Insulated Gate Bipolar Mode Transistor (e.g., Igbt; Igt; Comfet) (epo) Patents (Class 257/E29.197)
  • Publication number: 20120299053
    Abstract: A semiconductor device includes a source metallization and a semiconductor body. The semiconductor body includes a first field-effect structure including a source region of a first conductivity type electrically coupled to the source metallization. The semiconductor body also includes a second field-effect structure including a source region of the first conductivity type electrically coupled to the source metallization. A voltage tap including a semiconductor region within the semiconductor body is electrically coupled to a first gate electrode of the first field-effect structure by an intermediate inverter structure.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton MAUDER, Franz HIRLER, Joachim WEYERS
  • Publication number: 20120299055
    Abstract: A sinker layer is in contact with a first conductivity-type well, and is separated from a first conductivity-type collector layer and a second conductivity-type drift layer. A second conductivity-type diffusion layer (second second-conductivity-type high-concentration diffusion layer) is formed in the surface layer of the sinker layer. The second conductivity-type diffusion layer has a higher impurity concentration than that of the sinker layer. The second conductivity-type diffusion layer and the first conductivity-type collector layer are isolated from each other with an element isolation insulating film interposed therebetween.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: Renesas Electronics Corporation
    Inventor: Hiroki FUJII
  • Publication number: 20120299054
    Abstract: A power semiconductor device includes a four-layer structure having layers arranged in order: (i) a cathode layer of a first conductivity type with a central area being surrounded by a lateral edge, the cathode layer being in direct electrical contact with a cathode electrode, (ii) a base layer of a second conductivity type, (iii) a drift layer of the first conductivity typehaving a lower doping concentration than the cathode layer, and (iv) an anode layer of the second conductivity type which is in electrical contact with an anode electrode. The base layer includes a first layer as a continuous layer contacting the central area of the cathode layer. A resistance reduction layer, in which the resistance at the junction between the lateral edge of the cathode and base layers is reduced, is arranged between the first layer and the cathode layer and covers the lateral edge of the cathode layer.
    Type: Application
    Filed: June 22, 2012
    Publication date: November 29, 2012
    Applicant: ABB Technology AG
    Inventor: Munaf RAHIMO
  • Publication number: 20120286323
    Abstract: A semiconductor component includes a semiconductor body, a first emitter region of a first conductivity type in the semiconductor body, a second emitter region of a second conductivity type arranged distant to the first emitter region in a vertical direction of the semiconductor body, a base region of one of the first and second conductivity types arranged between the first and second emitter regions and having a lower doping concentration than the first second emitter regions, a first field stop zone of the same conductivity type as the base region arranged in the base region, and a second field stop zone of the same conductivity type as the base region arranged in the base region.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 15, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventor: Dorothea Werber
  • Publication number: 20120286829
    Abstract: A high breakdown voltage semiconductor device includes: an n? type region (101) surrounded by a p? well region (102) on a p? type silicon substrate (100); a drain n+ region (103) connected to a drain electrode (120); a p base region (105) formed so as to surround the drain n+ region (103); a source n+ region (114) formed in the p base region (105); and a p? region (131) for isolating the n? type region (101) into an n? type region (101a) including the drain n+ region (103), and an n? type region (101b) not having the drain n+ region (103). The n? type region (101b) is connected to the drain electrode (120) or the drain n+ region (103) via an n offset region (104) or a polysilicon (304) which is a high resistance element.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 15, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Masaharu Yamji
  • Publication number: 20120286326
    Abstract: A power semiconductor device that realizes high-speed turnoff and soft switching at the same time has an n-type main semiconductor layer that includes lightly doped n-type semiconductor layers and extremely lightly doped n-type semiconductor layers arranged alternately and repeatedly between a p-type channel layer and an n+-type field stop layer, in a direction parallel to the first major surface of the n-type main semiconductor layer. A substrate used for manufacturing the semiconductor device is fabricated by forming trenches in an n-type main semiconductor layer 1 and performing ion implantation and subsequent heat treatment to form an n+-type field stop layer in the bottom of the trenches. The trenches are then filled with a semiconductor doped more lightly than the n-type main semiconductor layer for forming extremely lightly doped n-type semiconductor layers. The manufacturing method is applicable with variations to various power semiconductor devices such as IGBT's, MOSFET's and PIN diodes.
    Type: Application
    Filed: July 25, 2012
    Publication date: November 15, 2012
    Applicant: Fuji Electric Device Technology Co., Ltd.
