon by weight; about 0.5 to about 0.9% manganese by weight; about 0.1 to about 0.2% sulfur by weight; about 1.9 to about 2.5% chromium by weight; about 0.15 to about 0.3% molybdenum by weight; about 2 to about 6% copper by weight; not more than about 0.3% by weight of a metal element material comprising at least one member selected from the group consisting of tungsten and vanadium; an effective content of a first solid lubricant material comprising at least one member selected from the group consisting of magnesium metasilicate minerals and magnesium orthosilicate minerals; and balance iron. This alloy composition is preferably used for making machine parts, such as slide members of valve operating systems for internal combustion engines.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: July 5, 1994
    Assignees: Hitachi Powdered Metals Co., Ltd., Nissan Motor Co., Ltd.
    Inventors: Yutaka Ikenoue, Koichiro Hayashi, Makoto Kano, Akira Fujiki
  • Patent number: 5314656
    Abstract: Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.
    Type: Grant
    Filed: November 20, 1992
    Date of Patent: May 24, 1994
    Assignee: The Regents of the University of California
    Inventors: Zuhair A. R. Munir, Maryam Eslamloo-Grami
  • Patent number: 5306568
    Abstract: A high Young's modulus material comprises carbon steel or alloying steel and contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2. Furthermore, a surface-coated tool member comprises a substrate comprised of carbon steel or alloying steel and a hard coating layer having a Young's modulus of not less than 24,000 kgf/mm.sup.2 in which the substrate contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: April 26, 1994
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Yukinori Matsuda, Kozo Ozaki, Koichi Sudo
  • Patent number: 5296016
    Abstract: There is disclosed a surface coated cermet blade member which includes a cermet substrate and a hard coating of an average thickness of 0.5 to 20 .mu.m formed thereon. The substrate contains, apart from unavoidable impurities, a binder phase of 5 to 30% by weight of at least one of cobalt, nickel, iron and aluminum, and a hard dispersed phase of a balance carbo-nitride of metals. The metals are titanium, tungsten and at least one of tantalum, niobium, vanadium, zirconium, molybdenum and chromium. The substrate includes a surface portion having a hardness greater than an interior portion. The hard coating may be composed of one or more coating layers. Each coating layer is formed of TiX or Al.sub.2 O.sub.3, where X denotes at least one element of carbon, nitrogen, oxygen and boron.
    Type: Grant
    Filed: September 17, 1991
    Date of Patent: March 22, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Hironori Yoshimura, Seiichirou Nakamura, Niro Odani
  • Patent number: 5279649
    Abstract: A coating composition comprises a slurry consisting essentially of an aluminum neutralized phosphate bonding solution and aluminum powder. The bonding solution advantageously contains a relatively small but essential amount of vanadium pentoxide and, preferably, magnesium. A process for forming the bonding solution component of the coating slurry includes equilibrating an aqueous phosphate solution with a small but controlled and necessary amount of solute aluminum prior to adding aluminum powder to form the slurry. The present invention overcomes the problem of bonding solutions which require environmentally disadvantageous chromates or molybdates.
    Type: Grant
    Filed: May 20, 1993
    Date of Patent: January 18, 1994
    Assignee: Solar Turbines Incorporated
    Inventors: Alvin R. Stetson, William D. Brentnall, Zaher Z. Mutasim, Lulu L. Hsu
  • Patent number: 5279650
    Abstract: A seal coat composition comprises a slurry consisting essentially of an aluminum neutralized phosphate bonding solution and iron oxide (Fe.sub.2 O.sub.3) powder. The bonding solution advantageously contains a relatively small but essential amount of vanadium pentoxide and, preferably, magnesium. A process for forming the bonding solution component of the coating slurry includes equilibrating an aqueous phosphate solution with a small but controlled and necessary amount of solute aluminum prior to adding iron oxide powder to form the slurry. The present invention overcomes the problem of bonding solutions which require environmentally disadvantageous chromates or molybdates to neutralize the bonding solution prior to formation of the slurry.
    Type: Grant
    Filed: May 20, 1993
    Date of Patent: January 18, 1994
    Assignee: Solar Turbines Incorporated
    Inventors: Alvin R. Stetson, William D. Brentnall, Zaher Z. Mutasim, Lulu L. Hsu
  • Patent number: 5273569
    Abstract: A composite has a magnesium base metal matrix and a reinforcing phase. The composite is produced from a charge containing a rapidly solidified magnesium base alloy and particles of a reinforcing material present in an amount ranging from about 0.1 to 50 percent by volume of the charge. Ball milling the charge energetically enfolds metal matrix material around each of the particles, while maintaining the charge in a pulverant state. Consolidation of the charge provides a mechanically formable, substantially void-free mass.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: December 28, 1993
    Assignee: Allied-Signal Inc.