    Inventor: Koh YOSHIKAWA
  • Patent number: 8310001
    Abstract: A vertical device structure includes a volume of semiconductor material, laterally adjoining a trench having insulating material on sidewalls thereof. A gate electrode within the trench is capacitively coupled through the insulating material to a first portion of the semiconducting material. Some portions of the insulating material contain fixed electrostatic charge in a density high enough to invert a second portion of the semiconductor material when no voltage is applied. The inverted portions can be used as induced source or drain extensions, to assure that parasitic are reduced without increasing on-resistance.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: November 13, 2012
    Assignee: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Jun Zeng
  • Publication number: 20120280272
    Abstract: A maximum-punch-through semiconductor device such as an insulated gate bipolar transistor (IGBT) or a diode, and a method for producing same are disclosed. The MPT semiconductor device can include at least a two-layer structure having an emitter metallization, a channel region, a base layer with a predetermined doping concentration ND, a buffer layer and a collector metallization. A thickness W of the base layer can be determined by: W = V bd + V pt 4010 ? ? kV ? ? cm - 5 / 8 * ( N D ) 1 / 8 wherein a punch-through voltage Vpt of the semiconductor device is between 70% and 99% of a break down voltage Vbd of the semiconductor device, and wherein the thickness W is a minimum thickness of the base layer between a junction to the channel region and the buffer layer.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 8, 2012
    Applicant: ABB Technology AG
    Inventors: Munaf RAHIMO, Arnost KOPTA, Jan VOBECKY, Wolfgang JANISCH
  • Publication number: 20120280270
    Abstract: A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region, The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 8, 2012
    Inventors: Sei-Hyung Ryu, Doyle Craig Capell, Lin Cheng, Sarit Dhar, Charlotte Jonas, Anant Agarwal, John Palmour
  • Publication number: 20120273836
    Abstract: A semiconductor device includes: a transistor region including an IGBT having a gate electrode and an emitter electrode; a termination region placed around the transistor region; and an extraction region placed between the transistor and the termination region and extracting redundant carriers. A P-type layer is placed on an N-type drift layer in the extraction region. The P-type layer is connected to the emitter electrode. A dummy gate electrode is placed via an insulation film on the P-type layer. The dummy gate electrode is connected to the gate electrode. Life time of carriers in the termination region is shorter than life time of carriers in the transistor region and the extraction region.
    Type: Application
    Filed: December 13, 2011
    Publication date: November 1, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Koji Sadamatsu, Ze Chen, Katsumi Nakamura
  • Patent number: 8299539
    Abstract: A semiconductor device includes: a semiconductor substrate; an IGBT element including a collector region; a FWD element including a cathode region adjacent to the collector region; a base layer on the substrate; multiple trench gate structures including a gate electrode. The base layer is divided by the trench gate structures into multiple first and second regions. Each first region includes an emitter region contacting the gate electrode. Each first region together with the emitter region is electrically coupled with an emitter electrode. The first regions include collector side and cathode side first regions, and the second regions include collector side and cathode side second regions. At least a part of the cathode side second region is electrically coupled with the emitter electrode, and at least a part of the collector side second region has a floating potential.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 30, 2012
    Assignee: Denso Corporation
    Inventor: Kenji Kouno
  • Publication number: 20120267681
    Abstract: A p anode layer (2) is formed on one main surface of an n? drift layer (1). An n+ cathode layer (3) having an impurity concentration more than that of the n? drift layer (1) is formed on the other main surface of the n? drift layer (1). An anode electrode (4) is formed on the surface of the p anode layer (2). A cathode electrode (5) is formed on the surface of the n+ cathode layer (3). An n-type broad buffer region (6) that has a net doping concentration more than the bulk impurity concentration of a wafer and less than that of the n+ cathode layer (3) and the p anode layer (2) is formed in the n? drift layer (1). The resistivity ?0 of the n? drift layer (1) satisfies 0.12V0??0?0.25V0 with respect to a rated voltage V0. The total amount of the net doping concentration of the broad buffer region (6) is equal to or more than 4.8×1011 atoms/cm2 and equal to or less than 1.0×1012 atoms/cm2.