    Inventors: Paul S. Gilman, Michael S. Zedalis
  • Patent number: 5261944
    Abstract: A nickel cermet contains 35-70% by weight of a metal nickel phase and 65-30% by weight of a zirconia phase stabilized in the cubic form with yttria, with, on X-ray diffraction analysis, said phases appearing as distinct and homogeneously distributed at a level lower than 1 .mu.m.This nickel cermet is obtained by preparing an aqueous solution containing a heat-decomposable zirconyl, yttrium and nickel salt, and an organic hydroxyacid or aminoacid, or a poly(acrylic acid); removing water from the resulting solution, under conditions of absence, or substantial absence, of decomposition phenomena, in order to separate a porous solid; calcining the porous solid, and reducing with hydrogen the product from calcination.The nickel cermet obtained in this way is useful as an anodic material for a solid oxide fuel cell (SOFC).
    Type: Grant
    Filed: June 12, 1992
    Date of Patent: November 16, 1993
    Assignees: Eniricerche S.p.A., Snam, S.p.A.
    Inventors: Thomas P. Lockhart, Giampietro Piro, Federica Gagliardi, Laura Zanibelli
  • Patent number: 5256183
    Abstract: Particle reinforced composite material produced by mixing granules of a composite material formed by rapidly solidifying a melt comprising a based light metal matrix and particles of a non-metallic reinforced material with granules of unreinforced host metal matrix, compacting the mixture and applying a shear deformation on said mixture.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: October 26, 1993
    Assignee: Norsk Hydro a.s.
    Inventors: Wolfgang W. Ruch, Lars Auran, Nils Ryum
  • Patent number: 5223213
    Abstract: A cast product made from metallic material and ceramic material with the ceramic material being an insert, comprises an aggregated body of capsule particles, the capsule particle including a ceramic particle coated with metallic particles, and metallic material cast over the aggregated body.
    Type: Grant
    Filed: January 25, 1991
    Date of Patent: June 29, 1993
    Assignee: Isuzu Motors Limited
    Inventors: Tadashi Kamimura, Akira Tsujimura
  • Patent number: 5217583
    Abstract: A dimensionally stable combustion synthesis product of a composition containing at least 20% by weight of a particulate combustible material; at least 15% by weight of a particulate filler material capable of providing desired mechanical and electrical properties; and up to 35% by weight of a particulate inorganic binder having a melting point lower than the combustion synthesis temperature. Electrodes suitable for electrochemical processing are a preferred product form, particularly electrodes for use in the electrowinning of aluminum from its oxide.
    Type: Grant
    Filed: January 30, 1991
    Date of Patent: June 8, 1993
    Assignee: University of Cincinnati
    Inventors: Jainagesh A. Sekhar, Sarit B. Bhaduri
  • Patent number: 5192622
    Abstract: A ternary-alloy/glass composite suitable for use in vias in glass-ceramic electronic structures includes gold, palladium, and either platinum or silver in the alloy where the gold is less than 50% by weight of the alloy. The alloy is combined with glass frit where the glass is present as 5-50% by volume in the composition. The ternary-alloy glass composite is sintered in the glass-ceramic structure and provides a hermetic seal. Chips and pins can be bonded directly to the ternary-alloy/glass composite using a eutectic braze without causing cracks in the glass-ceramic. The ternary-alloy/glass composite has good adhesion with glass-ceramics and is useful in vias in electronic structures.
    Type: Grant
    Filed: August 9, 1991
    Date of Patent: March 9, 1993
    Assignee: International Business Machines Corporation
    Inventors: Armando S. Cammarano, Giulio DiGiacomo, Nunzio DiPaolo
  • Patent number: 5185303
    Abstract: A self-supporting ceramic body produced by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
    Type: Grant
    Filed: November 14, 1991
    Date of Patent: February 9, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Robert C. Kantner, Michael A. Rocazella, Jerry G. Weinstein, Danny R. White
  • Patent number: 5171359
    Abstract: A clean refractory metal SWARF particle product is made from refractory metal SWARF. The SWARF particles are produced with coolant at a temperature of less than 650.degree. C. to prevent formation of refractory metal oxides and nitrides. The SWARF particles are comminuted to reduce the particle size of theh SWARF slivers and to liberate residual coolant. The comminuted SWARF slivers are washed with a displacement wash to remove the bulk of the coolant and subject to a counter-current wash to remove substantially all of the coolant components to produce clean SWARF particles. The clean SWARF particles can be pressed into briquettes and sintered at elevated pressures or mixed with an alkali metal refractory metal halide salt, pressed at elevated pressures into SWARF/salt briquettes and dried. The briquettes are non-pyrophoric.