    Type: Application
    Filed: November 2, 2010
    Publication date: October 25, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Michio Nemoto, Takashi Yoshimura
  • Patent number: 8294244
    Abstract: A semiconductor device comprises: a semiconductor substrate; a plurality of IGBT cells on the semiconductor substrate, each of the IGBT cells including a gate electrode and a first emitter electrode; a first gate wiring on the substrate and being connected to the gate electrode; an interlayer insulating film covering the first emitter electrode and the first gate wiring; and a second emitter electrode on the interlayer insulating film and being connected to the first emitter electrode through an opening of the interlayer insulating film, wherein the second emitter electrode extends above the first gate wiring via the interlayer insulating film.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: October 23, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Suzuki, Yoshifumi Tomomatsu
  • Publication number: 20120256229
    Abstract: The ESD protection device includes a substrate, a well, a first doped region and a second doped region. The substrate has a first conductive type, and the substrate is electrically connected to a first power node. The well has a second conductive type, and is disposed in the substrate. The first doped region has the first conductive type, and is disposed in the well. The first doped region and the well are electrically connected to a second power node. The second doped region has the second conductive type, and is disposed in the substrate. The second doped region is in a floating state.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Inventor: Wei-Fan Chen
  • Patent number: 8283697
    Abstract: An internal combustion engine igniter semiconductor device is disclosed which is low cost yet secures energy withstand and reverse surge withstand capability. An IGBT includes a clamping diode between a collector electrode and a gate electrode. The IGBT has two n-type buffer layers of differing impurity concentrations between a p+ substrate and an n-type base layer of the IGBT, wherein the total thickness of the two-layer buffer layer is 50 ?m or less, and the overall impurity amount is 20×1013 cm?2 or less.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 9, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Katsunori Ueno
  • Publication number: 20120248499
    Abstract: A semiconductor device includes a semiconductor substrate including a semiconductor layer, a power device formed in the semiconductor substrate, a plurality of concentric guard rings formed in the semiconductor substrate and surrounding the power device, and voltage applying means for applying successively higher voltages respectively to the plurality of concentric guard rings, with the outermost concentric guard ring having the highest voltage applied thereto.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Shigeru KUSUNOKI
  • Publication number: 20120248564
    Abstract: According to an exemplary embodiment, a dual compartment semiconductor package includes a conductive clip having first and second compartments. The first compartment is electrically and mechanically connected to a top surface of the first die. The second compartment electrically and mechanically connected to a top surface of a second die. The dual compartment semiconductor package also includes a groove formed between the first and second compartments, the groove preventing contact between the first and second dies. The dual compartment package electrically connects the top surface of the first die to the top surface of the second die. The first die can include an insulated-gate bipolar transistor (IGBT) and the second die can include a diode. A temperature sensor can be situated adjacent to, over, or within the groove for measuring a temperature of the dual compartment semiconductor package.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Henning M. Hauenstein
  • Publication number: 20120248462
    Abstract: An IGBT includes a groove provided in a silicon carbide semiconductor layer, a body region of a first conductivity type provided in the silicon carbide semiconductor layer, and an insulating film covering at least a sidewall surface of the groove, the sidewall surface of the groove being a surface having an off angle of 50° or more and 65° or less with respect to a {0001} plane, the sidewall surface of the groove including a surface of the body region, the insulating film being in contact with at least the surface of the body region at the sidewall surface of the groove, and a first conductivity type impurity concentration in the body region being 5×1016 cm?3 or more.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda, Misako Honaga, Toru Hiyoshi
  • Patent number: 8278736
    Abstract: An electrostatic discharge protection device coupled between a first power line and a second power line is provided. A first N-type doped region is formed in a P-type well. A first P-type doped region is formed in the first N-type doped region. A second P-type doped region includes a first portion and a second portion. The first portion of the second P-type doped region is formed in the first N-type doped region. The second portion of the second P-type doped region is formed outside of the first N-type doped region. A second N-type doped region is formed in the first portion of the second P-type doped region. The first P-type doped region, the first N-type doped region, the second P-type doped region and the second N-type doped region constitute an insulated gate bipolar transistor (IGBT).
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: October 2, 2012
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning Jou, Chia-Wei Hung, Shu-Ling Chang, Hwa-Chyi Chiou, Yeh-Jen Huang
  • Patent number: 8278683
    Abstract: Current density in an insulated gate bipolar transistor (L-IGBT) may be increased by adding a second gate, and the corresponding MOS transistors, to the source area, which increases the base current compared to a L-IGBT with a single MOS gate. The current density may be further increased by extending the base of the bipolar transistor in the L-IGBT vertically to the bottom surface of the silicon on insulator (SOI) film in which the L-IGBT is fabricated. Adding a buffer diffused region around the sinks in the source improves the base current spatial uniformity, which improves the safe operating area (SOA) of the L-IGBT. A L-IGBT of either polarity may be formed with the inventive configurations. A method of forming the inventive L-IGBT is also disclosed.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: October 2, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Hideaki Kawahara, Philip Leland Hower
  • Publication number: 20120241814
    Abstract: A power semiconductor device includes a p-type collector layer, an n-type base layer, a p-type base layer, an n-type source layer, and a gate electrode. The gate electrode is formed in a trench running from a surface of the n-type source layer through the n-type source layer and the p-type base layer to an interior of the n-type base layer via a gate insulating film. The gate electrode includes a first portion and a second portion. The first portion is opposed to a bottom end portion of the p-type base layer. The second portion is opposed to an upper end portion of the p-type base layer. The gate electrode is formed such that a threshold at the bottom end portion of the p-type base layer is not less than a threshold at the upper end portion of the p-type base layer.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shuji KAMATA, Masakazu Kobayashi
  • Patent number: 8274095
    Abstract: A semiconductor device having the present high withstand voltage power device IGBT has at a back surface a p collector layer with boron injected in an amount of approximately 3×1013/cm2 with an energy of approximately 50 KeV to a depth of approximately 0.5 ?m, and an n+ buffer layer with phosphorus injected in an amount of approximately 3×1012/cm2 with an energy of 120 KeV to a depth of approximately 20 ?m. To control lifetime, a semiconductor substrate is exposed to protons at the back surface. Optimally, it is exposed to protons at a dose of approximately 1×1011/cm2 to a depth of approximately 32 ?m as measured from the back surface. Thus snapback phenomenon can be eliminated and an improved low saturation voltage (Vce (sat))-offset voltage (Eoff) tradeoff can be achieved.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 25, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoshiaki Hisamoto
  • Patent number: 8264037
    Abstract: A sinker layer is in contact with a first conductivity-type well, and is separated from a first conductivity-type collector layer and a second conductivity-type drift layer. A second conductivity-type diffusion layer (second second-conductivity-type high-concentration diffusion layer) is formed in the surface layer of the sinker layer. The second conductivity-type diffusion layer has a higher impurity concentration than that of the sinker layer. The second conductivity-type diffusion layer and the first conductivity-type collector layer are isolated from each other with an element isolation insulating film interposed therebetween.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: September 11, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Fujii
  • Publication number: 20120223415
    Abstract: According to one disclosed embodiment, a power semiconductor package includes an insulated-gate bipolar transistor (IGBT) residing on a package substrate, where the IGBT includes a plurality of solderable front metal (SFM) coated emitter segments situated atop the IGBT and connected to an emitter of the IGBT. The power semiconductor package also includes a conductive clip coupling the plurality of SFM coated emitter segments to an emitter pad on the package substrate. Additionally, the power semiconductor package includes a gate pad on the package substrate coupled to a gate of the IGBT, a collector pad on the package substrate situated under the IGBT and coupled to a collector of the IGBT, and an emitter terminal, a collector terminal and a gate terminal of the package substrate that are routed to the emitter pad, collector pad, and gate pad, respectively.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 6, 2012
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Hsueh-Rong Chang
  • Patent number: 8253164
    Abstract: A lateral insulated gate bipolar transistor (LIGBT) includes a drain-anode adjoining trenched contact penetrating through an insulating layer and extending into an epitaxial layer, directly contacting to a drain region and an anode region, and the drain region vertically contacting to the anode region along sidewall of the drain-anode adjoining trenched contact. The LIGBT further comprises a breakdown voltage enhancement doping region wrapping around the anode region. The LIGBTs in accordance with the invention offer the advantages of high breakdown voltage and low on-resistance as well as high switching speed.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: August 28, 2012
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20120211799