    Type: Grant
    Filed: September 19, 1991
    Date of Patent: December 15, 1992
    Inventor: Joseph A. Megy
  • Patent number: 5147446
    Abstract: A method of producing a dense compact of ultra-fine powder employs low temperatures and high pressures to produce a very dense, nearly ideally packed compact from a starting nano-sized powder. The final product is capable of being easily hot-pressed or sintered to full density.
    Type: Grant
    Filed: August 6, 1991
    Date of Patent: September 15, 1992
    Assignee: The United States of America as represented by the Secretary of the Commerce
    Inventors: Alexander Pechenik, Gasper J. Piermarini
  • Patent number: 5145504
    Abstract: Ceramic metal compositions are described that include a ceramic phase content of at least 60 percent by volume of said composition and a copper metal phase permeating the ceramic phase. The resulting composition is substantially fully densified, having a connected or isolated ceramic grain structure, preferably of fine B.sub.4 C grains of less than 3 micrometers. Flexure strength and fracture toughness for 80 volume percent B.sub.4 C-20 volume percent Cu cermets are 6.62 MPa.multidot.m1/2 and 725 MPa, respectively. The process of the invention includes as a key element, contacting a porous article of ceramic phase with copper metal followed by heating to above melting and subjecting said article to pressure of at least 200 MPa, such that the porous body is filled with metal and the composition is substantially fully densified.
    Type: Grant
    Filed: July 8, 1991
    Date of Patent: September 8, 1992
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Robert T. Nilsson
  • Patent number: 5145505
    Abstract: Disclosed are a high toughness cermet comprising a sintered alloy comprising 75 to 95% by weight of a hard phase of carbide, nitride or carbonitride containing Ti, at least one of W, Mo and Cr, and N and C, and the balance of a binder phase composed mainly of an iron group metal, and inevitable impurities,wherein the content of Ti in said sintered alloy is 35 to 85% by weight calculated on TiN or TiN and TiC, and the contents of W, Mo and Cr are 10 to 40% by weight in total calculated on WC, Mo.sub.2 C and/or Cr.sub.3 C.sub.2,the relative concentration of said binder phase at the 0.01 mm-inner portion from the surface of said sintered alloy is 5 to 50% of the average binder phase concentration of the inner portion, and the relative concentration of said binder phase at the 0.1 mm-inner portion from the surface of said sintered alloy is 70 to 100% of the average binder phase concentration of the inner portion, anda compression stress of 30 kgf/mm.sup.
    Type: Grant
    Filed: February 7, 1992
    Date of Patent: September 8, 1992
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Takeshi Saito, Kozo Kitamura, Mitsuo Ueki
  • Patent number: 5118342
    Abstract: A partially hardened sintered body such as a rocker arm comprises powder forming a main body and a capsule-like powder composite disposed adjacent to the powder and composed of core particles made of a material harder than the powder and covering particles covering the core particles and made of the same material as the powder. The powder and the capsule-like powder composite are solidified into the partially hardened sintered body.