    Abstract: A power semiconductor module including a semiconductor device (e.g., an insulated gate bipolar transistor (IGBT), a reverse conductive (RC IGBT), or a bi-mode insulated gate transistor (BIGT)) with an emitter electrode and a collector electrode is provided. An electrically conductive upper layer is sintered to the emitter electrode. The upper layer is capable of forming an eutecticum with the semiconductor of the semiconductor device, and has a coefficient of thermal expansion which differs from the coefficient of thermal expansion of the semiconductor in a range of ?250%, for example ?50%. An electrically conductive base plate is sintered to the collector electrode. The semiconductor module includes an electrically conductive area which is electrically isolated from the base plate and connected to the upper layer via a direct electrical connection. The semiconductor module is easy to prepare, has an improved reliability and exhibits short circuit failure mode capacity.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Applicant: ABB RESEARCH LTD
    Inventors: Chunlei LIU, Nicola SCHULZ, Slavo KICIN
  • Patent number: 8242537
    Abstract: An IGBT with a fast reverse recovery time rectifier includes an N-type drift epitaxial layer, a gate, a gate insulating layer, a P-type doped base region, an N-type doped source region, a P-type doped contact region, and a P-type lightly doped region. The P-type doped base region is disposed in the N-type drift epitaxial layer, and the P-type doped contact region is disposed in the N-type drift epitaxial layer. The P-type lightly doped region is disposed between the P-type contact doped region and the N-type drift epitaxial layer, and is in contact with the N-type drift epitaxial layer.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: August 14, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Jen-Hao Yeh, Ho-Tai Chen
  • Patent number: 8242535
    Abstract: A collector region is not formed in at least a portion of an ineffective region where an insulating film is formed on a front face of an IGBT. In this portion in which the collector region is not formed, a collector electrode and a buffer layer contact each other. Since the buffer layer and the collector region differ from each other in conductivity type, no electric charge is introduced from the collector electrode into the buffer layer. Thus, introduction of electric charges into a drift region at a portion in the ineffective region is suppressed, which alleviates electric field concentration in a semiconductor substrate. Further, in the IGBT, the semiconductor substrate and the collector electrode contact each other and heat transfer to the collector electrode is not hindered even in the range where the collector region is not formed. Thus, concentration of heat generation in the semiconductor substrate is alleviated.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: August 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Senoo
  • Patent number: 8232579
    Abstract: A semiconductor device has a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type complementary to the first conductivity type arranged in or on the first semiconductor layer. Further, the semiconductor device has a region of the first conductivity type arranged in the second semiconductor layer. A first electrode contacts the region of the first conductivity type and the second semiconductor layer. A first trench extends into the first semiconductor layer, and a voltage dependent short circuit diverter structure includes electrically conductive material arranged in the first trench and coupled to the first electrode and a highly-doped diverter region of the second conductivity type.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: July 31, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Frank Dieter Pfirsch
  • Publication number: 20120181575
    Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor body with a base region and a first electrode arranged on a main horizontal surface of the semiconductor body. The semiconductor body further includes an IGBT-cell with a body region forming a first pn-junction with the base region, and a diode-cell with an anode region forming a second pn-junction with the base region. A source region in ohmic contact with the first electrode and an anti-latch-up region in ohmic contact with the first electrode are, in a vertical cross-section, only formed in the IGBT-cell. The anti-latch-up region has higher maximum doping concentration than the body region. Further a reverse conducting IGBT is provided.
    Type: Application
    Filed: January 17, 2011
    Publication date: July 19, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventor: Frank Pfirsch
  • Publication number: 20120181576
    Abstract: An insulated gate bipolar transistor includes: a collector layer; a drift layer formed on and connected to the collector layer; a gate structure including a dielectric layer formed on the drift layer, and a conductive layer formed on the dielectric layer; a first emitter structure including a well region formed within the drift layer and partially connected to the dielectric layer of the gate structure, a source region formed within the well region just underneath a top surface of the well region, and a first electrode formed on the top surface of the well region and connected to the well region and the source region; and a second emitter structure spaced apart from the gate structure and the first emitter structure, and including a bypass region formed on the top surface of the drift layer, and a second electrode formed on the bypass region.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 19, 2012
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: Yung-Fa LIN, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Yi-Chun Shih
  • Publication number: 20120175674
    Abstract: The present invention relates generally to power switches for aircraft. According to a first aspect, the present invention provides an integrated solid state power switch for fault protection in an aircraft power distribution system. The integrated solid state power switch is formed of semiconductor material that provides a field effect transistor (FET) channel that is operable during normal device operation to provide an operating current flow path and a bipolar transistor channel that is operable during device overload conditions to provide an overload current flow path. A method for manufacturing such an integrated solid state power switch is also described. Various embodiments of the invention provide automatic overload current protection for aircraft systems without the need to use bulky switches or heavy cooling equipment.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 12, 2012