    Type: Grant
    Filed: March 26, 1991
    Date of Patent: June 2, 1992
    Assignee: Isuzu Motors Limited
    Inventors: Tadashi Kamimura, Akira Tsujimura
  • Patent number: 5100736
    Abstract: A polymer-reinforced metal matrix composite is disclosed which is formed by lending metal particles and polymer particles to form a homogeneous powder blend, and consolidating the powder blend to form a unitary mass. The unitary mass is then plastically deformed such as by extrusion in the presence of heat so as to cause an elongation thereof, whereby the metal particles form a matrix and the polymer particles form elongated filaments uniformly dispersed throughout the matrix and aligned in the direction of elongation of the unitary mass. An aluminum matrix reinforced with polyether-etherketone is shown to have enhanced specific strength and modulus over those of the aluminum alone.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: March 31, 1992
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Gilbert J. London, William E. Frazier, John G. Williams
  • Patent number: 5067979
    Abstract: A process is provided for the production of a sintered body. The process includes the following consecutive steps: i) mixing and kneading one or more metal powders and/or one or more alloy powder with a binder into a compound, said metal and alloy powders having an average particle size not greater than 30 .mu.m, ii) injection-molding the compound into a green body; iii) debinding the green body to form a debound body; and iv) subjecting the debound body to a first-stage sintering at 1,050.degree.-1,250.degree. C. in a reduced-pressure atmosphere and then to second-stage sintering at a temperature in a range of 1,100.degree.-400.degree. C. which is higher than that of the first-stage sintering. This process can provide sintered Ti bodies and sintered magnetic bodies of the Fe-Si type, which have a density ratio of at least 95%.
    Type: Grant
    Filed: July 6, 1990
    Date of Patent: November 26, 1991
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoshisato Kiyota, Junichi Ohta, Hiroshi Ohtsubo, Shigeaki Takajo
  • Patent number: 5066618
    Abstract: There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated into said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal in the metallic constituent.
    Type: Grant
    Filed: August 16, 1990
    Date of Patent: November 19, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Robert C. Kantner, Michael A. Rocazella, Jerry G. Weinstein, Danny R. White
  • Patent number: 5055016
    Abstract: A vane-type rotary compressor having wear and seizure resistance is disclosed comprising a cam ring having a cylindrical interior, a rotor rotatably installed in said cam ring, a vane arranged on the circumference of said rotor for radial movement toward and left from inner periphery of said cylindrical interior of said cam ring, and a pair of plates secured to corresponding front and rear portions of said cam ring to cover it, said cam ring and said rotor being formed of silicon rich aluminium alloy containing 12 to 20 wt % of silicon, said pair of plates being formed of aluminium or aluminium alloy, and said vane being formed of ferric sintered materials containing 3 to 8 wt % of carbon.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: October 8, 1991
    Assignee: Atsugi Unisia Corporation
    Inventor: Tsuneshige Kawade
  • Patent number: 5041158
    Abstract: Powdered metal parts, especitally valve parts of an internal combustion engine which are subject to adhesive wear in service, withstand such wear substantially better when they have substantially uniformly dispersed through them from about 0.75% to about 7.0% by weight of hydrate magnesium silicate (talc).
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: August 20, 1991
    Assignee: Eaton Corporation
    Inventor: Jay M. Larson
  • Patent number: 5030038
    Abstract: A hobbing tool made of cermet composed of 70 to 97 percent by weight of hard phase and a binder phase. The hard phase is made of a composite carbonitride of transition metals including titanium and tungsten, and at least one other element. The binder phase contains nickel and/or cobalt and inevitable impurities. The ratio between nitride atoms and carbon atoms and the ratio between titanium atoms and the atoms of transition metals other than titanium in the hard phase should be within specific ranges. The cermet having the above composition has an increased toughness and an excellent resistance to heat and wear and is difficult to weld.
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: July 9, 1991
    Assignees: Sumitomo Electric Industries, Ltd., Komatsu, Ltd., Azumi, Ltd.
    Inventor: Yasutsune Ariura
  • Patent number: 5009706
    Abstract: Rare-earth alloy anisotropic powders consist of, in atomic percent, over 12 percent and not more than 20 percent of R (R is at least one on neodymium and praseodymium or at least one of them and or more rare-earth elements), not less than 4 percent and not more than 10 percent of boron, not less than 0.05 percent and not more than 5 percent of copper and the rest that consists of iron and unavoidable impurities. Up to 20 percent of the iron contained is replaceable with cobalt. The alloy powders are made up of flat crystal grains having mean thickness h (the shortest measure), d not smaller than 0.01 .mu.m and not larger than 0.5 .mu.m and ratio d/h not smaller than 2, where d is the means measure of the grains taken at right angles to the widthwide direction thereof, and the alloy powders are magnetically anisotropic.
    Type: Grant
    Filed: July 18, 1990
    Date of Patent: April 23, 1991
    Assignee: Nippon Steel Corporation
    Inventors: Hiroaki Sakamoto, Masahiro Fujikura, Toshio Mukai
  • Patent number: 4983231
    Abstract: There is provided a surface-treated magnetic powder that can form a resin-bonded permanent magnet with large magnetic force and a high maximum energy product, which magnetic properties do not decrease even after the long periods of time. The surface-treated magnetic powder is obtained by treating a magnetic powder made of an alloy that comprises a rare earth metal and iron with a treatment agent containing a alkali-modified silica particles as a major component, wherein the alkali-modified silica particles are obtained by reacting silica particles with a mean particle diameter of from 0.005 to 0.1 .mu.m with an alkali to modify only the surface portion of the silica particles by the alkali.
    Type: Grant
    Filed: May 18, 1989
    Date of Patent: January 8, 1991
    Assignee: Daihachi Chemical Industry Co., Ltd.
    Inventors: Hiroshi Yamanaka, Yasuhiro Nakamura
  • Patent number: 4970049
    Abstract: Sintered ferrous materials are described having a composition in wt % lying within the ranges of C 0.8-1.5/W 1-4.4/Mo 1-4.4/V 1-2.6/Cr 1.3-3.2/Others 3 max./Fe balance. The material may be made by a method comprising the steps of mixing between 40 and 70 wt % of a powder having a composition in wt % within the ranges C 0.45-1.05/W 2.7-6. 2/Mo 2.8-6.2/V 2.8-3.2/Cr 3.8-4.5/Others 3.0 max./Fe balance with between 60 and 30 wt % of an iron powder and from 0.4 to 0.9 wt % of carbon powder, pressing a green body of the article from the mixed powder and then sintering the green body. The material may optionally contain sulphur, metallic sulphides. The material may be infiltrated.
    Type: Grant
    Filed: October 6, 1988
    Date of Patent: November 13, 1990
    Assignee: Brico Engineering Limited
    Inventors: Andrew R. Baker, Richard L. Kettle
  • Patent number: 4966626
    Abstract: A sintered ferro alloy comprises 5 to 25 wt % of one or two elements selected from Mo and W, 2 to 10 wt % of Cr, 0.1 to 0.9 wt % of Si, less than or equal to 0.7 wt % of Mn, less than or equal to 0.05 wt % of P, 0.5 to 2.0 wt % of C, 0.5 to 2.0 wt % of B, 0.1 to 7.0 wt % of at least one element selected from borides of La, Ce, Nd, Sm, Eu, Gd, Yb, Y or Sc, residual Fe, and contaminants. Also the alloy may comprise less than or equal to 20 wt % of at least one element selected from V, Nb, Ta, Ti, Zr, Hf, Co or Ni, if necessary. The alloy is produced by mixing the above mentioned components and pressurizing them in an Fe matrix, then sintering the pressurized mixture at 1150.degree. C. to 1260.degree. C. for 60 min. and reheating after sintering. This alloy has wear and heat resistance and can be utilized as valve seats for internal combustion engines in automotive vehicles.
    Type: Grant
    Filed: June 28, 1989
    Date of Patent: October 30, 1990
    Assignees: Nissan Motor Company, Limited, Hitachi Powdered Metals Company, Limited
    Inventors: Akira Fujiki, Yoshiteru Yasuda, Hiroyuki Endo, Yutaka Ikenoue, Keitaro Suzuki
  • Patent number: 4965044
    Abstract: The present invention relates to a method of sintering ceramics and ceramics obtained by said method. According to the present invention, the synthesis and sintering of ceramics can be simultaneously carried out by utilizing the reaction heat generated when at least one metallic element selected from metallic elements of IIb, IVb, Vb and VIb groups of the Periodic Table is combined with at least one nonmetallic element such as B, C N and Si without heat or by preliminarily heating the ceramics at temperatures remarkably lower than the usual sintering temperature ceramics thus-produced are superior in abrasion resistance and corrosion resistance.
    Type: Grant
    Filed: August 11, 1989
    Date of Patent: October 23, 1990
    Assignees: I. Sumitomo Electric Industries, Ltd., Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi
    Inventors: Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi, Osamu Komura, Eiji Kamijo, Masaaki Honda, Akira Yamakawa
  • Patent number: 4961778
    Abstract: Substantially dense, void-free ceramic-metal composites are prepared from components characterized by chemical incompatibility and non-wetting behavior. The composites have a final chemistry similar to the starting chemistry and microstructures characterized by ceramic grains similar in size to the starting powder and the presence of metal phase. A method for producing the composites requires forming a homogeneous mixture of ceramic-metal, heating the mixture to a temperature that approximates but is below the temperature at which the metal begins to flow and presssing the mixture at such pressure that compaction and densification of the mixture occurs and an induced temperature spike occurs that exceeds the flowing temperature of the metal such that the mixture is further compacted and densified. The temperature spike and duration thereof remains below that at which significant reaction between metal and ceramic occurs. The method requires pressure of 60-250 kpsi employed at a rate of 5-250 kpsi/second.