    Inventors: Adrian Shipley, Martin James Stevens, Phil Mawby, Angus Bryant
  • Patent number: 8212283
    Abstract: A reverse-conducting semiconductor device is disclosed with an electrically active region, which includes a freewheeling diode and an insulated gate bipolar transistor on a common wafer. Part of the wafer forms a base layer with a base layer thickness. A first layer of a first conductivity type with at least one first region and a second layer of a second conductivity type with at least one second and third region are alternately arranged on the collector side. Each region has a region area with a region width surrounded by a region border. The RC-IGBT can be configured such that the following exemplary geometrical rules are fulfilled: each third region area is an area, in which any two first regions have a distance bigger (i.e.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: July 3, 2012
    Assignee: ABB Technology AG
    Inventors: Liutauras Storasta, Munaf Rahimo, Christoph Von Arx, Arnost Kopta, Raffael Schnell
  • Publication number: 20120161201
    Abstract: A lateral insulated gate bipolar transistor (LIGBT) includes a drain-anode adjoining trenched contact penetrating through an insulating layer and extending into an epitaxial layer, directly contacting to a drain region and an anode region, and the drain region vertically contacting to the anode region along sidewall of the drain-anode adjoining trenched contact. The LIGBT further comprises a breakdown voltage enhancement doping region wrapping around the anode region. The LIGBTs in accordance with the invention offer the advantages of high breakdown voltage and low on-resistance as well as high switching speed.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Applicant: FORCE MOS TECHNOLOGY CO., LTD.
    Inventor: Fu-Yuan HSIEH
  • Publication number: 20120153348
    Abstract: A trench gate IGBT designed to reduce on-state voltage while maintaining the withstand voltage, including a first drift layer formed on a first main surface of a buffer layer, a second drift layer of the first conductivity type formed on said first drift layer, a base layer of a second conductivity type formed on the second drift layer, an emitter layer of the first conductivity type selectively formed in the surface of the base layer, and a gate electrode buried from the surface of the emitter layer through into the second drift layer with a gate insulating film therebetween, wherein said first drift layer has a structure in which a first layer of the first conductivity type and a second layer of the second conductivity type are repeated in a horizontal direction.
    Type: Application
    Filed: September 7, 2011
    Publication date: June 21, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinji Aono, Tadaharu Minato
  • Publication number: 20120146091
    Abstract: An insulated gate semiconductor device includes a first conductivity-type semiconductor substrate, a second conductivity-type base layer on a first surface side of the substrate, a trench dividing the base layer into channel and floating layers, and a first conductivity-type emitter region that is formed in the channel layer and in contact with the trench. The semiconductor device includes a gate insulation layer in the trench, a gate electrode on the insulation layer, an emitter electrode electrically connected to the emitter region and the floating layer, a second conductivity-type collector layer in the substrate, and a collector electrode on the collector layer. The floating layer has a lower impurity concentration than the channel layer. The floating layer has a first conductivity-type hole stopper layer located at a predetermined depth from the first surface of the substrate and at least partially spaced from the insulation layer.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 14, 2012
    Applicant: DENSO CORPORATION
    Inventors: Hiromitsu Tanabe, Yukio Tsuzuki, Kenji Kouno, Tomofusa Shiga
  • Publication number: 20120139005
    Abstract: According to one embodiment, a semiconductor device includes a p-type semiconductor layer, an n-type source region, an insulator, an n-type semiconductor region, an n-type drain region, a p-type channel region, a gate insulating film, a gate electrode, a source electrode, a drain electrode, and an electrode. The source region is provided on a surface of the p-type semiconductor layer. The insulator is provided in a trench formed extending in a thickness direction of the p-type semiconductor layer from the surface of the p-type semiconductor layer. The n-type semiconductor region is provided on the surface of the p-type semiconductor layer between the source region and the insulator. The drain region is provided on the surface of the p-type semiconductor layer between the source region and the n-type semiconductor region and separated from the source region and the n-type semiconductor region.
    Type: Application
    Filed: March 21, 2011
    Publication date: June 7, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takehito IKIMURA, Rieko Akimoto, Kiminori Watanabe, Koji Shirai, Yasushi Fukai
  • Publication number: 20120132956
    Abstract: A semiconductor component having a semiconductor body is disclosed. In one embodiment, the semiconductor component includes a drift zone of a first conductivity type, a drift control zone composed of a semiconductor material which is arranged adjacent to the drift zone at least in places, a dielectric which is arranged between the drift zone and the drift control zone at least in places. A quotient of the net dopant charge of the drift control zone, in an area adjacent to the accumulation dielectric and the drift zone, divided by the area of the dielectric arranged between the drift control zone and the drift zone is less than the breakdown charge of the semiconductor material in the drift control zone.
    Type: Application
    Filed: February 7, 2012
    Publication date: May 31, 2012
    Applicant: Infineon Technologies AG
    Inventors: Frank Dieter Pfirsch, Armin Willmeroth, Anton Mauder, Stefan Sedlmaier
  • Publication number: 20120132955
    Abstract: A diode region and an IGBT region are formed in a semiconductor layer of a semiconductor device. A lifetime controlled region is formed in the semiconductor layer. In a plan view, the lifetime controlled region has a first lifetime controlled region located in the diode region and a second lifetime controlled region located in a part of the IGBT region. The second lifetime controlled region extends from a boundary of the diode region and the IGBT region toward the IGBT region. In the plan view, a tip of the second lifetime controlled region is located in a forming area of the body region in the IGBT region.
    Type: Application
    Filed: February 6, 2012
    Publication date: May 31, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jun SAITO, Sachiko AOI, Takahide SUGIYAMA
  • Patent number: 8188511
    Abstract: A semiconductor device and a method of forming the semiconductor device include a substrate and an n drift layer on the substrate with an insulator film placed between them. A trench is provided in a section between a p base region and an n buffer layer on the surface layer of the n drift layer. Moreover, the distance between the bottom of the trench and the insulator film on the substrate is 1 ?m or more and 75% or less than the thickness of the n drift layer. This reduces the ON-state Voltage Drop and enhances the device breakdown voltage and the latch up current in a lateral IGBT or a lateral MOSFET.
    Type: Grant
    Filed: June 1, 2008
    Date of Patent: May 29, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Noriyuki Iwamuro
  • Publication number: 20120126880
    Abstract: An embodiment of an IGBT device is integrated in a chip of semiconductor material including a substrate of a first type of conductivity, an active layer of a second type of conductivity formed on an inner surface of the substrate, a body region of the first type of conductivity extending within the active layer from a front surface thereof opposite the inner surface, a source region of the second type of conductivity extending within the body region from the front surface, a channel region being defined within the body region between the source region and the active layer, a gate element insulated from the front surface extending over the channel region, a collector terminal contacting the substrate on a rear surface thereof opposite the inner surface, an emitter terminal contacting the source region and the body region on the front surface, and a gate terminal contacting the gate element.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventor: Davide Giuseppe PATTI
  • Publication number: 20120119256
    Abstract: In a semiconductor module according to certain aspects the invention, a U-terminal and an M-terminal overlap each other in a manner to reduce inductance and to further to reduce the size of snubber capacitor. In certain aspects of the invention, a P-terminal, M-terminal, N-terminal, and U-terminal are arranged such that the U-terminal, through which currents flow in and out, is arranged farthest away from control electrodes to reduce the noises superposed to control electrodes, and the P-terminal, M-terminal, N-terminal, and U-terminal are aligned to facilitate attaching external connection bars thereto. A power semiconductor module according to aspects of the invention can facilitate reducing the wiring inductance inside and outside the module, reducing the electromagnetic noises introduced into the control terminals, and attaching the external wirings to the terminals thereof simply and easily.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 17, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Souichi OKITA
  • Publication number: 20120119255
    Abstract: A sinker layer is in contact with a first conductivity-type well, and is separated from a first conductivity-type collector layer and a second conductivity-type drift layer. A second conductivity-type diffusion layer (second second-conductivity-type high-concentration diffusion layer) is formed in the surface layer of the sinker layer. The second conductivity-type diffusion layer has a higher impurity concentration than that of the sinker layer. The second conductivity-type diffusion layer and the first conductivity-type collector layer are isolated from each other with an element isolation insulating film interposed therebetween.