    Type: Grant
    Filed: January 13, 1988
    Date of Patent: October 9, 1990
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Irving G. Snyder, Jr., Alexander Pechenik, Robert R. McDonald
  • Patent number: 4955135
    Abstract: Matrix composites and especially metal matrix composites are formed by coating a foam with a metal or ceramic to form a continuous structure from which the foam material is removed by pyrolysis. If this structure is composed of a metal it is subjected to treatment to transform the metal to a ceramic and the resulting ceramic structure is then filled with another material such as a matrix metal. The product is then compacted and heat treated if desired. The coating of the foam and the filling of the porous ceramic structure are effected preferably by low temperature arc vapor deposition.
    Type: Grant
    Filed: November 16, 1988
    Date of Patent: September 11, 1990
    Assignee: Vapor Technologies Inc.
    Inventor: Eduard Pinkhasov
  • Patent number: 4956011
    Abstract: An Fe-Si alloy powder magnetic core comprises an alloy powder of an average particle diameter of 10-100 .mu.m, produced by water atomization, in which the composition by weight of the alloy powder is 2-12% silicon and 0.05-0.95% oxygen with the balance being essentially iron. The process of manufacturing the powder magnetic core is also disclosed.
    Type: Grant
    Filed: January 17, 1990
    Date of Patent: September 11, 1990
    Assignee: Nippon Steel Corporation
    Inventors: Tokuhiko Nishida, Masao Yamamiya
  • Patent number: 4942097
    Abstract: A cermet cutting tool is provided having a composition containing the following: about 3.5 to about 6.5 w/o (weight percent) nickel; about 4.5 to about 7.5 w/o cobalt, wherein the sum of nickel plus cobalt is between about 8 to 11 w/o; about 20 to about 25 w/o tungsten; about 5 to about 11 w/o molybdenum; up to about 6 w/o tantalum plus niobium; up to about 0.05 w/o chromium; up to about 1 w/o aluminum; and up to about 3 w/o vanadium; with the remainder being essentially titanium, carbon, and nitrogen, wherein at least substantially all the carbon and nitrogen are present as metal compounds selected from the group consisting of metal carbonitrides and mixtures of metal carbonitrides and metal carbides where said metal is selected from the group consisting of tungsten, molybdenum, titanium, tantalum, niobium, vanadium, chromium, their solid solutions and there mixtures.
    Type: Grant
    Filed: October 14, 1987
    Date of Patent: July 17, 1990
    Assignee: Kennametal Inc.
    Inventors: Anakkavur T. Santhanam, Edward V. Conley
  • Patent number: 4939038
    Abstract: A light metallic composite material containing therein fine granular additives dispersed in a matrix of a light metallic material, which composite material has a light weight, high mechanical strength, and excellent characteristics such as high damping ability. The additives each have a density less than that of the matrix and heat resistance enough to withstand a heating temperature at which they are composited with the matrix. Preferably, the additives are each formed with a coating which increases mechanical strength and provides an electromagnetic characteristic different from that of the matrix. Preferably, the composite material is produced by heating a mixture of matrix powders and additives up to a temperature where only part of the mixture including no microspheres is softened but the mixture is adequately composited, an amount of additives being equal to 10% to 70% by volume of the matrix, and by forming the composited mixture into a desired shape and solidifying same.
    Type: Grant
    Filed: November 30, 1987
    Date of Patent: July 3, 1990
    Assignee: Inabata Techno Loop Corporation
    Inventor: Tadao Inabata
  • Patent number: 4939032
    Abstract: Composite materials having improved fracture toughness are formed by dispersing ductile inclusions in a less ductile matrix. The matrices may be formed from metals, such as high-strength aluminum alloys or ceramics. Bonding should be present between the inclusions and the matrix so that cracks in the composite material must pass through the inclusions.
    Type: Grant
    Filed: June 25, 1987
    Date of Patent: July 3, 1990
    Assignee: Aluminum Company of America
    Inventors: Jocelyn I. Petit, Philip E. Bretz, Henry G. Paris, Ralph R. Sawtell, Diana K. Denzer
  • Patent number: 4938798
    Abstract: A high melting metal silicide sputtering target which comprises a fine texture whose stoichiometric composition grains of MSi.sub.2, where M represents a high melting metal, have a maximum grain size of 20 .mu.m, whose free silicon grains have a maximum grain size of 50 .mu.m and whose oxygen content is not more than 200 ppm and has a density ratio to the theoretical density of 99% or more has good film characteristics including the reduction in the number of grains formed on the sputtered film and is useful as an electrode material or a wiring material in semi-conductor devices.
    Type: Grant
    Filed: March 7, 1988
    Date of Patent: July 3, 1990
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yoshitaka Chiba, Noriyoshi Hirao, Toru Sugihara, Kenji Hasegawa
  • Patent number: 4927707
    Abstract: A combination of a first slide member made of ferrous material in which at least a slide surface layer thereof has a metallurgical structure having granular carbides dispersed in a matrix phase, and a second slide member made of ferrous material in which at least a slide surface layer thereof has a metallurgical structure having network-like carbides dispersed in a martensite matrix phase. A proportion of an area occupied by the granular carbides on the slide surface of the first slide member is larger than a proportion of an area occupied by the network-like carbides on the slide surface of the second slide member, and owing to this difference in these occupied area proportions, generation of coagulative wear (scuffing) between the respective slide members can be effectively prevented, and a good anti-wear property is obtainable from viewpoints of scuffing as well as pitting.
    Type: Grant
    Filed: September 7, 1988
    Date of Patent: May 22, 1990
    Assignee: Honda Giken Kogyo Kabashiki Kaisha
    Inventors: Toshihiko Matsubara, Taku Kitayama
  • Patent number: 4927473
    Abstract: A compressed powder core is made of a compressed body of a magnetic powder each particle of which has a surface covered with an insulating layer. The insulating layer is formed of an insulating material selected from the group consisting of an inorganic compound powder having an electronegativity of not less than 12.5, an inorganic compound powder having an electronegativity of less than 8.5, a metal alkoxide and a decomposition product of a metal alkoxide.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: May 22, 1990
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kumi Ochiai, Hiromichi Horie, Itsuo Arima, Mikio Morita
  • Patent number: 4919734
    Abstract: A compressed powder core is made of a compressed body of a magnetic powder each particle of which has a surface covered with an insulating layer. The insulating layer is formed of an insulating material selected from the group consisting of an inorganic compound powder having an electronegativity of not less than 12.5, an inorganic compound powder having an electronegativity of less than 8.5, a metal alkoxide and a decomposition product of a metal alkoxide.
    Type: Grant
    Filed: September 14, 1987
    Date of Patent: April 24, 1990
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kumi Ochiai, Hiromichi Horie, Itsuo Arima, Mikio Morita
  • Patent number: 4915737
    Abstract: An alloy target for making a magneto-optical recording medium by sputtering comprises an alloy containing 10 to 50 atom % of at least one rare earth element selected from among Sm, Nd, Gd, Tb, Dy, Ho, Tm and Er, with a balance consisting substantially of at least one transition metal selected from among Co, Fe and Ni. The alloy has a mixed structure composed of at least three phases of intermetallic compounds formed by the rare earth element and the transition metal.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: April 10, 1990
    Assignee: Sumitomo Metal Mining Company Limited
    Inventors: Toshio Morimoto, Keizo Kazama, Yasuhiro Okajima, Yasuhiro Tsugita, Shinobu Endo
  • Patent number: 4915738
    Abstract: An alloy target for making a magneto-optical recording medium by sputtering comprises an alloy containing 10 to 50 atom % of at least one rare earth element selected from among Sm, Nd, Gd, Tb, Dy, Ho, Tm and Er, with a balance consisting substantially of at least one transition metal selected from among Co, Fe and Ni. The alloy has a mixed structure composed of at least one phase of an intermetallic compound formed by the rare earth element and the transition metal and a phase of the rare earth element along.
    Type: Grant
    Filed: April 29, 1988
    Date of Patent: April 10, 1990
    Assignee: Sumitomo Metal Mining Company Limited
    Inventors: Toshio Morimoto, Tatsuo Nate
  • Patent number: 4906295
    Abstract: The present invention relates to a method of sintering ceramics and ceramics obtained by said method. According to the present invention, the synthesis and sintering of ceramics can be simultaneously carried out by utilizing the reaction heat generated when at least one metallic element selected from metallic elements of IIIb, IVa, Vb and VIb groups of the Periodic Table is combined with at least one nonmetallic element such as B, C, N and Si without heat or by preliminarily heating the ceramics at temperatures remarkably lower than the usual sintering temperature ceramics, thus-produced are superior in abrasion resistance and corrosion resistance.