    Type: Application
    Filed: January 20, 2012
    Publication date: May 17, 2012
    Inventor: Hiroki FUJII
  • Patent number: 8178365
    Abstract: A semiconductor wafer having IGBT elements and transistors formed on a surface thereof is prepared. Electron beams are emitted all over the surface of the semiconductor wafer. Recombination centers are formed in the IGBT elements and the transistors. ON voltages of the transistors are measured by a measurement device, and lifetimes defined in the IGBT elements and the transistors are recovered by a prescribed annealing treatment. When the lifetimes are recovered, a control device controls an annealing treatment amount in the annealing treatment based on the measured ON voltages of the transistors such that ON voltages of the IGBT elements are each equal to a desired ON voltage. Variations in the ON voltages of a plurality of IGBT elements obtained from the semiconductor wafer are reduced.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 15, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Atsushi Narazaki, Yukio Matsushita, Masashi Osaka, Shunsuke Sakamoto
  • Publication number: 20120112240
    Abstract: An N type layer made of an N type epitaxial layer in which an N+ type drain layer etc are formed is surrounded by a P type drain isolation layer extending from the front surface of the N type epitaxial layer to an N+ type buried layer. A P type collector layer is formed in an N type layer made of the N type epitaxial layer surrounded by the P type drain isolation layer and a P type element isolation layer, extending from the front surface to the inside of the N type layer. A parasitic bipolar transistor that uses the first conductive type drain isolation layer as the emitter, the second conductive type N type layer as the base, and the collector layer as the collector is thus formed so as to flow a surge current into a ground line.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 10, 2012
    Applicant: ON Semiconductor Trading, Ltd.
    Inventors: Yasuhiro TAKEDA, Seiji OTAKE
  • Publication number: 20120104415
    Abstract: A semiconductor device includes: an emitter electrode formed of a silicide film, and provided on a semiconductor layer; an insulating film provided on the emitter electrode; and an electrode pad made of Al, and provided on the insulating film.
    Type: Application
    Filed: June 30, 2011
    Publication date: May 3, 2012
    Applicant: MITSUBISHI ELECTRONIC CORPORATION
    Inventors: Naoto KAGUCHI, Norihisa ASANO, Katsumi SATO
  • Patent number: 8168480
    Abstract: An integrated structure of an IGBT and a diode includes a plurality of doped cathode regions, and a method of forming the same is provided. The doped cathode regions are stacked in a semiconductor substrate, overlapping and contacting with each other. As compared with other doped cathode regions, the higher a doped cathode region is disposed, the larger implantation area the doped cathode region has. The doped cathode regions and the semiconductor substrate have different conductive types, and are applied as a cathode of the diode and a collector of the IGBT. The stacked doped cathode regions can increase the thinness of the cathode, and prevent the wafer from being overly thinned and broken.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: May 1, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Jen-Hao Yeh, Li-Cheng Lin, Shih-Chieh Hung
  • Patent number: 8169034
    Abstract: A semiconductor device includes: a drift layer of a first conductivity type; a base layer of a second conductivity type provided on the drift layer; an emitter layer of the first conductivity type provided in part of an upper portion of the base layer; a buffer layer of the first conductivity type provided below the drift layer; a high-resistance layer of the first conductivity type provided below the buffer layer; a collector layer of the second conductivity type provided in a partial region on a lower surface of the high-resistance layer; a contact layer of the first conductivity type provided in another partial region on the lower surface of the high-resistance layer; a trench gate electrode extending through the emitter layer and the base layer into the drift layer; and a gate insulating film provided between the emitter layer, the base layer, and the drift layer on one hand and the trench gate electrode on the other.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: May 1, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tatsuo Naijo
  • Publication number: 20120097979
    Abstract: A structurally robust power switching assembly, that has a first rigid structural unit, defining a first unit major surface that is patterned to define a plurality of mutually electrically isolated, electrically conductive paths. Also, a similar, second rigid structural unit is spaced apart from the first unit major surface. Finally, a transistor is interposed between and electrically connected to the first unit major surface and the second unit major surface.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Inventors: Lawrence E. Rinehart, Guillermo L. Romero
  • Publication number: 20120091471
    Abstract: A semiconductor device including a drift zone of a first conductivity type serving as a substrate layer having a front side and a back side. A first contact electrode is arranged at the front side of the drift zone. A control region is arranged at the front side and controls an injection of carriers of at least the first conductivity type into the drift zone. A second contact electrode is arranged at the backside of the drift zone. The drift zone is arranged to carry a carrier flow between the first and the second contact electrode. The drift zone includes a silicon carbide wafer with a net carrier concentration less than 1015 cm?3 and a carrier lifetime of at least 50 ns.
    Type: Application
    Filed: December 29, 2011
    Publication date: April 19, 2012
    Applicants: SICED ELECTRONICS DEVELOPMENT GMBH, NORSTEL AB
    Inventors: Alexandre ELLISON, Björn Magnusson, Asko Vehanen, Dietrich Stephani, Heinz Mitlehner, Peter Friedrichs