    Type: Grant
    Filed: February 16, 1988
    Date of Patent: March 6, 1990
    Assignees: Sumitomo Electric Industries, Ltd., Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi
    Inventors: Yoshinari Miyamoto, Osamu Yamada, Mitsue Koizumi, Osamu Komura, Eiji Kamijo, Masaaki Honda, Akira Yamakawa
  • Patent number: 4906525
    Abstract: The present invention relates to a heat-resisting supporting member, such as a skid button, for supporting a heated material, such as a steel plate, in a high-temperature atmosphere within a heating furnace and the like and provides a heat-resisting supporting member in which a peripheral surface of a lower corner portion of a supporting aggregate formed of heat-resisting alloys with single ceramics, ceramic particles or ceramic bars dispersed therein or heat-resisting alloy-impregnated ceramics formed by impregnating air-pores of porous ceramics with heat-resisting alloys is coated with heat-resisting alloys so as to be capable of being welded to other members while the remaining peripheral surface of the supporting aggregate is coated with a shock-resisting substance formed of heat-resisting alloys, heat-resisting alloys with ceramic particles dispersed therein or heat-resisting alloy-impregnated ceramics.
    Type: Grant
    Filed: December 30, 1986
    Date of Patent: March 6, 1990
    Assignee: Sumitomo Metal Industries, Inc.
    Inventors: Manabu Seguchi, Kazuo Okamura
  • Patent number: 4902361
    Abstract: This invention relates to permanent bonded magnets of very finely crystalline, melt-spun, rare earth-iron alloys. The compacts are magnetically isotropic.
    Type: Grant
    Filed: February 10, 1986
    Date of Patent: February 20, 1990
    Assignee: General Motors Corporation
    Inventors: Robert W. Lee, John J. Croat
  • Patent number: 4867788
    Abstract: To control grain size during recrystallization annealing of a consolidated metallurgical, dispersion-strengthened powder allow material, the initial powder is seeded with a powder alloy in which the dispersoid is absent or is in a coarser form or is present in a lesser quantity so that the seeds provide sites at which nucleation of recrystallization is promoted.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: September 19, 1989
    Assignee: United Kingdom Atomic Energy Authority
    Inventor: Andrew R. Jones
  • Patent number: 4859238
    Abstract: Electrical contacts are formed from a silver-iron material which contains 3 to 30% by weight of iron and one or more of the components manganese, copper, zinc, antimony, bismuth oxide, molybdenum oxide, tungsten oxide or chromium nitride in amount totalling 0.05 to 5 weight percent, the balance being silver. These materials are suitable for forming electrical contacts of a wide variety. Tantalum is an optional component which may also be utilized particularly when 0.2 percent to 2 percent zinc is present.
    Type: Grant
    Filed: June 3, 1988
    Date of Patent: August 22, 1989
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Weise, Roger Wolmer, Peter Braumann
  • Patent number: 4851041
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. Th metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt.
    Type: Grant
    Filed: May 22, 1987
    Date of Patent: July 25, 1989
    Assignee: Exxon Research and Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish
  • Patent number: 4838935
    Abstract: Tungsten-titanium sputtering targets with improved characteristics are made from high-purity tungsten powder and a second powder consisting of high-purity titanium hydride powder or high-purity titanium hydride powder and high-purity titanium powder. The second powder contains at least 5%, preferably 25% to 100% by weight of titanium hydride powder. A powder mixture having a binodal particle size distribution with respect to the tungsten and second powders is placed under a containment pressure in a die. The die is heated in a vacuum hot-press chamber to a temperature sufficient to dehydride the titanium hydride, and to remove gases and alkali metals. The die is then heated to a second temperature in the range of 1350.degree. to 1550.degree. C. while maintaining the containment pressure and vacuum. A compaction force in the range of 2000 to 5000 psi is then applied to form a compact. The compaction force and vacuum are subsequently released and the compact is cooled.
    Type: Grant
    Filed: May 31, 1988
    Date of Patent: June 13, 1989
    Assignee: Cominco Ltd.
    Inventors: John A. Dunlop, Hans Rensing